1
|
Du P, Wei Y, Liang Y, An R, Liu S, Lei P, Zhang H. Near-Infrared-Responsive Rare Earth Nanoparticles for Optical Imaging and Wireless Phototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305308. [PMID: 37946706 PMCID: PMC10885668 DOI: 10.1002/advs.202305308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/03/2023] [Indexed: 11/12/2023]
Abstract
Near-infrared (NIR) light is well-suited for the optical imaging and wireless phototherapy of malignant diseases because of its deep tissue penetration, low autofluorescence, weak tissue scattering, and non-invasiveness. Rare earth nanoparticles (RENPs) are promising NIR-responsive materials, owing to their excellent physical and chemical properties. The 4f electron subshell of lanthanides, the main group of rare earth elements, has rich energy-level structures. This facilitates broad-spectrum light-to-light conversion and the conversion of light to other forms of energy, such as thermal and chemical energies. In addition, the abundant loadable and modifiable sites on the surface offer favorable conditions for the functional expansion of RENPs. In this review, the authors systematically discuss the main processes and mechanisms underlying the response of RENPs to NIR light and summarize recent advances in their applications in optical imaging, photothermal therapy, photodynamic therapy, photoimmunotherapy, optogenetics, and light-responsive drug release. Finally, the challenges and opportunities for the application of RENPs in optical imaging and wireless phototherapy under NIR activation are considered.
Collapse
Affiliation(s)
- Pengye Du
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- Ganjiang Innovation AcademyChinese Academy of SciencesGanzhouJiangxi341000China
| | - Ran An
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026China
- Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
2
|
Bakhti A, Shokouhi Z, Mohammadipanah F. Modulation of proteins by rare earth elements as a biotechnological tool. Int J Biol Macromol 2024; 258:129072. [PMID: 38163500 DOI: 10.1016/j.ijbiomac.2023.129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Although rare earth element (REE) complexes are often utilized in bioimaging due to their photo- and redox stability, magnetic and optical characteristics, they are also applied for pharmaceutical applications due to their interaction with macromolecules namely proteins. The possible implications induced by REEs through modification in the function or regulatory activity of the proteins trigger a variety of applications for these elements in biomedicine and biotechnology. Lanthanide complexes have particularly been applied as anti-biofilm agents, cancer inhibitors, potential inflammation inhibitors, metabolic elicitors, and helper agents in the cultivation of unculturable strains, drug delivery, tissue engineering, photodynamic, and radiation therapy. This paper overviews emerging applications of REEs in biotechnology, especially in biomedical imaging, tumor diagnosis, and treatment along with their potential toxic effects. Although significant advances in applying REEs have been made, there is a lack of comprehensive studies to identify the potential of all REEs in biotechnology since only four elements, Eu, Ce, Gd, and La, among 17 REEs have been mostly investigated. However, in depth research on ecotoxicology, environmental behavior, and biological functions of REEs in the health and disease status of living organisms is required to fill the vital gaps in our understanding of REEs applications.
Collapse
Affiliation(s)
- Azam Bakhti
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Zahra Shokouhi
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| |
Collapse
|
3
|
Iglesias-Mejuto A, Lamy-Mendes A, Pina J, Costa BFO, García-González CA, Durães L. Synthesis of Highly Luminescent Silica-Coated Upconversion Nanoparticles from Lanthanide Oxides or Nitrates Using Co-Precipitation and Sol-Gel Methods. Gels 2023; 10:13. [PMID: 38247736 PMCID: PMC10815212 DOI: 10.3390/gels10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Upconversion nanoparticles (UCNPs) are under consideration for their use as bioimaging probes with enhanced optical performance for real time follow-up under non-invasive conditions. Photostable and core-shell NaYF4:Yb3+, Er3+-SiO2 UCNPs obtained by a novel and simple co-precipitation method from lanthanide nitrates or oxides were herein synthesized for the first time. The sol-gel Stöber method followed by oven or supercritical gel drying was used to confer biocompatible surface properties to UCNPs by the formation of an ultrathin silica coating. Upconversion (UC) spectra were studied to evaluate the fluorescence of UCNPs upon red/near infrared (NIR) irradiation. ζ-potential measurements, TEM analyses, XRD patterns and long-term physicochemical stability were also assessed and confirmed that the UCNPs co-precipitation synthesis is a shape- and phase-controlling approach. The bio- and hemocompatibility of the UCNPs formulation with the highest fluorescence intensity was evaluated with murine fibroblasts and human blood, respectively, and provided excellent results that endorse the efficacy of the silica gel coating. The herein synthesized UCNPs can be regarded as efficient fluorescent probes for bioimaging purposes with the high luminescence, physicochemical stability and biocompatibility required for biomedical applications.
