1
|
Costa AAC, Motta EP, Oliveira AS, Santos PG, Farias JR, Franco DCG, Silva MCP, Barbosa NT, Muniz SB, Silva LDM, Silva LA, Rocha CQ, Nascimento FRF, Guerra RNM. Vismia guianensis Improves Survival of Tenebrio molitor and Mice During Lethal Infection with Candida albicans. Antibiotics (Basel) 2025; 14:72. [PMID: 39858358 PMCID: PMC11762393 DOI: 10.3390/antibiotics14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Vismia guianensis is a vegetal species popularly used to treat fungal infections. This study evaluated the anti-Candida effect of V. guianensis extract after C. albicans lethal infection in Tenebrio molitor larvae and mice. Methods and Results: The chemical profile analysis of a hydroethanolic extract of the leaves of V. guianensis (EHVG) identified 14 compounds. Two sets of experiments used T. molitor larvae. To evaluate toxicity, the uninfected larvae were treated with EHVG or anthraquinone. We considered the following groups: the controls received PBS; ANFO B received amphotericin B (600 mg/mL); EHVG received the extract; and ANTQ received anthraquinone. The extract and anthraquinone resulted in low-level toxicity in the T. molitor larvae. Another set of experiments evaluated the EHVG effect during lethal infection with Candida albicans. The T. molitor larvae were treated intracelomically (ic/10 μL). Treatment with EHVG efficiently improved the survival of the larvae after lethal infection (60%), probably due to the reduction in CFUs. In the mice, the antifungal effect of EHVG was determined in three groups of immunosuppressed Swiss mice (cyclophosphamide, 50 mg/kg/ip) infected with C. albicans (1 × 107 CFU/ip). The control animals were infected and untreated; the ANFO B animals were infected and treated with amphotericin B (600 µg/kg/ip); and the EHVG animals were infected and treated with the extract (5 mg/kg/orally). A SHAM group (uninfected and untreated) was also included. Survival was assessed for 5 days. The extract increased the mice's survival (60%) and life expectancy, reducing the CFU counts in the peritoneum and blood. EHVG also increased the number of blood neutrophils and peritoneal macrophages. These systemic activities are likely associated with the presence of flavonoids in the extract. Conclusions: The beneficial effects of EHVG in lethal sepsis are related to an antifungal effect, with the number of CFUs decreasing in the larvae and the mice. In addition, EHVG showed immunological activity in the mice, considering immune cell distribution and cytokine production.
Collapse
Affiliation(s)
- Arthur André Castro Costa
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunoparasitology and Pathology, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil
| | - Elizangela Pestana Motta
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunophysiology, Universidade Federal do Maranhão, Ensino Integrado, Bloco 1, Sala 1A, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil;
| | - Aluísio Silva Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunophysiology, Universidade Federal do Maranhão, Ensino Integrado, Bloco 1, Sala 1A, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil;
| | - Pamela Gomes Santos
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunophysiology, Universidade Federal do Maranhão, Ensino Integrado, Bloco 1, Sala 1A, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil;
| | - Josivan Regis Farias
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunophysiology, Universidade Federal do Maranhão, Ensino Integrado, Bloco 1, Sala 1A, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil;
| | - Danielle Cristine Gomes Franco
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunophysiology, Universidade Federal do Maranhão, Ensino Integrado, Bloco 1, Sala 1A, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil;
| | - Mayara Cristina Pinto Silva
- Laboratory of Immunophysiology, Universidade Federal do Maranhão, Ensino Integrado, Bloco 1, Sala 1A, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil;
| | - Nicolle Teixeira Barbosa
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunophysiology, Universidade Federal do Maranhão, Ensino Integrado, Bloco 1, Sala 1A, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil;
| | - Simone Batista Muniz
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunophysiology, Universidade Federal do Maranhão, Ensino Integrado, Bloco 1, Sala 1A, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil;
| | - Luís Douglas Miranda. Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunoparasitology and Pathology, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil
| | - Lucilene Amorim Silva
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunoparasitology and Pathology, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil
| | - Claudia Quintino Rocha
- Laboratory of Chemistry of Natural Products, Centro de Ciências Exatas e Tecnológicas, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil
| | - Flavia Raquel Fernandes Nascimento
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunophysiology, Universidade Federal do Maranhão, Ensino Integrado, Bloco 1, Sala 1A, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil;
| | - Rosane Nassar Meireles Guerra
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, Ensino Integrado, Bloco 3, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (A.A.C.C.); (J.R.F.); (D.C.G.F.); (S.B.M.)
- Laboratory of Immunophysiology, Universidade Federal do Maranhão, Ensino Integrado, Bloco 1, Sala 1A, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil;
| |
Collapse
|
2
|
Thammawat S, Fowsantear W, Sangdee K, Sangdee A. Antifungal Properties of Polycephalomyces nipponicus (Ascomycetes) against Candida albicans: Potential for Novel Therapeutic Development. Int J Med Mushrooms 2025; 27:81-89. [PMID: 39717920 DOI: 10.1615/intjmedmushrooms.2024056351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Candida albicans has the potential to turn pathogenic and cause mild to severe infections, particularly in people with weakened immune systems. Novel therapeutics are required due to its morphological alterations, biofilm development, and resistance to antifungal drugs. Polycephalomyces nipponicus, a traditional East Asian medicinal fungus, has shown potential as an antifungal agent. In this study, 15 P. nipponicus isolates were cultivated and their mycelial extracts were evaluated against C. albicans NCYC854 using agar well diffusion, broth microdilution, scanning electron microscope (SEM), and time-kill assays. Eight isolates exhibited significant antifungal activity, with inhibition zones from 11.25 ± 1.50 mm to 18 ± 0.82 mm, notably Cod-MK1209 surpassing amphotericin B. Minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) ranged from 125 to 500 μg/mL, with extracts from Cod-MK1206 and Cod-MK1209 showing the lowest MFC at 125 μg/mL. The results of time-kill experiments showed fungistatic effects by drastically lowering viable cell populations at 1ȕ and 2ȕ MIC concentrations within 24 h. The SEM analysis also indicated evidence of degradation to the cellular wall and membrane. These findings highlight the potential of P. nipponicus extracts as powerful antifungal medicines that target C. albicans selectively. Further research efforts have to focus on the identification and description of bioactive components, enhancement of extraction techniques, and advancement towards preclinical and clinical studies to validate their potential for therapeutic use.
