1
|
Duan X, Subbiah V, Agar OT, Barrow CJ, Ashokkumar M, Dunshea FR, Suleria HAR. Optimizing extraction methods by a comprehensive experimental approach and characterizing polyphenol compositions of Ecklonia radiata. Food Chem 2024; 455:139926. [PMID: 38833868 DOI: 10.1016/j.foodchem.2024.139926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Brown seaweed Ecklonia radiata harbors valuable polyphenols, notably phlorotannins, prized for their health benefits. This study optimized phlorotannin extraction via conventional solvent extraction and ultrasound-assisted extraction methods, utilizing variable concentrations of ethanol. Employing fractional factorial designs, key variables were identified. Steepest ascent/descent method and central composite rotatable designs refined optimal conditions, enhancing phlorotannin and polyphenol yields, and antioxidant capacities. Under optimized conditions, phlorotannin contents reached 2.366 ± 0.01 and 2.596 ± 0.04 PGE mg/g, total polyphenol contents peaked at 10.223 ± 0.03 and 10.836 ± 0.02 GAE mg/g. Robust antioxidant activity was observed: DPPH and OH radical scavenging capacities measured 27.891 ± 0.06 and 17.441 ± 0.08 TE mg/g, and 37.498 ± 1.12 and 49.391 ± 0.82 TE mg/g, respectively. Reducing power capacities surged to 9.016 ± 0.02 and 28.110 ± 0.10 TE mg/g. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography (HPLC) analyses revealed enriched antioxidant compounds. Variations in polyphenol profiles were noted, potentially influencing antioxidant capacity nuances. This study illuminated the potential of E. radiata potential as a polyphenol source and offers optimized extraction methods poised to benefit various industries.
Collapse
Affiliation(s)
- Xinyu Duan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vigasini Subbiah
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Osman Tuncay Agar
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia
| | | | - Frank R Dunshea
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia; Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia.
| |
Collapse
|
2
|
Kaur M, Shitanaka T, Surendra KC, Khanal SK. Macroalgae-derived bioactive compounds for functional food and pharmaceutical applications-a critical review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39078214 DOI: 10.1080/10408398.2024.2384643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
The rising demand for global food resources, combined with an overreliance on land-based agroecosystems, poses a significant challenge for the sustainable production of food products. Macroalgae cultivation is a promising approach to mitigate impending global food insecurities due to several key factors: independence from terrestrial farming, rapid growth rates, unique biochemical makeup, and carbon capture potential. Furthermore, macroalgae are rich in vitamins, minerals, essential amino acids, polyunsaturated fatty acids and fiber, demonstrating significant potential as sustainable alternatives for enhancing dietary diversity and fulfilling nutritional requirements. This review provides an overview of the nutritional composition and functional properties of commercially cultivated macroalgae species, with emphasis on their viability as value additions to the functional food market. Furthermore, the review discusses the technological aspects of integrating macroalgae into food products, covering both innovative solutions and existing challenges. Macroalgae, beyond being nutritional powerhouses, contain a plethora of bioactive compounds with varied biological activities, including anti-diabetic, anti-cancer, cardioprotective, and neuroprotective properties, making them excellent candidates in developing novel pharmaceuticals. Thus, this review also summarizes the pharmaceutical applications of macroalgae, identifies research gaps and proposes potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ty Shitanaka
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong, Korea
| |
Collapse
|
3
|
Yasuda Y, Tokumatsu T, Ueda C, Sakai M, Sasaki Y, Norikura T, Matsui-Yuasa I, Kojima-Yuasa A. Ecklonia cava Polyphenols Have a Preventive Effect on Parkinson's Disease through the Activation of the Nrf2-ARE Pathway. Nutrients 2024; 16:2076. [PMID: 38999824 PMCID: PMC11243082 DOI: 10.3390/nu16132076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Parkinson's disease (PD) is a degenerative neurological disorder defined by the deterioration and loss of dopamine-producing neurons in the substantia nigra, leading to a range of motor impairments and non-motor symptoms. The underlying mechanism of this neurodegeneration remains unclear. This research examined the neuroprotective properties of Ecklonia cava polyphenols (ECPs) in mitigating neuronal damage induced by rotenone via the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Using human neuroblastoma SH-SY5Y cells and PD model mice, we found