Collapse
Affiliation(s)
- Ana Iglesias-Mejuto
- AerogelsLab, I + D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Alyne Lamy-Mendes
- University of Coimbra, CIEPQPF—Centro de Investigação em Engenharia dos Processos Químicos e Produtos da Floresta, Department of Chemical Engineering, 3030-790 Coimbra, Portugal (L.D.)
| | - João Pina
- Coimbra Chemistry Centre—Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Benilde F. O. Costa
- University of Coimbra, CFisUC, Physics Department, 3004-516 Coimbra, Portugal;
| | - Carlos A. García-González
- AerogelsLab, I + D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Luisa Durães
- University of Coimbra, CIEPQPF—Centro de Investigação em Engenharia dos Processos Químicos e Produtos da Floresta, Department of Chemical Engineering, 3030-790 Coimbra, Portugal (L.D.)
| |
Collapse
|
4
|
Yoon J, Le XT, Kim J, Lee H, Nguyen NT, Lee WT, Lee ES, Oh KT, Choi HG, Youn YS. Macrophage-reprogramming upconverting nanoparticles for enhanced TAM-mediated antitumor therapy of hypoxic breast cancer. J Control Release 2023; 360:482-495. [PMID: 37423526 DOI: 10.1016/j.jconrel.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/10/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
In an attempt to achieve antitumor effects by switching the phenotype of macrophages from the tumor-promoting M2 type to the tumor-suppressing M1 type, we fabricated mannose-decorated/macrophage membrane-coated, silica-layered NaErF4@NaLuF4 upconverting nanoparticles (UCNPs) co-doped with perfluorocarbon (PFC)/chlorin e6 (Ce6) and loaded with paclitaxel (PTX) (UCNP@mSiO2-PFC/Ce6@RAW-Man/PTX: ∼61 nm; -11.6 mV). These nanoparticles were designed to have two major functionalities, (i) efficient singlet oxygen generation aided by an oxygen supply and (ii) good targeting to tumor-associated macrophage (TAMs) (M2-type), to induce polarization to M1 type macrophages that release proinflammatory cytokines and suppress breast cancers. The primary UCNPs consisted of lanthanide elements (erbium and lutetium) in a core@shell structure, and they facilely emitted 660 nm light in response to a deep-penetrating 808 nm near-infrared laser. Moreover, the UCNPs@mSiO2-PFC/Ce6@RAW-Man/PTX were able to release O2 and generate 1O2 because of the co-doped PFC/Ce6 and upconversion. Our nanocarriers' excellent uptake to RAW 264.7 macrophage cells (M2 type) and efficient M1-type polarization activity were clearly demonstrated using qRT-PCR and immunofluorescence-based confocal laser scanning microscopy. Our nanocarriers displayed significant cytotoxicity to 4T1 cells in 2D culture and 3D co-culture systems of 4T1/RAW 264.7 cells. More importantly, UCNPs@mSiO2-PFC/Ce6@RAW-Man/PTX (+808 nm laser) noticeably suppressed tumor growth in 4T1-xenografted mice, compared with the other treatment groups (332.4 vs. 709.5-1185.5 mm3). We attribute this antitumor efficacy to the prominent M1-type macrophage polarization caused by our nanocarriers through efficient ROS/O2 generation and targeting of M2-type TAMs via mannose ligands on coated macrophage-membrane.