Collapse
Affiliation(s)
- Sutthiwan Thammawat
- Preclinical Group, Faculty of Medicine, Mahasarakham University, Muang District, Maha Sarakham 44000, Thailand
| | - Winita Fowsantear
- Preclinical Group, Faculty of Medicine, Mahasarakham University, Muang District, Maha Sarakham 44000, Thailand
| | - Kusavadee Sangdee
- Biomedical Sciences Research Unit, Faculty of Medicine, Mahasarakham University, Muang District, Maha Sarakham, Thailand
| | - Aphidech Sangdee
- Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand; Microbiology and Applied Microbiology Research Unit, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand
| |
Collapse
|
3
|
Véronique L, Véronique A, Guillaume C, Jean-Michel C, Françoise A. Candida albicans cells exhibit media specific proteomic profiles during induction of filamentation. BMC Microbiol 2024; 24:500. [PMID: 39592958 PMCID: PMC11600622 DOI: 10.1186/s12866-024-03627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Candida albicans is an opportunist pathogen responsible for a broad spectrum of infections, from superficial mycosis to the systemic disease candidiasis. C. albicans has various morphological forms, including unicellular budding yeasts, filamentous pseudohyphae and true hyphae, and the ability to switch from yeast to hyphal forms is a key survival mechanism underlying the adaptation of the pathogen to the microenvironments encountered within the host. Filamentation is regulated by multiple signalling pathways and its induction in different growth media in vitro has often led to conflicting results. In this study, we performed quantitative proteomic analyses to compare the response of C. albicans yeast cells grown in YNB minimal medium to those of cells grown in four media widely used in the literature to induce the yeast-to-hyphae transition: YNB-Serum, YNB-N-acetylglucosamine (YNB-NAG), Lee medium and rich Spider medium. We show that each growth medium induces a unique pattern of response in C. albicans cells, and that some conditions trigger an original and specific adaptive metabolic response, showing significant differences in the intracellular content of the various filamentous forms. Moreover, this comparison of proteomic profiles indicates that the medium used can modify the thiol-dependent redox status of the cells, particularly in YNB-Serum and Lee medium and, to a lesser extent, in Spider medium, confirming the role of oxidative stress in the filamentation process. Overall, our data indicate that some of the media routinely used to induce hyphae cause significant changes in proteomic signature that should be taken account more carefully when exploring the hyphal transition in this pathogen.
Collapse
Affiliation(s)
- Legros Véronique
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Albanese Véronique
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Chevreux Guillaume
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | | | - Auchère Françoise
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France.
| |
Collapse
|
4
|
Li M, Wang H, Zhao H, Jiang M, Cui M, Jia K, Lei D, Wang F. Effect of the Sho1 gene on the pathogenicity of Candida albicans and immune function in vivo. Heliyon 2024; 10:e38219. [PMID: 39397919 PMCID: PMC11467569 DOI: 10.1016/j.heliyon.2024.e38219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Objectives Sho1, a ubiquitous membrane protein in fungi, plays a pivotal role in various physiological processes, such as osmotic stress, oxidative stress, temperature response, and virulence regulation across different fungal species. This study aimed to investigate the effect of the Sho1 gene on the pathogenicity of Candida albicans and its immune function in vivo. Materials and methods Ninety-nine clinical strains from various infection sites were collected to investigate the expression levels of the Sho1 gene compared to its levels in the standard strain (SC5314). Sho1-knockout strains (Sho1Δ/Δ) were constructed to investigate the impact of the Sho1 gene deletion on the biofilm formation, adhesion, and flocculation abilities of C. albicans. A mouse model of systemic infection was established to evaluate the impact of Sho1 deletion on survival, organ pathology, and immune cell function, as assessed by flow cytometry. Results The expression level of the Sho1 gene was found to be higher in clinical strains derived from sterile fluids, sputum, and secretions compared to that in the standard strains. Deletion of the Sho1 gene diminished the biofilm-formation capacity of C. albicans, leading to a sparse structure and reduced thickness, as well as diminished adhesion and flocculation abilities. Deletion of the Sho1 gene prolonged mouse survival; decreased the fungal load in the liver, kidney, and spleen; and reduced inflammatory cell infiltration into the kidney. In the spleens of mice injected with the Sho1Δ/Δ strain, a decrease was observed in the percentage of M1-type macrophages and an increase in M2-type macrophages, resulting in a decreased M1/M2 macrophage ratio. Additionally, an increase was observed in the number of Th1 cells and a decrease in the number of Th2 and Th17 cells, leading to an increased Th1/Th2 ratio. Conclusion The Sho1 gene significantly contributes to the pathogenesis of C. albicans by influencing its biological behaviour and immune response in vivo.
Collapse
Affiliation(s)
| | | | - Huihai Zhao
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| | - Mengyu Jiang
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| | - Mengge Cui
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| | - Keran Jia
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| | - Daxin Lei
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| | - Fukun Wang
- Clinical Laboratory, The 980Th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), 398 Zhongshan Road, Shijiazhuang, Hebei, 050082, China
| |
Collapse
|
5
|
Swenson KA, Min K, Konopka JB. Candida albicans pathways that protect against organic peroxides and lipid peroxidation. PLoS Genet 2024; 20:e1011455. [PMID: 39432552 PMCID: PMC11527291 DOI: 10.1371/journal.pgen.1011455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Human fungal pathogens must survive diverse reactive oxygen species (ROS) produced by host immune cells that can oxidize a range of cellular molecules including proteins, lipids, and DNA. Formation of lipid radicals can be especially damaging, as it leads to a chain reaction of lipid peroxidation that causes widespread damage to the plasma membrane. Most previous studies on antioxidant pathways in fungal pathogens have been conducted with hydrogen peroxide, so the pathways used to combat organic peroxides and lipid peroxidation are not well understood. The most well-known peroxidase in Candida albicans, catalase, can only act on hydrogen peroxide. We therefore characterized a family of four glutathione peroxidases (GPxs) that were predicted to play an important role in reducing organic peroxides. One of the GPxs, Gpx3 is also known to activate the Cap1 transcription factor that plays the major role in inducing antioxidant genes in response to ROS. Surprisingly, we found that the only measurable role of the GPxs is activation of Cap1 and did not find a significant role for GPxs in the direct detoxification of peroxides. Furthermore, a CAP1 deletion mutant strain was highly sensitive to organic peroxides and oxidized lipids, indicating an important role for antioxidant genes upregulated by Cap1 in protecting cells from organic peroxides. We identified GLR1 (Glutathione reductase), a gene upregulated by Cap1, as important for protecting cells from oxidized lipids, implicating glutathione utilizing enzymes in the protection against lipid peroxidation. Furthermore, an RNA-sequencing study in C. albicans showed upregulation of a diverse set of antioxidant genes and protein damage pathways in response to organic peroxides. Overall, our results identify novel mechanisms by which C. albicans responds to oxidative stress resistance which open new avenues for understanding how fungal pathogens resist ROS in the host.