that ECP, rich in the antioxidant polyphenol phlorotannin, boosted the gene expression and functionality of the antioxidant enzyme NAD(P)H quinone oxidoreductase-1. ECP also promoted Nrf2 nuclear translocation and increased p62 expression, suggesting that p62 helps sustain Nrf2 activation via a positive feedback loop. The neuroprotective effect of ECP was significantly reduced by Compound C (CC), an AMP-activated protein kinase (AMPK) inhibitor, which also suppressed Nrf2 nuclear translocation. In PD model mice, ECPs improved motor functions impaired by rotenone, as assessed by the pole test and wire-hanging test, and restored intestinal motor function and colon tissue morphology. Additionally, ECPs increased tyrosine hydroxylase expression in the substantia nigra, indicating a protective effect on dopaminergic neurons. These findings suggest that ECP has a preventative effect on PD.
Collapse
Affiliation(s)
- Yuri Yasuda
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan (I.M.-Y.)
| | - Tamaki Tokumatsu
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan (I.M.-Y.)
| | - Chiharu Ueda
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan (I.M.-Y.)
| | - Manami Sakai
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan (I.M.-Y.)
| | - Yutaro Sasaki
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan (I.M.-Y.)
| | - Toshio Norikura
- Department of Nutrition, Aomori University of Health and Welfare, Aomori 030-8505, Japan;
| | - Isao Matsui-Yuasa
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan (I.M.-Y.)
| | - Akiko Kojima-Yuasa
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan (I.M.-Y.)
| |
Collapse
|
4
|
Cho SY, Choi JS, Jung UJ. Effects of Ecklonia stolonifera Extract on Metabolic Dysregulation in High-Fat Diet-Induced Obese Mice. J Med Food 2024; 27:242-249. [PMID: 38354279 DOI: 10.1089/jmf.2023.k.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
This study aimed to test the hypothesis that long-term and low-dose supplementation with an ethanol extract of Ecklonia stolonifera may confer protection against high-fat diet (HFD)-induced obesity in mice. Male C57BL/6J mice were divided into two groups, one of which was fed an HFD (40 kcal% fat) and the other an HFD+E. stolonifera (0.006%, w/w, ∼5 mg/kg body weight/day) for 16 weeks. E. stolonifera supplementation significantly reduced body weight from week 3 and until the end of the experiment. E. stolonifera-supplemented mice also exhibited lower fat mass (epididymal, perirenal, and mesenteric fat) and smaller adipocyte size than HFD control mice. The two groups displayed similar food intakes, but E. stolonifera markedly decreased lipogenesis and increased lipolysis and fatty acid oxidation in adipose tissue. Moreover, E. stolonifera significantly decreased plasma and hepatic lipid levels, hepatic lipid droplet accumulation, plasma aminotransferase levels, and liver weight by decreasing lipogenesis and increasing fatty acid oxidation. As E. stolonifera-supplemented mice showed improvements in hyperglycemia, insulin resistance, and inflammation, compared to control mice, it is possible that the beneficial effects of E. stolonifera on obesity might be associated with decreased inflammation and insulin resistance. Collectively, these results indicate that E. stolonifera could be used as a novel means of preventing and treating obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Su Yeon Cho
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| |
Collapse
|
5
|
Pan-utai W, Satmalee P, Saah S, Paopun Y, Tamtin M. Brine-Processed Caulerpa lentillifera Macroalgal Stability: Physicochemical, Nutritional and Microbiological Properties. Life (Basel) 2023; 13:2112. [PMID: 38004252 PMCID: PMC10671829 DOI: 10.3390/life13112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Caulerpa lentillifera is a type of green macroalga that is commonly consumed as fresh seaweed, particularly in Southeast Asia. The effects of different salt types and concentrations on C. lentillifera during brine processing were investigated using table, sea and flower salt at 10-30% levels. The colour and texture of C. lentillifera varied across different treatments. After storage in brine for 12 weeks, lightness (L*) decreased, greenness (a*) decreased and yellowness (b*) increased while firmness increased in all treatments compared to fresh algae. The nutritional composition did not change significantly over time. To ensure the safety and quality of seaweed for consumption, the optimal salt level for brine processing should not exceed 30% table salt. The morphology and elements contained in different types of salt were also observed, and the microbiological safety of seaweed was evaluated. The popularity of Caulerpa macroalgae is rapidly increasing among consumers, leading to a growing demand for ready-to-eat Caulerpa products. However, food safety and security standards must be maintained.