Collapse
Affiliation(s)
- Johyun Yoon
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Juho Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Hyunjun Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Woo Tak Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology and Department of Biomedical-Chemical Engineering, Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
5
|
Malhotra K, Fuku R, Kumar B, Hrovat D, Van Houten J, Piunno PAE, Gunning PT, Krull UJ. Unlocking Long-Term Stability of Upconversion Nanoparticles with Biocompatible Phosphonate-Based Polymer Coatings. NANO LETTERS 2022; 22:7285-7293. [PMID: 36067362 DOI: 10.1021/acs.nanolett.2c00437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Achieving long-term (>3 months) colloidal stability of upconversion nanoparticles (UCNPs) in biologically relevant buffers has been a major challenge, which has severely limited practical implementation of UCNPs in bioimaging and nanomedicine applications. To address this challenge, nine unique copolymers formulations were prepared and evaluated as UCNP overcoatings. These polymers consisted of a poly(isobutylene-alt-maleic anhydride) (PIMA) backbone functionalized with different ratios and types of phosphonate anchoring groups and poly(ethylene glycol) (PEG) moieties. The syntheses were done as simple, one-pot nucleophilic addition reactions. These copolymers were subsequently coated onto NaYF4:Yb3+,Er3+ UCNPs, and colloidal stability was evaluated in 1 × PBS, 10 × PBS, and other buffers. UCNP colloidal stability improved (up to 4 months) when coated with copolymers containing greater proportions of anchoring groups and higher phosphonate valences. Furthermore, small molecules could be conjugated to these overcoated UCNPs by use of copper-free click chemistry, as was done to demonstrate suitability for sensor and bioprobe development.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Richard Fuku
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Patrick Thomas Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
6
|
Wang H, Picchio ML, Calderón M. One stone, many birds: Recent advances in functional nanogels for cancer nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1791. [PMID: 35338603 PMCID: PMC9540470 DOI: 10.1002/wnan.1791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Inspired by the development of nanomedicine and nanotechnology, more and more possibilities in cancer theranostic have been provided in the last few years. Emerging therapeutic modalities like starvation therapy, chemodynamic therapy, and tumor oxygenation have been integrated with diagnosis, giving a plethora of theranostic nanoagents. Among all of them, nanogels (NGs) show superiority benefiting from their unique attributes: high stability, high water-absorption, large specific surface area, mechanical strength, controlled responsiveness, and high encapsulation capacity. There have been a vast number of investigations supporting various NGs combining drug delivery and multiple bioimaging techniques, encompassing photothermal imaging, photoacoustic imaging, fluorescent imaging, ultrasound imaging, magnetic resonance imaging, and computed tomography. This review summarizes recent advances in functional NGs for theranostic nanomedicine and discusses the challenges and future perspectives of this fast-growing field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Huiyi Wang
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Matias L Picchio
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Dubey N, Chandra S. Upconversion nanoparticles: Recent strategies and mechanism based applications. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Egatz-Gomez A, Asher M, Peterson R, Roldan MA, Ros A. Microwave synthesis of upconverting nanoparticles with bis(2-ethylhexyl) adipate. RSC Adv 2022; 12:23026-23038. [PMID: 36105953 PMCID: PMC9386573 DOI: 10.1039/d2ra03262g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
A mixture of bis(2-ethylhexyl) adipate and oleic acid provides scale-up potential and speedy heating rates in the microwave-assisted organic synthesis of upconverting nanoparticles with tunable size, crystallinity, and hydrophilic character.
Collapse
Affiliation(s)
- Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Michaela Asher
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Rozabel Peterson
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Manuel A. Roldan
- John M. Cowley Center for High-Resolution Electron Microscopy, Arizona State University, Tempe, Arizona, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
10
|
Abstract
Achieving a novel drug delivery system needs site-specificity along with dosage control. Many physical, chemical, mechanical, and biological signals are used for developing these systems, out of which light has been used predominantly in the past decade. Light responsive drug delivery systems have tremendous potential, and their exploration is crucial in developing a precise and controlled delivery system. Spatio-temporal and intensity control of light allows better manipulation of drug delivery vehicles than mechanical, chemical, and biological signals. The use of ultraviolet (UV) and near-infrared (NIR) light has helped in upgrading therapeutic functionalities, while the use of up-conversion nanoparticles (UCNPs) has delivered an extension into theranostic tools. Biomaterials incorporated with photosensitizers can readily respond to changes in light and are vital in achieving clinical success via translational research. Further, the inclusion of biological macromolecules for the transportation of drugs, genes, and proteins has seen a broader application of light-controlled systems. The key objective of this review paper is to summarise the evolution of light-activated targeted drug delivery systems and the importance of biomaterials in developing one.