Collapse
Affiliation(s)
- Kara A. Swenson
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kyunghun Min
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - James B. Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
6
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans-Staphylococcus aureus intra-abdominal co-infection. Nat Commun 2024; 15:5746. [PMID: 38982056 PMCID: PMC11233573 DOI: 10.1038/s41467-024-50058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) demonstrates that synergistic lethality is driven by Candida-induced upregulation of functional S. aureus α-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken revealing that zcf13Δ/Δ fails to drive augmented α-toxin or lethal synergism during co-infection. A combination of transcriptional and phenotypic profiling approaches shows that ZCF13 regulates genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments reveal that ribose inhibits the staphylococcal agr quorum sensing system and concomitantly represses toxicity. Unlike wild-type C. albicans, zcf13Δ/Δ did not effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13Δ/Δ mutant fully restores pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
Affiliation(s)
- Saikat Paul
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olivia A Todd
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kara R Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Tkaczyk
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Bret R Sellman
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Mairi C Noverr
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul L Fidel
- Department of Oral and Craniofacial Biology, Louisiana State University Health - School of Dentistry, New Orleans, LA, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
7
|
Stanca SE, Mogavero S, Fritzsche W, Krafft C, Hube B, Popp J. Isotope labeled 3D-Raman confocal imaging and atomic force microscopy study on epithelial cells interacting with the fungus Candida albicans. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 59:102750. [PMID: 38734040 DOI: 10.1016/j.nano.2024.102750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The human pathogenic fungus Candida albicans damages epithelial cells during superficial infections. Here we use three-dimensional-sequential-confocal Raman spectroscopic imaging and atomic force microscopy to investigate the interaction of C. albicans wild type cells, the secreted C. albicans peptide toxin candidalysin and mutant cells lacking candidalysin with epithelial cells. The candidalysin is responsible for epithelial cell damage and exhibits in its deuterated form an identifiable Raman signal in a frequency region distinct from the cellular frequency region. Vibration modes at 2100-2200 cm-1 attributed to carbon‑deuterium bending and at 477 cm-1, attributed to the nitrogen‑deuterium out-of-plane bending, found around the nucleus, can be assigned to deuterated candidalysin. Atomic force microscopy visualized 100 nm deep lesions on the cell and force-distance curves indicate the higher adhesion on pore surrounding after incubation with candidalysin. Candidalysin targets the plasma membrane, but is also found inside of the cytosol of epithelial cells during C. albicans infection.
Collapse
Affiliation(s)
- Sarmiza Elena Stanca
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Selene Mogavero
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Wolfgang Fritzsche
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany.
| | - Bernhard Hube
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany; Institute for Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
| |
Collapse
|
8
|
Razzaq MA, Lyzu C, Parveen S, Uddin MT, Shaikh MAA, Chowdhury MJ, Jamal AHMSIM, Al-Mansur MA. Fatliquor for fungus resistant leather-a sustainable ecofriendly approach. Heliyon 2024; 10:e31598. [PMID: 38882293 PMCID: PMC11176766 DOI: 10.1016/j.heliyon.2024.e31598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Surface-active softening agents, such as Fatliquors, have a significant impact on the leather industry as they enhance the physicochemical properties of leather. This study focuses on analyzing the synthesis, properties, characterization, and sulfonation of Swietenia mahagoni seed oil to determine its potential as a fatliquoring agent for leather. An investigation was conducted to verify the alteration of Swietenia mahagoni oil through the analysis of its properties before and after the sulfonation process. A scientific analysis was carried on the oil using GC-FID, revealing the presence of various unsaturated fatty acids such as linoleic, linolenic, oleic, palmitic, and arachidic acids. This demonstrates the sulfonating capability of this sky fruit seed oil. A fatliquor was created by sulfonating the oil, and the sulfonation was verified through Fourier Transform Infrared Spectroscopy (FTIR) and 1H Nuclear Magnetic Resonance (NMR) spectra. The prominent peak observed at 1209 cm-1 in the FTIR spectra indicated the stretching of S=O in both sulfate and sulfonate groups. The newly formed protons (H-C-S or H-C-O) showed signals between δ 4.09 and 4.29 ppm in the 1H NMR spectra, confirming the sulfonation of the fatliquor that was prepared. Moreover, the change in the melting point of sulfonated Mahogany oil from 40.8 °C to 48.1 °C suggests increased saturation levels. The fatliquor's emulsion stability was found to be at a satisfactory level. After conducting tests on the treated leather, the physical strength and morphological structure was analyzed using Field Emission Scanning Electron Microscopy (FE-SEM), the fatliquor improved the lubrication and strengthened the fibrous network structure of the leather, composed of thin and tight collagen fibers. The BOD5/COD ratio of the effluent from the experimental trial was determined to be 0.52, suggesting that the fatliquor developed is a biodegradable product. Finally, the antifungal capabilities of the fatliquor-treated leather were tested against four different fungus species: Aspergillus niger, Aspergillus flavus, Penicillium notatum, and Candida albicans, and the treated leather sample shown favorable antifungal activity.