Collapse
Affiliation(s)
- Wanida Pan-utai
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| | - Prajongwate Satmalee
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand;
| | - Safiah Saah
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand;
| | - Yupadee Paopun
- Scientific Equipment and Research Division, Kasetsart University Research and Development Institute, Kasetsart University, Bangkok 10900, Thailand;
| | - Montakan Tamtin
- Department of Fisheries, Ministry of Agriculture and Cooperatives, Kung Krabaen Bay Royal Development Study Center, Chantha Buri 22120, Thailand;
| |
Collapse
|
6
|
Pereira L, Valado A. Algae-Derived Natural Products in Diabetes and Its Complications-Current Advances and Future Prospects. Life (Basel) 2023; 13:1831. [PMID: 37763235 PMCID: PMC10533039 DOI: 10.3390/life13091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes poses a significant global health challenge, necessitating innovative therapeutic strategies. Natural products and their derivatives have emerged as promising candidates for diabetes management due to their diverse compositions and pharmacological effects. Algae, in particular, have garnered attention for their potential as a source of bioactive compounds with anti-diabetic properties. This review offers a comprehensive overview of algae-derived natural products for diabetes management, highlighting recent developments and future prospects. It underscores the pivotal role of natural products in diabetes care and delves into the diversity of algae, their bioactive constituents, and underlying mechanisms of efficacy. Noteworthy algal derivatives with substantial potential are briefly elucidated, along with their specific contributions to addressing distinct aspects of diabetes. The challenges and limitations inherent in utilizing algae for therapeutic interventions are examined, accompanied by strategic recommendations for optimizing their effectiveness. By addressing these considerations, this review aims to chart a course for future research in refining algae-based approaches. Leveraging the multifaceted pharmacological activities and chemical components of algae holds significant promise in the pursuit of novel antidiabetic treatments. Through continued research and the fine-tuning of algae-based interventions, the global diabetes burden could be mitigated, ultimately leading to enhanced patient outcomes.
Collapse
Affiliation(s)
- Leonel Pereira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal;
| | - Ana Valado
- MARE-Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, University of Coimbra, 3000-456 Coimbra, Portugal;
- Biomedical Laboratory Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro-SM Bispo, Apartado 7006, 3045-043 Coimbra, Portugal
| |
Collapse
|
7
|
Jo SL, Yang H, Jeong KJ, Lee HW, Hong EJ. Neuroprotective Effects of Ecklonia cava in a Chronic Neuroinflammatory Disease Model. Nutrients 2023; 15:nu15082007. [PMID: 37111229 PMCID: PMC10142528 DOI: 10.3390/nu15082007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammation is a natural defense mechanism against noxious stimuli, but chronic inflammation can lead to various chronic diseases. Neuroinflammation in the central nervous system plays an important role in the development and progression of neurodegenerative diseases. Polyphenol-rich natural products, such as Ecklonia cava (E. cava), are known to have anti-inflammatory and antioxidant properties and can provide treatment strategies for neurodegenerative diseases by controlling neuroinflammation. We investigated the effects of an E. cava extract on neuroinflammation and neurodegeneration under chronic inflammatory conditions. Mice were pretreated with E. cava extract for 19 days and then exposed to E. cava with lipopolysaccharide (LPS) for 1 week. We monitored pro-inflammatory cytokines levels in the serum, inflammation-related markers, and neurodegenerative markers using Western blotting and qRT-PCR in the mouse cerebrum and hippocampus. E. cava reduced pro-inflammatory cytokine levels in the blood and brain of mice with LPS-induced chronic inflammation. We also measured the activity of genes related to neuroinflammation and neurodegeneration. Surprisingly, E. cava decreased the activity of markers associated with inflammation (NF-kB and STAT3) and a neurodegenerative disease marker (glial fibrillary acidic protein, beta-amyloid) in the cerebrum and hippocampus of mice. We suggest that E. cava extract has the potential as a protective agent against neuroinflammation and neurodegenerative diseases.