Collapse
Affiliation(s)
- Mishal Pokharel
- Biomedical Engineering and Biotechnology, University of Massachusetts, Dartmouth, Dartmouth, MA, USA
| | - Kihan Park
- Mechanical Engineering, University of Massachusetts, Dartmouth, Dartmouth, MA, USA
| |
Collapse
|
11
|
Zhang L, Jin D, Stenzel MH. Polymer-Functionalized Upconversion Nanoparticles for Light/Imaging-Guided Drug Delivery. Biomacromolecules 2021; 22:3168-3201. [PMID: 34304566 DOI: 10.1021/acs.biomac.1c00669] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The strong upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) endows the nanoparticles with attractive features for combined imaging and drug delivery. UCNPs convert near-infrared (NIR) light into light of shorter wavelengths such as light in the ultraviolet (UV) and visible regions, which can be used for light-guided drug delivery. Although light-responsive drug delivery systems as such have been known for many years, their application in medicine is limited, as strong UV-light can be damaging to tissue; moreover, UV light will not penetrate deeply into the skin, an issue that UCNPs can now address. However, UCNPs, as obtained after synthesis, are usually hydrophobic and require further surface functionalization to be stable in plasma. Polymers can serve as versatile surface coatings, as they can provide good colloidal stability, prevent the formation of a protein corona, provide a matrix for drugs, and be stimuli-responsive. In this Review, we provide a brief overview of the most recent progress in the synthesis of UCNPs with different shapes/sizes. We will then discuss the purpose of polymer coating for drug delivery before summarizing the strategies to coat UCNPs with various polymers. We will introduce the different polymers that have so far been used to coat UCNPs with the purpose to create a drug delivery system, focusing in detail on light-responsive polymers. To expand the application of UCNPs to allow photothermal therapy or magnetic resonance imaging (MRI) or to simply enhance the loading capacity of drugs, UCNPs were often combined with other materials to generate multifunctional nanoparticles such as carbon-based NPs and nanoMOFs. We then conclude with a discussion on drug loading and release and summarize the current knowledge on the toxicity of these polymer-coated UCNPs.
Collapse
Affiliation(s)
- Lin Zhang
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney NSW 2007, Australia
| | - Martina H Stenzel
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW Sydney), Sydney NSW 2052, Australia
| |
Collapse
|
12
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers (Basel) 2021; 13:3484. [PMID: 34298707 PMCID: PMC8307713 DOI: 10.3390/cancers13143484] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment with strong potential over well-established standard therapies in certain cases. Non-ionising radiation, localisation, possible repeated treatments, and stimulation of immunological response are some of the main beneficial features of PDT. Despite the great potential, its application remains challenging. Limited light penetration depth, non-ideal photosensitisers, complex dosimetry, and complicated implementations in the clinic are some limiting factors hindering the extended use of PDT. To surpass actual technological paradigms, radically new sources, light-based devices, advanced photosensitisers, measurement devices, and innovative application strategies are under extensive investigation. The main aim of this review is to highlight the advantages/pitfalls, technical challenges and opportunities of PDT, with a focus on technologies for light activation of photosensitisers, such as light sources, delivery devices, and systems. In this vein, a broad overview of the current status of superficial, interstitial, and deep PDT modalities-and a critical review of light sources and their effects on the PDT process-are presented. Insight into the technical advancements and remaining challenges of optical sources and light devices is provided from a physical and bioengineering perspective.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
13
|
Torresan MF, Wolosiuk A. Critical Aspects on the Chemical Stability of NaYF4-Based Upconverting Nanoparticles for Biomedical Applications. ACS APPLIED BIO MATERIALS 2021; 4:1191-1210. [DOI: 10.1021/acsabm.0c01562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria F. Torresan
- Gerencia Química Comisión Nacional de Energía Atómica (CNEA) − INN - CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Argentina
| | - Alejandro Wolosiuk