Collapse
Affiliation(s)
- Md Abdur Razzaq
- Leather Research Institute, Bangladesh Council of Scientific and Industrial Research, Dhaka 1340, Bangladesh
| | - Chadni Lyzu
- Leather Research Institute, Bangladesh Council of Scientific and Industrial Research, Dhaka 1340, Bangladesh
- Biomedical and Toxicological Research Institute, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Sahana Parveen
- Leather Research Institute, Bangladesh Council of Scientific and Industrial Research, Dhaka 1340, Bangladesh
| | - Md Tushar Uddin
- Leather Research Institute, Bangladesh Council of Scientific and Industrial Research, Dhaka 1340, Bangladesh
| | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
- Department of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Murshid Jaman Chowdhury
- Leather Research Institute, Bangladesh Council of Scientific and Industrial Research, Dhaka 1340, Bangladesh
- Department of Chemistry, North Carolina A&T State University, USA
| | - A H M Shofiul Islam Molla Jamal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| | - Muhammad Abdullah Al-Mansur
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh
| |
Collapse
|
9
|
Hu ST, Zhou G, Zhang J. Implications of innate lymphoid cells in oral diseases. Int Immunopharmacol 2024; 133:112122. [PMID: 38663313 DOI: 10.1016/j.intimp.2024.112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Innate lymphoid cells (ILCs), as newly discovered antigen-independent innate immune cells, respond promptly to stimuli by secreting effector cytokines to exert effector functions similar to those of T cells. ILCs predominantly reside at mucosal sites and play critical roles in defending against infections, maintaining mucosal homeostasis, regulating inflammatory and immune responses, and participating in tumorigenesis. Recently, there has been a growing interest in the role of ILCs in oral diseases. This review outlines the classifications and the major characteristics of ILCs, and then comprehensively expatiates the research on ILCs in oral cancer, primary Sjogren's syndrome, periodontal diseases, oral lichen planus, oral candidiasis, Behcet's disease, and pemphigus vulgaris, aiming at summarising the implications of ILCs in oral diseases and providing new ideas for further research.
Collapse
Affiliation(s)
- Si-Ting Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China
| | - Jing Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
10
|
Guha S, Cristy SA, Buda De Cesare G, Cruz MR, Lorenz MC, Garsin DA. Optimization of the antifungal properties of the bacterial peptide EntV by variant analysis. mBio 2024; 15:e0057024. [PMID: 38587425 PMCID: PMC11077972 DOI: 10.1128/mbio.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Fungal resistance to commonly used medicines is a growing public health threat, and there is a dire need to develop new classes of antifungals. We previously described a peptide produced by Enterococcus faecalis, EntV, that restricts Candida albicans to a benign form rather than having direct fungicidal activity. Moreover, we showed that one 12-amino acid (aa) alpha helix of this peptide retained full activity, with partial activity down to the 10aa alpha helix. Using these peptides as a starting point, the current investigation sought to identify the critical features necessary for antifungal activity and to screen for new variants with enhanced activity using both biofilm and C. elegans infection assays. First, the short peptides were screened for residues with critical activity by generating alanine substitutions. Based on this information, we used synthetic molecular evolution (SME) to rationally vary the specific residues of the 10aa variant in combination to generate a library that was screened to identify variants with more potent antifungal activity than the parent template. Five gain-of-function peptides were identified. Additionally, chemical modifications to the peptides to increase stability, including substitutions of D-amino acids and hydrocarbon stapling, were investigated. The most promising peptides were additionally tested in mouse models of oropharyngeal and systemic candidiasis where their efficacy in preventing infection was demonstrated. The expectation is that these discoveries will contribute to the development of new therapeutics in the fight against antimicrobial resistant fungi. IMPORTANCE Since the early 1980s, the incidence of disseminated life-threatening fungal infections has been on the rise. Worldwide, Candida and Cryptococcus species are among the most common agents causing these infections. Simultaneously, with this rise of clinical incidence, there has also been an increased prevalence of antifungal resistance, making treatment of these infections very difficult. For example, there are now strains of Candida auris that are resistant to all three classes of currently used antifungal drugs. In this study, we report on a strategy that allows for the development of novel antifungal agents by using synthetic molecular evolution. These discoveries demonstrate that the enhancement of antifungal activity from naturally occurring peptides is possible and can result in clinically relevant agents that have efficacy in multiple in vivo models as well as the potential for broad-spectrum activity.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shane A. Cristy
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Giuseppe Buda De Cesare
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Melissa R. Cruz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Ahmady L, Gothwal M, Mukkoli MM, Bari VK. Antifungal drug resistance in Candida: a special emphasis on amphotericin B. APMIS 2024; 132:291-316. [PMID: 38465406 DOI: 10.1111/apm.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
Invasive fungal infections in humans caused by several Candida species, increased considerably in immunocompromised or critically ill patients, resulting in substantial morbidity and mortality. Candida albicans is the most prevalent species, although the frequency of these organisms varies greatly according to geographic region. Infections with C. albicans and non-albicans Candida species have become more common, especially in the past 20 years, as a result of aging, immunosuppressive medication use, endocrine disorders, malnourishment, extended use of medical equipment, and an increase in immunogenic diseases. Despite C. albicans being the species most frequently associated with human infections, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei also have been identified. Several antifungal drugs with different modes of action are approved for use in clinical settings to treat fungal infections. However, due to the common eukaryotic structure of humans and fungi, only a limited number of antifungal drugs are available for therapeutic use. Furthermore, drug resistance in Candida species has emerged as a result of the growing use of currently available antifungal drugs against fungal infections. Amphotericin B (AmB), a polyene class of antifungal drugs, is mainly used for the treatment of serious systemic fungal infections. AmB interacts with fungal plasma membrane ergosterol, triggering cellular ion leakage via pore formation, or extracting the ergosterol from the plasma membrane inducing cellular death. AmB resistance is primarily caused by changes in the content or structure of ergosterol. This review summarizes the antifungal drug resistance exhibited by Candida species, with a special focus on AmB.