Collapse
Affiliation(s)
- Seong-Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Kang-Joo Jeong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hye-Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
8
|
Shin HC, Kim Y, Choi J, Kang HB, Han SY, Park K, Hwang HJ. Regioselective Synthesis of 6- O-Acetyl Dieckol and Its Selective Cytotoxicity against Non-Small-Cell Lung Cancer Cells. Mar Drugs 2022; 20:683. [PMID: 36355006 PMCID: PMC9695823 DOI: 10.3390/md20110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
Dieckol, a phlorotannin from Ecklonia cava, has shown potential for use as an anticancer agent that selectively kills cancer cells. However, it is necessary to amplify its potency without damaging its inherent safety in order to develop it as a competitive chemotherapeutic. Here, we explored the controlled O-acylations of dieckol. Acyl groups could be consistently introduced to the 6-O position of dieckol with a high regioselectivity, which was confirmed by NOESY, HMBC and HSQC spectroscopies. In cytotoxicity studies on the newly synthesized 6-O-acetyl, 6-O-benzoyl dieckols and previously synthesized 6-O-alkyl dieckols against A549 vs. normal cells, all of the derivatives showed low cytotoxicity in normal cells with an IC50 of 481-719 μM, and highly structure-dependent cytotoxicity in A549 cells with an IC50 of 7.02 (acetyl)-842.26 (benzyl) μM. The selectivity index also showed a large structure dependency in the range of 0.67 (benzyl)-68.58 (acetyl). An analysis of the structure-activity relationship indicated that the activity was dramatically reduced in the presence of a benzene ring and was highly increased in the presence of small polar substituents. Conclusions: Controlled mono-O-modifications of dieckol could be a powerful tool to enhance the anticancer activity of dieckol, thus contributing to the development strategy for dieckol-based chemotherapeutics.
Collapse
Affiliation(s)
- Hyeon-Cheol Shin
- Center for Molecular Intelligence, The State University of New York, Korea, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Korea
| | - Yongkyun Kim
- School of Chemical Engineering and Material Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 03722, Korea
| | - Jaeyeong Choi
- School of Chemical Engineering and Material Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 03722, Korea
| | - Hyun Bae Kang
- Healinnols Inc., 1662 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea
| | - Seung-Yun Han
- College of Medicine, Konyang University, 158 Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea
| | - Kwangyong Park
- School of Chemical Engineering and Material Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 03722, Korea
| | - Hye Jeong Hwang
- Center for Molecular Intelligence, The State University of New York, Korea, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Korea
| |
Collapse
|
9
|
Men X, Han X, Lee SJ, Oh G, Jin H, Oh HJ, Kim E, Kim J, Lee BY, Choi SI, Lee OH. In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds. Mar Drugs 2022; 20:607. [PMID: 36286432 PMCID: PMC9604725 DOI: 10.3390/md20100607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ecklonia stolonifera Okamura (ES) is mainly distributed in the coastal areas of the middle Pacific, around Korea and Japan, and has a long-standing edible value. It is rich in various compounds, such as polysaccharides, fatty acids, alginic acid, fucoxanthin, and phlorotannins, among which the polyphenol compound phlorotannins are the main active ingredients. Studies have shown that the extracts and active components of ES exhibit anti-cancer, antioxidant, anti-obesity, anti-diabetic, antibacterial, cardioprotective, immunomodulatory, and other pharmacological properties in vivo and in vitro. Although ES contains a variety of bioactive compounds, it is not widely known and has not been