- Gerencia Química Comisión Nacional de Energía Atómica (CNEA) − INN - CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Argentina
| |
Collapse
|
14
|
Bao G, Wen S, Lin G, Yuan J, Lin J, Wong KL, Bünzli JCG, Jin D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213642] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Burgess L, Wilson H, Jones AR, Harvey P, Natrajan LS, Hay S. Covalent Attachment of Active Enzymes to Upconversion Phosphors Allows Ratiometric Detection of Substrates. Chemistry 2020; 26:14817-14822. [PMID: 32476171 PMCID: PMC7756657 DOI: 10.1002/chem.202001974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 01/14/2023]
Abstract
Upconverting phosphors (UCPs) convert multiple low energy photons into higher energy emission via the process of photon upconversion and offer an attractive alternative to organic fluorophores for use as luminescent probes. Here, UCPs were capped with functionalized silica in order to provide a surface to covalently conjugate proteins with surface-accessible cysteines. Variants of green fluorescent protein (GFP) and the flavoenzyme pentaerythritol tetranitrate reductase (PETNR) were then attached via maleimide-thiol coupling in order to allow energy transfer from the UCP to the GFP or flavin cofactor of PETNR, respectively. PETNR retains its activity when coupled to the UCPs, which allows reversible detection of enzyme substrates via ratiometric sensing of the enzyme redox state.
Collapse
Affiliation(s)
- Letitia Burgess
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Hannah Wilson
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| | - Alex R. Jones
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
- Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Biometrology, Chemical and Biological Sciences, National Physical LaboratoryHampton RoadTeddington, MiddlesexTW11 0LWUnited Kingdom
| | - Peter Harvey
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- School of MedicineThe University of NottinghamUniversity ParkNottinghamNG7 2RDUnited Kingdom
| | - Louise S. Natrajan
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
| | - Sam Hay
- Department of ChemistrySchool of Natural SciencesThe University of ManchesterOxford RoadManchesterM13 9PLUnited Kingdom
- Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUnited Kingdom
| |
Collapse
|
16
|
Lim K, Kim HK, Le XT, Nguyen NT, Lee ES, Oh KT, Choi HG, Youn YS. Highly Red Light-Emitting Erbium- and Lutetium-Doped Core-Shell Upconverting Nanoparticles Surface-Modified with PEG-Folic Acid/TCPP for Suppressing Cervical Cancer HeLa Cells. Pharmaceutics 2020; 12:E1102. [PMID: 33212942 PMCID: PMC7698343 DOI: 10.3390/pharmaceutics12111102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) combined with upconverting nanoparticles (UCNPs) are viewed together as an effective method of ablating tumors. After absorbing highly tissue-penetrating near-infrared (NIR) light, UCNPs emit a shorter wavelength light (~660 nm) suitable for PDT. In this study, we designed and prepared highly red fluorescence-emitting silica-coated core-shell upconverting nanoparticles modified with polyethylene glycol (PEG5k)-folic acid and tetrakis(4-carboxyphenyl)porphyrin (TCPP) (UCNPs@SiO2-NH2@FA/PEG/TCPP) as an efficient photodynamic agent for killing tumor cells. The UCNPs consisted of two simple lanthanides, erbium and lutetium, as the core and shell, respectively. The unique core-shell combination enabled the UCNPs to emit red light without green light. TCPP, folic acid, and PEG were conjugated to the outer silica layer of UCNPs as a photosensitizing agent, a ligand for tumor attachment, and a dispersing stabilizer, respectively. The prepared UCNPs of ~50 nm diameter and -34.5 mV surface potential absorbed 808 nm light and emitted ~660 nm red light. Most notably, these UCNPs were physically well dispersed and stable in the aqueous phase due to PEG attachment and were able to generate singlet oxygen (1O2) with a high efficacy. The HeLa cells were treated with each UCNP sample (0, 1, 5, 10, 20, 30 μg/mL as a free TCPP). The results showed that the combination of UCNPs@SiO2-NH2@FA/PEG/TCPP and the 808 nm laser was significantly cytotoxic to HeLa cells, almost to the same degree as naïve TCPP plus the 660 nm laser based on MTT and Live/Dead assays. Furthermore, the UCNPs@SiO2-NH2@FA/PEG/TCPP was well internalized into HeLa cells and three-dimensional HeLa spheroids, presumably due to the surface folic acid and small size in conjunction with endocytosis and the nonspecific uptake. We believe that our UCNPs@SiO2-NH2@FA/PEG/TCPP will serve as a new platform for highly efficient and deep-penetrating photodynamic agents suitable for various tumor treatments.