Collapse
Affiliation(s)
- Lailema Ahmady
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | - Manisha Gothwal
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| | | | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
12
|
Hefny ZA, Ji B, Elsemman IE, Nielsen J, Van Dijck P. Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiol 2024; 24:66. [PMID: 38413885 PMCID: PMC10898158 DOI: 10.1186/s12866-024-03213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Candida albicans is a fungal pathogen causing human infections. Here we investigated differential gene expression patterns and functional enrichment in C. albicans strains grown under different conditions. METHODS A systematic GEO database search identified 239 "Candida albicans" datasets, of which 14 were selected after rigorous criteria application. Retrieval of raw sequencing data from the ENA database was accompanied by essential metadata extraction from dataset descriptions and original articles. Pre-processing via the tailored nf-core pipeline for C. albicans involved alignment, gene/transcript quantification, and diverse quality control measures. Quality assessment via PCA and DESeq2 identified significant genes (FDR < = 0.05, log2-fold change > = 1 or <= -1), while topGO conducted GO term enrichment analysis. Exclusions were made based on data quality and strain relevance, resulting in the selection of seven datasets from the SC5314 strain background for in-depth investigation. RESULTS The meta-analysis of seven selected studies unveiled a substantial number of genes exhibiting significant up-regulation (24,689) and down-regulation (18,074). These differentially expressed genes were further categorized into 2,497 significantly up-regulated and 2,573 significantly down-regulated Gene Ontology (GO) IDs. GO term enrichment analysis clustered these terms into distinct groups, providing insights into the functional implications. Three target gene lists were compiled based on previous studies, focusing on central metabolism, ion homeostasis, and pathogenicity. Frequency analysis revealed genes with higher occurrence within the identified GO clusters, suggesting their potential as antifungal targets. Notably, the genes TPS2, TPS1, RIM21, PRA1, SAP4, and SAP6 exhibited higher frequencies within the clusters. Through frequency analysis within the GO clusters, several key genes emerged as potential targets for antifungal therapies. These include RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101 which exhibited higher occurrence within the identified clusters. CONCLUSION This comprehensive study significantly advances our understanding of the dynamic nature of gene expression in C. albicans. The identification of genes with enhanced potential as antifungal drug targets underpins their value for future interventions. The highlighted genes, including TPS2, TPS1, RIM21, PRA1, SAP4, SAP6, RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101, hold promise for the development of targeted antifungal therapies.
Collapse
Affiliation(s)
- Zeinab Abdelmoghis Hefny
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark
| | - Ibrahim E Elsemman
- Department of Information Systems, Faculty of Computers and Information, Assiut University, Assiut, 2071515, Egypt
| | - Jens Nielsen
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark.
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, SE41296, Sweden.
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium.
| |
Collapse
|
13
|
Wiench R, Paliga D, Mertas A, Bobela E, Kuśka-Kiełbratowska A, Bordin-Aykroyd S, Kawczyk-Krupka A, Grzech-Leśniak K, Lukomska-Szymanska M, Lynch E, Skaba D. Red/Orange Autofluorescence in Selected Candida Strains Exposed to 405 nm Laser Light. Dent J (Basel) 2024; 12:48. [PMID: 38534272 DOI: 10.3390/dj12030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Candida albicans and similar species are significant pathogens in immunocompromised and hospitalized individuals, known for mucosal colonization and bloodstream/organ invasion. Many pathogenic fungi, including these species, exhibit autofluorescence (R/OF) under specific light conditions, a feature crucial for their detection. AIM We investigated the use of a 405 nm diode laser for the direct observation of red/orange autofluorescence of Candida spp., common in the oral cavity, exploring its potential in health screenings. METHODS This study utilized cultures of Candida spp. on Sabouraud dextrose agar with Qdot 655 and 685 for fluorescence benchmarking, illuminated using a 405 nm diode laser (continuous wave, power 250 mW, 0.0425 J/cm² fluence, 0.0014 W/cm² power density). Images were captured using a yellow-filter camera at set intervals (48 to 144 h). Visual and computational analyses evaluated the R/OF in terms of presence, intensity, coloration, and intra-colony variation. RESULTS Most Candida strains displayed red/orange autofluorescence at all observation times, characterized by varied coloration and intra-colony distribution. Initially, there was an increase in R/OF intensity, which then stabilized in the later stages of observation. CONCLUSIONS The majority of the Candida strains tested are capable of emitting R/OF under 405 nm laser light. This finding opens up new possibilities for integrating R/OF detection into routine dental screenings for Candida spp.
Collapse
Affiliation(s)
- Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Dariusz Paliga
- Dental Office Reanata and Dariusz Paliga, Aleja Niepodległości 3/lok 2, 35-303 Rzeszów, Poland
| | - Anna Mertas
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Elżbieta Bobela
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Kuśka-Kiełbratowska
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Sonia Bordin-Aykroyd
- Photomedicine, Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 41-902 Bytom, Poland
| | - Kinga Grzech-Leśniak
- Laser Laboratory, Dental Surgery Department, Wroclaw Medical University, 50-425 Wroclaw, Poland
- Department of Periodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | | | - Edward Lynch
- Photomedicine, Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
14
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans - Staphylococcus aureus intra-abdominal co-infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580531. [PMID: 38405692 PMCID: PMC10888754 DOI: 10.1101/2024.02.15.580531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) uncovered synergistic lethality that was driven by Candida -induced upregulation of functional S. aureus ⍺-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken and revealed that zcf13 Δ/Δ failed to drive augmented ⍺-toxin or lethal synergism during co-infection. Using a combination of transcriptional and phenotypic profiling approaches, ZCF13 was shown to regulate genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments revealed that ribose inhibited the staphylococcal agr quorum sensing system and concomitantly repressed toxicity. Unlike wild-type C. albicans , zcf13 Δ/Δ was unable to effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13 Δ/Δ mutant fully restored pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
|
15
|
Venice F, Spina F, Davolos D, Ghignone S, Varese GC. The genomes of Scedosporium between environmental challenges and opportunism. IMA Fungus 2023; 14:25. [PMID: 38049914 PMCID: PMC10694956 DOI: 10.1186/s43008-023-00128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/05/2023] [Indexed: 12/06/2023] Open
Abstract
Emerging fungal pathogens are a global challenge for humankind. Many efforts have been made to understand the mechanisms underlying pathogenicity in bacteria, and OMICs techniques are largely responsible for those advancements. By contrast, our limited understanding of opportunism and antifungal resistance is preventing us from identifying, limiting and interpreting the emergence of fungal pathogens. The genus Scedosporium (Microascaceae) includes fungi with high tolerance to environmental pollution, whilst some species can be considered major human pathogens, such as Scedosporium apiospermum and Scedosporium boydii. However, unlike other fungal pathogens, little is known about the genome evolution of these organisms. We sequenced two novel genomes of Scedosporium aurantiacum and Scedosporium minutisporum isolated from extreme, strongly anthropized environments. We compared all the available Scedosporium and Microascaceae genomes, that we systematically annotated and characterized ex novo in most cases. The genomes in this family were integrated in a Phylum-level comparison to infer the presence of putative, shared genomic traits in filamentous ascomycetes with pathogenic potential. The analysis included the genomes of 100 environmental and clinical fungi, revealing poor evolutionary convergence of putative pathogenicity traits. By contrast, several features in Microascaceae and Scedosporium were detected that might have a dual role in responding to environmental challenges and allowing colonization of the human body, including chitin, melanin and other cell wall related genes, proteases, glutaredoxins and magnesium transporters. We found these gene families to be impacted by expansions, orthologous transposon insertions, and point mutations. With RNA-seq, we demonstrated that most of these anciently impacted genomic features responded to the stress imposed by an antifungal compound (voriconazole) in the two environmental strains S. aurantiacum MUT6114 and S. minutisporum MUT6113. Therefore, the present genomics and transcriptomics investigation stands on the edge between stress resistance and pathogenic potential, to elucidate whether fungi were pre-adapted to infect humans. We highlight the strengths and limitations of genomics applied to opportunistic human pathogens, the multifactoriality of pathogenicity and resistance to drugs, and suggest a scenario where pressures other than anthropic contributed to forge filamentous human pathogens.