extensively studied. Based on its potential health benefits, it is expected to play an important role in improving the nutritional value of food both economically and medically. Therefore, ES needs to be better understood and developed so that it can be utilized in the development and application of marine medicines, functional foods, bioactive substances, and in many other fields. This review provides a comprehensive overview of the bioactivities and bioactive compounds of ES to promote in-depth research and a reference for the comprehensive utilization of ES in the future.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Heegu Jin
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Eunjin Kim
- Naturalway Co., Ltd., Pocheon 11160, Korea
| | | | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
10
|
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res 2022; 2022:4714914. [PMID: 36092543 PMCID: PMC9453090 DOI: 10.1155/2022/4714914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mobina Ghojoghnejad
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Basil D. Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Seyed Adel Maollem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Du B, Zhao Q, Cheng C, Wang H, Liu Y, Zhu F, Yang Y. A critical review on extraction, characteristics, physicochemical activities, potential health benefits, and industrial applications of fucoidan. EFOOD 2022. [DOI: 10.1002/efd2.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| | - Qiancheng Zhao
- College of Food Science and Engineering Dalian Ocean University Dalian China
| | - Caihong Cheng
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| | - Huiying Wang
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| | - Yanfei Liu
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| | - Fengmei Zhu
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| | - Yuedong Yang
- Hebei Key Laboratory of Natural Products Activity Components and Function Hebei Normal University of Science and Technology Qinhuangdao Hebei China
| |
Collapse
|
12
|
Lee HG, Jayawardena TU, Song KM, Choi YS, Jeon YJ, Kang MC. Dietary fucoidan from a brown marine algae (Ecklonia cava) attenuates lipid accumulation in differentiated 3T3-L1 cells and alleviates high-fat diet-induced obesity in mice. Food Chem Toxicol 2022; 162:112862. [PMID: 35157925 DOI: 10.1016/j.fct.2022.112862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Fucoidan from marine algae is used as a functional ingredient in the food. Here, we purified fucoidan fractions from a crude polysaccharide obtained after the crude polysaccharide of celluclast-assisted hydrolysate from Ecklonia cava (ECC). We evaluated the effect of ECC on lipid accumulation in differentiated 3T3-L1 adipocytes and investigated its anti-obesity effects in vivo in high-fat diet (HFD)-induced obese mice. In vitro Oil Red O staining revealed that treatment with ECC and its purified fucoidan fractions of celluclast assisted hydrolysate from Ecklonia cava (ECFs) remarkably reduced lipid accumulation in 3T3-L1 cells. ECF3 contained the highest contents of polysaccharides and sulfate compared with other fucoidan fractions. ECF3 treatment significantly reduced lipid accumulation in 3T3-L1 cells. Oral administration of ECC significantly reduced body weight, body weight gain, serum lipid content, and total white adipose tissue mass. Histological analysis revealed that ECC reduced lipid accumulation in EAT and liver tissues. Our findings suggest that the anti-obesity effects of ECC are associated with suppressing lipid accumulation in white adipose tissues and increased energy expenditure by upregulating the expression of thermogenic UCP1 and UCP3 in BAT. These results indicate that ECC and its ECFs possess anti-obesity properties and can be used in food and nutraceutical industries.