Collapse
Affiliation(s)
- Kyungseop Lim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Hwang Kyung Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do 14662, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Korea; (K.L.); (H.K.K.); (X.T.L.); (N.T.N.)
| |
Collapse
|
17
|
Yin C, Lu X, Fan Q, Huang W. Organic semiconducting nanomaterials‐assisted phototheranostics in near‐infrared‐II biological window. VIEW 2020. [DOI: 10.1002/viw.20200070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Chao Yin
- Key Laboratory for Organic Electronics and Information Displays Jiangsu Key Laboratory for Biosensors and Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing University of Posts and Telecommunications Nanjing China
| | - Xiaomei Lu
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University Nanjing China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays Jiangsu Key Laboratory for Biosensors and Institute of Advanced Materials Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing University of Posts and Telecommunications Nanjing China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics and Shaanxi Institute of Flexible Electronics Northwestern Polytechnical University Xi'an China
| |
Collapse
|
18
|
Hyperthermal paclitaxel-bound albumin nanoparticles co-loaded with indocyanine green and hyaluronidase for treating pancreatic cancers. Arch Pharm Res 2020; 44:182-193. [PMID: 32803685 DOI: 10.1007/s12272-020-01264-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
Albumin nanoparticles have become an attractive cancer nanomedicine platform due to their pharmaceutical advantages. Recently, photothermal therapy has been extensively applied to cancer treatment due to heat-induced tumor ablation. Herein, we fabricated albumin nanoparticles (HSA-NPs) loaded with paclitaxel (PTX), indocyanine green (ICG; a hyperthermal agent) and hyaluronidase (HAase) that breaks down hyaluronan, a major component of the extracellular matrix (ECM) in tumors. Synthesis was based on a slightly modified nanoparticle albumin-bound (Nab™) technique. The prepared nanoparticles (PTX/ICG/HAase-HSA-NPs) had a spherical shape with an average size of ~ 110 nm and a zeta potential of ~ -30.4 mV. They displayed good colloidal stability and typical patterns of ICG, HSA and HAase in UV-VIS-NIR and circular dichroism spectroscopic analysis. PTX/ICG/HAase-HSA-NPs were found to have excellent hyperthermal effects in response to near-infrared laser irradiation (808 nm) (up to > 50 °C over 4 min). The hyperthermia conducted by PTX/ICG/HAase-HSA-NPs resulted in significant cytotoxicity to pancreatic AsPC-1 cells at both severe (> 50 °C) and mild (41-42 °C) hyperthermal states in conjunction with the inherent cytotoxic activity of paclitaxel. Furthermore, the confocal images of AsPC-1 cell spheroids proved PTX/ICG/HAase-HSA-NPs were able to permeate deeply into the three-dimensional tumor tissue mimicry structure. Most of all, PTX/ICG/HAase-HSA-NPs maintained all these physicochemical and anti-cancer properties irrespective of the amount of embedded HAase (1-5 mg). Our results demonstrated that PTX/ICG/HAase-HSA-NPs are a promising hyperthermal/chemotherapeutic anticancer agent.
Collapse
|
19
|
Ma WP, Yan B. Lanthanide functionalized MOF thin films as effective luminescent materials and chemical sensors for ammonia. Dalton Trans 2020; 49:15663-15671. [DOI: 10.1039/d0dt03069d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of Lanthanide functionalized MOF thin films on Al2O3 are fabricated using designed linkers, whose unique luminescence performance is shown to be a sensitive probe toward ammonia.
Collapse
Affiliation(s)
- Wan-Peng Ma
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
| | - Bing Yan
- School of Materials Science and Engineering
- Liaocheng University
- Liaocheng 252059
- China
| |
Collapse
|