Collapse
Affiliation(s)
- Francesco Venice
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Federica Spina
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy
| | - Domenico Davolos
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), INAIL, Research Area, Via R. Ferruzzi 38/40, 00143, Rome, Italy
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP), SS Turin-National Research Council (CNR), Viale Mattioli 25, 10125, Turin, Italy
| | - Giovanna Cristina Varese
- Department of Life Sciences and System Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy.
| |
Collapse
|
16
|
Bao J, Hao Y, Ni T, Wang R, Liu J, Chi X, Wang T, Yu S, Jin Y, Yan L, Li X, Zhang D, Xie F. Design, synthesis and in vitro biological studies of novel triazoles with potent and broad-spectrum antifungal activity. J Enzyme Inhib Med Chem 2023; 38:2244696. [PMID: 37553905 PMCID: PMC10413920 DOI: 10.1080/14756366.2023.2244696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
A series of novel triazole derivatives containing aryl-propanamide side chains was designed and synthesised. In vitro antifungal activity studies demonstrated that most of the compounds inhibited the growth of six human pathogenic fungi. In particular, parts of phenyl-propionamide-containing compounds had excellent, broad-spectrum antifungal activity against Candida albicans SC5314, Cryptococcus neoformans 22-21, Candida glabrata 537 and Candida parapsilosis 22-20 with MIC values in the range of ≤0.125 µg/mL-4.0 µg/mL. In addition, compounds A1, A2, A6, A12 and A15 showed inhibitory activities against fluconazole-resistant Candida albicans and Candida auris. Preliminary structure-activity relationships (SARs) are also summarised. Moreover, GC-MS analysis demonstrated that A1, A3, and A9 interfered with the C. albicans ergosterol biosynthesis pathway by inhibiting Cyp51. Molecular docking studies elucidated the binding modes of A3 and A9 with Cyp51. These compounds with low haemolytic activity and favourable ADME/T properties are promising for the development of novel antifungal agents.
Collapse
Affiliation(s)
- Junhe Bao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yumeng Hao
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruina Wang
- Center of New Drug Research, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jiacun Liu
- Center of New Drug Research, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Ting Wang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shichong Yu
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Yongsheng Jin
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Lan Yan
- Center of New Drug Research, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xiaomei Li
- Department of Stomatology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Dazhi Zhang
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Fei Xie
- Department of Organic Chemistry, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
17
|
Lohse MB, Ziv N, Johnson AD. Variation in transcription regulator expression underlies differences in white-opaque switching between the SC5314 reference strain and the majority of Candida albicans clinical isolates. Genetics 2023; 225:iyad162. [PMID: 37811798 PMCID: PMC10627253 DOI: 10.1093/genetics/iyad162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 10/10/2023] Open
Abstract
Candida albicans, a normal member of the human microbiome and an opportunistic fungal pathogen, undergoes several morphological transitions. One of these transitions is white-opaque switching, where C. albicans alternates between 2 stable cell types with distinct cellular and colony morphologies, metabolic preferences, mating abilities, and interactions with the innate immune system. White-to-opaque switching is regulated by mating type; it is repressed by the a1/α2 heterodimer in a/α cells, but this repression is lifted in a/a and α/α mating type cells (each of which are missing half of the repressor). The widely used C. albicans reference strain, SC5314, is unusual in that white-opaque switching is completely blocked when the cells are a/α; in contrast, most other C. albicans a/α strains can undergo white-opaque switching at an observable level. In this paper, we uncover the reason for this difference. We show that, in addition to repression by the a1/α2 heterodimer, SC5314 contains a second block to white-opaque switching: 4 transcription regulators of filamentous growth are upregulated in this strain and collectively suppress white-opaque switching. This second block is missing in the majority of clinical strains, and, although they still contain the a1/α2 heterodimer repressor, they exhibit a/α white-opaque switching at an observable level. When both blocks are absent, white-opaque switching occurs at very high levels. This work shows that white-opaque switching remains intact across a broad group of clinical strains, but the precise way it is regulated and therefore the frequency at which it occurs varies from strain to strain.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Naomi Ziv
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California - San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
18
|
Sousa F, Nascimento C, Ferreira D, Reis S, Costa P. Reviving the interest in the versatile drug nystatin: A multitude of strategies to increase its potential as an effective and safe antifungal agent. Adv Drug Deliv Rev 2023; 199:114969. [PMID: 37348678 DOI: 10.1016/j.addr.2023.114969] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Nystatin is an antifungal molecule with a remarkable yet squandered versatility. In this review, its mechanism of action is explored, along with its extensive action spectrum and toxicity. A multitude of methodologies to tackle the drug's physical and chemical hurdles are outlined along with some proven-effective strategies to increase its activity and/or decrease its toxicity. A separate detailed section focused on micro and nanotechnology solutions addresses new drug delivery systems made of polymeric, metallic or lipid materials. Although the topical route depicts greater representativeness amongst these formulations, the intravenous, dental, oral, vaginal and inhalation routes are also mentioned. The unsuccessful previous attempts at developing parenteral formulations of nystatin or even the withdrawal of a nystatin-loaded multilamellar liposome should not divert research away from this drug. In fact, the interest in nystatin ought to be reawakened with the ongoing clinical trials on the promising nystatin-like genetically engineered derivate BSG005.