Collapse
Affiliation(s)
- Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Thilina U Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kyung-Mo Song
- Research Group of Food Processing, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju, 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju, 55365, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju, 55365, Republic of Korea.
| |
Collapse
|
13
|
d'Unienville NMA, Blake HT, Coates AM, Hill AM, Nelson MJ, Buckley JD. Effect of food sources of nitrate, polyphenols, L-arginine and L-citrulline on endurance exercise performance: a systematic review and meta-analysis of randomised controlled trials. J Int Soc Sports Nutr 2021; 18:76. [PMID: 34965876 PMCID: PMC8715640 DOI: 10.1186/s12970-021-00472-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. METHODS Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). RESULTS One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. CONCLUSION Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. OTHER The review protocol was registered on the Open Science Framework ( https://osf.io/u7nsj ) and no funding was provided.
Collapse
Affiliation(s)
- Noah M A d'Unienville
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia. Noah.D'
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia. Noah.D'
| | - Henry T Blake
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Coates
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Alison M Hill
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Maximillian J Nelson
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| | - Jonathan D Buckley
- Allied Health and Human Performance, University of South Australia, Adelaide, Australia
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, Australia
| |
Collapse
|
14
|
Kim Y, Shin J, Shin H, Park K. Regioselective syntheses and analyses of
phlorofucofuroeckol‐A
derivatives. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yongkyun Kim
- School of Chemical Engineering and Material Science, Chung‐Ang University Dongjak‐gu, Seoul Republic of Korea
| | - Jooseok Shin
- School of Chemical Engineering and Material Science, Chung‐Ang University Dongjak‐gu, Seoul Republic of Korea
| | - Hyeon‐cheol Shin
- Center for Molecular Intelligence The State University of New York Korea Incheon Republic of Korea
| | - Kwangyong Park
- School of Chemical Engineering and Material Science, Chung‐Ang University Dongjak‐gu, Seoul Republic of Korea
| |
Collapse
|
15
|
Oh S, Yang J, Park C, Son K, Byun K. Dieckol Attenuated Glucocorticoid-Induced Muscle Atrophy by Decreasing NLRP3 Inflammasome and Pyroptosis. Int J Mol Sci 2021; 22:8057. [PMID: 34360821 PMCID: PMC8348567 DOI: 10.3390/ijms22158057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
Dexamethasone (Dexa), frequently used as an anti-inflammatory agent, paradoxically leads to muscle inflammation and muscle atrophy. Receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) lead to nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) inflammasome formation through nuclear factor-κB (NF-κB) upregulation. NLRP3 inflammasome results in pyroptosis and is associated with the Murf-1 and atrogin-1 upregulation involved in protein degradation and muscle atrophy. The effects of Ecklonia cava extract (ECE) and dieckol (DK) on attenuating Dexa-induced muscle atrophy were evaluated by decreasing NLRP3 inflammasome formation in the muscles of Dexa-treated animals. The binding of AGE or high mobility group protein 1 to RAGE or TLR4 was increased by Dexa but significantly decreased by ECE or DK. The downstream signaling pathways of RAGE (c-Jun N-terminal kinase or p38) were increased by Dexa but decreased by ECE or DK. NF-κB, downstream of RAGE or TLR4, was increased by Dexa but decreased by ECE or DK. The NLRP3 inflammasome component (NLRP3 and apoptosis-associated speck-like), cleaved caspase -1, and cleaved gasdermin D, markers of pyroptosis, were increased by Dexa but decreased by ECE and DK. Interleukin-1β/Murf-1/atrogin-1 expression was increased by Dexa but restored by ECE or DK. The mean muscle fiber cross-sectional area and grip strength were decreased by Dexa but restored by ECE or DK. In conclusion, ECE or DK attenuated Dexa-induced muscle atrophy by decreasing NLRP3 inflammasome formation and pyroptosis.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.)
| | - Jinyoung Yang
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.)
| | - Chulhyun Park
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kukhui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.)
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea
| |
Collapse
|
16
|
Saini RK, Mahomoodally MF, Sadeer NB, Keum YS, Rr Rengasamy K. Characterization of nutritionally important lipophilic constituents from brown kelp Ecklonia radiata (C. Ag.) J. Agardh. Food Chem 2021; 340:127897. [PMID: 32871355 DOI: 10.1016/j.foodchem.2020.127897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
This research study presents information for the first time on the nutritionally relevant lipophilic compounds obtained from Ecklonia radiata, a poorly studied brown kelp. The major lipophilic compounds were analyzed utilizing liquid chromatography (LC)-tandem mass spectrometry (MS/MS) and gas chromatography (GC)-mass spectrometry (MS). The LC-MS/MS results revealed the presence of eight major lipophilic compounds, including sterols, carotenoids, vitamin E, and phylloquinone (vitamin K1). Quantitative analysis showed that fucosterol was the most predominant phytosterol in the fronds and stipes of E. radiata. The carotenoids (all-E)-fucoxanthin and (all-E)-β-carotene were present in higher yield. In terms of vitamin E, α-tocopherol was identified as the main tocol. The coenzyme, phylloquinone, important for protein synthesis, was also identified in E. radiata. GC-MS identified 13 fatty acids with palmitic (C16:0) and oleic acid (C18:1n9c) present in the highest quantities. To our knowledge, this is the first report on E. radiata, and the valuable data presented herein can be used as a baseline for developing novel nutraceuticals.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kannan Rr Rengasamy
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
17
|
Sagaya Jansi R, Khusro A, Agastian P, Alfarhan A, Al-Dhabi NA, Arasu MV, Rajagopal R, Barcelo D, Al-Tamimi A. Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143539. [PMID: 33234268 PMCID: PMC7833357 DOI: 10.1016/j.scitotenv.2020.143539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 05/04/2023]
Abstract
In the current scenario, the increasing prevalence of diverse microbial infections as well as emergence and re-emergence of viral epidemics with high morbidity and mortality rates are major public health threat. Despite the persistent production of antiviral drugs and vaccines in the global market, viruses still remain as one of the leading causes of deadly human diseases. Effective control of viral diseases, particularly Zika virus disease, Nipah virus disease, Severe acute respiratory syndrome, Coronavirus disease, Herpes simplex virus infection, Acquired immunodeficiency syndrome, and Ebola virus disease remain promising goal amidst the mutating viral strains. Current trends in the development of antiviral drugs focus solely on testing novel drugs or repurposing drugs against potential targets of the viruses. Compared to synthetic drugs, medicines from natural resources offer less side-effect to humans and are often cost-effective in the productivity approaches. This review intends not only to emphasize on the major viral disease outbreaks in the past few decades and but also explores the potentialities of natural substances as antiviral traits to combat viral pathogens. Here, we spotlighted a comprehensive overview of antiviral components present in varied natural sources, including plants, fungi, and microorganisms in order to identify potent antiviral agents for developing alternative therapy in future.
Collapse
Affiliation(s)
- R Sagaya Jansi
- Department of Bioinformatics, Stella Maris College, Chennai, India
| | - Ameer Khusro
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India.