Collapse
Affiliation(s)
- Filipa Sousa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Cecília Nascimento
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Domingos Ferreira
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Paulo Costa
- UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
19
|
Chang H, Chang DH, Stamoulis AG, Huber GW, Lynn DM, Palecek SP, Dumesic JA. Controlling the toxicity of biomass-derived difunctional molecules as potential pharmaceutical ingredients for specific activity toward microorganisms and mammalian cells. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:5416-5427. [PMID: 38223356 PMCID: PMC10786631 DOI: 10.1039/d3gc00188a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A biomass-derived difuran compound, denoted as HAH (HMF-Acetone-HMF), synthesized by aldol-condensation of 5-hydroxyfurfural (HMF) and acetone, can be partially hydrogenated to provide an electron-rich difuran compound (PHAH) for Diels-Alder reactions with maleimide derivatives. The nitrogen (N) site in the maleimide can be substituted by imidation with amine-containing compounds to control the hydrophobicity of the maleimide moiety in adducts of furans and maleimide by Diels-Alder reaction, denoted as norcantharimides (Diels-Alder adducts). The structural effects on the toxicity of various biomass-derived small molecules synthesized in this manner to regulate biological processes, defined as low molecular weight (≤ 1000 g/mol) organic compounds, were investigated against diverse microbial and mammalian cell types. The biological toxicity increased when hydrophobic N-substitutions and C=C bonds were introduced into the molecular structure. Among the synthesized norcantharamide derivatives, some compounds demonstrated pH-dependent toxicities against specific cell types. Reaction kinetics analyses of the norcantharimides in biological conditions suggest that this pH-dependent toxicity of norcantharimides could arise from retro Diels-Alder reactions in the presence of a Brϕnsted acid that catalyzes the release of an N-substituted maleimide, which has higher toxicity against fungal cells than the toxicity of the Diels-Alder adduct. These synthetic approaches can be used to design biologically-active small molecules that exhibit selective toxicity against various cell types (e.g., fungal, cancer cells) and provide a sustainable platform for production of prodrugs that could actively or passively affect the viability of infectious cells.
Collapse
Affiliation(s)
- Hochan Chang
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
| | - Douglas H. Chang
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
| | | | - George W. Huber
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
| | - David M. Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, USA
| | - Sean P. Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
| | - James A. Dumesic
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
20
|
Chen YH, Yeung F, Lacey KA, Zaldana K, Lin JD, Bee GCW, McCauley C, Barre RS, Liang SH, Hansen CB, Downie AE, Tio K, Weiser JN, Torres VJ, Bennett RJ, Loke P, Graham AL, Cadwell K. Rewilding of laboratory mice enhances granulopoiesis and immunity through intestinal fungal colonization. Sci Immunol 2023; 8:eadd6910. [PMID: 37352372 PMCID: PMC10350741 DOI: 10.1126/sciimmunol.add6910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023]
Abstract
The paucity of blood granulocyte populations such as neutrophils in laboratory mice is a notable difference between this model organism and humans, but the cause of this species-specific difference is unclear. We previously demonstrated that laboratory mice released into a seminatural environment, referred to as rewilding, display an increase in blood granulocytes that is associated with expansion of fungi in the gut microbiota. Here, we find that tonic signals from fungal colonization induce sustained granulopoiesis through a mechanism distinct from emergency granulopoiesis, leading to a prolonged expansion of circulating neutrophils that promotes immunity. Fungal colonization after either rewilding or oral inoculation of laboratory mice with Candida albicans induced persistent expansion of myeloid progenitors in the bone marrow. This increase in granulopoiesis conferred greater long-term protection from bloodstream infection by gram-positive bacteria than by the trained immune response evoked by transient exposure to the fungal cell wall component β-glucan. Consequently, introducing fungi into laboratory mice may restore aspects of leukocyte development and provide a better model for humans and free-living mammals that are constantly exposed to environmental fungi.
Collapse
Affiliation(s)
- Ying-Han Chen
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Frank Yeung
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kimberly Zaldana
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Jian-Da Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei City, Taiwan
| | - Gavyn Chern Wei Bee
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Caroline McCauley
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ramya S. Barre
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Christina B. Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Alexander E Downie
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Kyle Tio
- Kimmel Center for Biology and Medicine at the Skirball Institute
| | - Jeffrey N. Weiser
- Antimicrobial-Resistant Pathogens Program
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Victor J Torres
- Antimicrobial-Resistant Pathogens Program
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
21
|
Chen Y, Gao Y, Yuan M, Zheng Z, Yin J. Anti- Candida albicans Effects and Mechanisms of Theasaponin E1 and Assamsaponin A. Int J Mol Sci 2023; 24:ijms24119350. [PMID: 37298302 DOI: 10.3390/ijms24119350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen, and its drug resistance is becoming a serious problem. Camellia sinensis seed saponins showed inhibitory effects on resistant Candida albicans strains, but the active components and mechanisms are unclear. In this study, the effects and mechanisms of two Camellia sinensis seed saponin monomers, theasaponin E1 (TE1) and assamsaponin A (ASA), on a resistant Candida albicans strain (ATCC 10231) were explored. The minimum inhibitory concentration and minimum fungicidal concentration of TE1 and ASA were equivalent. The time-kill curves showed that the fungicidal efficiency of ASA was higher than that of TE1. TE1 and ASA significantly increased the cell membrane permeability and disrupted the cell membrane integrity of C. albicans cells, probably by interacting with membrane-bound sterols. Moreover, TE1 and ASA induced the accumulation of intracellular ROS and decreased the mitochondrial membrane potential. Transcriptome and qRT-PCR analyses revealed that the differentially expressed genes were concentrated in the cell wall, plasma membrane, glycolysis, and ergosterol synthesis pathways. In conclusion, the antifungal mechanisms of TE1 and ASA included the interference with the biosynthesis of ergosterol in fungal cell membranes, damage to the mitochondria, and the regulation of energy metabolism and lipid metabolism. Tea seed saponins have the potential to be novel anti-Candida albicans agents.
Collapse
Affiliation(s)
- Yuhong Chen
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| | - Mingan Yuan
- Jinhua Academy of Agricultural Science, Jinhua 321000, China
| | - Zhaisheng Zheng
- Jinhua Academy of Agricultural Science, Jinhua 321000, China
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China
| |
Collapse
|
22
|
Evans B, Spell E, Bernstein D. C. albicans UME7 deletion does not have major impacts on white opaque switching, filamentation, or virulence. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000826. [PMID: 37303958 PMCID: PMC10251200 DOI: 10.17912/micropub.biology.000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
C. albicans is the most prevalent human fungal pathogen, and can be especially dangerous to immunocompromised individuals. One key aspect of C. albicans virulence is morphological plasticity. C. albicans can undergo a number of distinct morphological changes and these changes are controlled by complex transcriptional networks. The transcription factor Ume6 is an important member of these networks, playing an essential role mediating filamentation. C. albicans , however encodes a second UME6 homolog, UME7 . UME7 is highly conserved in the CTG fungal clade, but the role of UME7 in C. albicans biology is unknown. Here we truncate and delete C. albicans UME7 . We find Ume7 is dispensable for growth and filamentation. We also find that deletion does not have major consequences on virulence or white opaque switching. Our results suggest that under standard laboratory conditions deletion of UME7 does not have large effects on C. albicans phenotype leaving its role in C. albicans biology undefined.