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Damia Barcelo
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, JORDI GIRONA 18-26, 08034 Barcelona, Spain
| | - Amal Al-Tamimi
- Ecology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Xie X, Chen C, Fu X. Screening α-glucosidase inhibitors from four edible brown seaweed extracts by ultra-filtration and molecular docking. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Kim Y, Shin J, Kang SM, Song J, Shin HC, Keum YS, Hwang HJ, Park K. Highly Regioselective Preparation and Characterization of New 6-O-Substituted Dieckol Derivatives. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Impact of Ecklonia radiata extracts on the neuroprotective activities against amyloid beta (Aβ1-42) toxicity and aggregation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
21
|
Hao H, Fu M, Yan R, He B, Li M, Liu Q, Cai Y, Zhang X, Huang R. Chemical composition and immunostimulatory properties of green alga Caulerpa racemosa var peltata. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1646216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Huili Hao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Manqin Fu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, People’s Republic of China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People’s Republic of China
| | - Baolin He
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Meiying Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Qiabiao Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Yimian Cai
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Xiaoyong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, People’s Republic of China
| |
Collapse
|
22
|
Manandhar B, Paudel P, Seong SH, Jung HA, Choi JS. Characterizing Eckol as a Therapeutic Aid: A Systematic Review. Mar Drugs 2019; 17:E361. [PMID: 31216636 PMCID: PMC6627842 DOI: 10.3390/md17060361] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022] Open
Abstract
The marine biosphere is a treasure trove of natural bioactive secondary metabolites and the richest source of structurally diverse and unique compounds, such as phlorotannins and halo-compounds, with high therapeutic potential. Eckol is a precursor compound representing the dibenzo-1,4-dioxin class of phlorotannins abundant in the Ecklonia species, which are marine brown algae having a ubiquitous distribution. In search of compounds having biological activity from macro algae during the past three decades, this particular compound has attracted massive attention for its multiple therapeutic properties and health benefits. Although several varieties of marine algae, seaweed, and phlorotannins have already been well scrutinized, eckol deserves a place of its own because of the therapeutic properties it possesses. The relevant information about this particular compound has not yet been collected in one place; therefore, this review focuses on its biological applications, including its potential health benefits and possible applications to restrain diseases leading to good health. The facts compiled in this review could contribute to novel insights into the functions of eckol and potentially enable its use in different uninvestigated fields.
Collapse
Affiliation(s)
- Bandana Manandhar
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
23
|
Cui Y, Amarsanaa K, Lee JH, Rhim JK, Kwon JM, Kim SH, Park JM, Jung SC, Eun SY. Neuroprotective mechanisms of dieckol against glutamate toxicity through reactive oxygen species scavenging and nuclear factor-like 2/heme oxygenase-1 pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:121-130. [PMID: 30820156 PMCID: PMC6384196 DOI: 10.4196/kjpp.2019.23.2.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/23/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
Abstract
Glutamate toxicity-mediated mitochondrial dysfunction and neuronal cell death are involved in the pathogenesis of several neurodegenerative diseases as well as acute brain ischemia/stroke. In this study, we investigated the neuroprotective mechanism of dieckol (DEK), one of the phlorotannins isolated from the marine brown alga Ecklonia cava, against glutamate toxicity. Primary cortical neurons (100 µM, 24 h) and HT22 neurons (5 mM, 12 h) were stimulated with glutamate to induce glutamate toxic condition. The results demonstrated that DEK treatment significantly increased cell viability in a dose-dependent manner (1–50 µM) and recovered morphological deterioration in glutamate-stimulated neurons. In addition, DEK strongly attenuated intracellular reactive oxygen species (ROS) levels, mitochondrial overload of Ca2+ and ROS, mitochondrial membrane potential (ΔΨm) disruption, adenine triphosphate depletion. DEK showed free radical scavenging activity in the cell-free system. Furthermore, DEK enhanced protein expression of heme oxygenase-1 (HO-1), an important anti-oxidant enzyme, via the nuclear translocation of nuclear factor-like 2 (Nrf2). Taken together, we conclude that DEK exerts neuroprotective activities against glutamate toxicity through its direct free radical scavenging property and the Nrf-2/HO-1 pathway activation.
Collapse
Affiliation(s)
- Yanji Cui
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea.,Neurology 1, The Second Affiliated Hospital of Xinxiang Medical University, Henan 453002, China
| | - Khulan Amarsanaa
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Ji Hyung Lee
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Jong-Kook Rhim
- Department of Neurosurgery, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| | - Jung Mi Kwon
- Division of Hematology-Oncology, Department of Internal Medicine, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| | | | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), KAIST, Daejeon 34126, Korea.,University of Science and Technology, Daejeon 34113, Korea
| | - Sung-Cherl Jung
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| | - Su-Yong Eun
- Department of Physiology, Jeju National University School of Medicine, Jeju 63243, Korea.,Institute of Medical Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|