Collapse
Affiliation(s)
- Ben Evans
- Biology, Ball State University, Muncie, Indiana, United States
| | - Evan Spell
- Biology, Ball State University, Muncie, Indiana, United States
| | | |
Collapse
|
23
|
Kajadpai N, Angchuan J, Khunnamwong P, Srisuk N. Diversity of duckweed ( Lemnaceae) associated yeasts and their plant growth promoting characteristics. AIMS Microbiol 2023; 9:486-517. [PMID: 37649804 PMCID: PMC10462456 DOI: 10.3934/microbiol.2023026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 09/01/2023] Open
Abstract
The diversity of duckweed (Lemnaceae) associated yeasts was studied using a culture-dependent method. A total of 252 yeast strains were isolated from 53 duckweed samples out of the 72 samples collected from 16 provinces in Thailand. Yeast identification was conducted based on the D1/D2 region of the large subunit (LSU) rRNA gene sequence analysis. It revealed that 55.2% and 44.8% yeast species were Ascomycota and Basidiomycota duckweed associated yeasts, respectively. Among all, Papiliotrema laurentii, a basidiomycetous yeast, was found as the most prevalent species showing a relative of frequency and frequency of occurrence of 21.8% and 25%, respectively. In this study, high diversity index values were shown, indicated by the Shannon-Wiener index (H'), Shannon equitability index (EH) and Simpson diversity index (1-D) values of 3.48, 0.86 and 0.96, respectively. The present results revealed that the yeast community on duckweed had increased species diversity, with evenness among species. Principal coordinate analysis (PCoA) revealed no marked differences in yeast communities among duckweed genera. The species accumulation curve showed that the observed species richness was lower than expected. Investigation of the plant growth promoting traits of the isolated yeast on duckweed revealed that 178 yeast strains produced indole-3-acetic acid (IAA) at levels ranging from 0.08-688.93 mg/L. Moreover, siderophore production and phosphate solubilization were also studied. One hundred and seventy-three yeast strains produced siderophores and exhibited siderophores that showed 0.94-2.55 activity units (AU). One hundred six yeast strains showed phosphate solubilization activity, expressed as solubilization efficiency (SE) units, in the range of 0.32-2.13 SE. This work indicates that duckweed associated yeast is a potential microbial resource that can be used for plant growth promotion.
Collapse
Affiliation(s)
- Napapohn Kajadpai
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jirameth Angchuan
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Pannida Khunnamwong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| | - Nantana Srisuk
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center Kasetsart University (BDCKU), Bangkok 10900, Thailand
| |
Collapse
|
24
|
Cittadino GM, Andrews J, Purewal H, Estanislao Acuña Avila P, Arnone JT. Functional Clustering of Metabolically Related Genes Is Conserved across Dikarya. J Fungi (Basel) 2023; 9:jof9050523. [PMID: 37233234 DOI: 10.3390/jof9050523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/08/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Transcriptional regulation is vital for organismal survival, with many layers and mechanisms collaborating to balance gene expression. One layer of this regulation is genome organization, specifically the clustering of functionally related, co-expressed genes along the chromosomes. Spatial organization allows for position effects to stabilize RNA expression and balance transcription, which can be advantageous for a number of reasons, including reductions in stochastic influences between the gene products. The organization of co-regulated gene families into functional clusters occurs extensively in Ascomycota fungi. However, this is less characterized within the related Basidiomycota fungi despite the many uses and applications for the species within this clade. This review will provide insight into the prevalence, purpose, and significance of the clustering of functionally related genes across Dikarya, including foundational studies from Ascomycetes and the current state of our understanding throughout representative Basidiomycete species.
Collapse
Affiliation(s)
- Gina M Cittadino
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Johnathan Andrews
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | - Harpreet Purewal
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| | | | - James T Arnone
- Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214, USA
| |
Collapse
|
25
|
Potential Anti-Candida albicans Mechanism of Trichoderma Acid from Trichoderma spirale. Int J Mol Sci 2023; 24:ijms24065445. [PMID: 36982520 PMCID: PMC10049406 DOI: 10.3390/ijms24065445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Candida albicans is the main causal pathogen of fungal infections in human beings. Although diverse anti-C. albicans drugs have been explored, the drug resistance and side effects of these drugs are intensifying. Thus, it is urgent to explore new anti-C. albicans compounds from natural products. In this study, we identified trichoderma acid (TA), a compound from Trichoderma spirale with a strong inhibitory effect on C. albicans. Transcriptomic and iTRAQ-based proteomic analyses of TA-treated C. albicans in combination with scanning electronic microscopy and reactive oxygen species (ROS) detection were performed to investigate the potential targets of TA. The most significant differentially expressed genes and proteins after TA treatment were verified through Western blot analysis. Our results revealed that mitochondrial membrane potential, endoplasmic reticulum, ribosomes in the mitochondria, and cell walls were disrupted in TA-treated C. albicans, leading to the accumulation of ROS. The impaired enzymatic activities of superoxide dismutase further contributed to the increase in ROS concentration. The high concentration of ROS led to DNA damage and cell skeleton destruction. The expression levels of Rho-related GTP-binding protein RhoE (RND3), asparagine synthetase (ASNS), glutathione S-transferase, and heat shock protein 70 were significantly up-regulated in response to apoptosis and toxin stimulation. These findings suggest that RND3, ASNS, and supereoxide dismutase 5 are the potential targets of TA, as further demonstrated through Western blot analysis. The combination of transcriptomic, proteomic, and cellular analyses would provide clues for the anti-C. albicans mechanism of TA and the defensive response mechanism of C. albicans. TA is thus recognized as a promising new anti-C. albicans leading compound that alleviates the hazard of C. albicans infection in human beings.
Collapse
|
26
|
Mohammadi S, Leduc A, Charette SJ, Barbeau J, Vincent AT. Amino acid substitutions in specific proteins correlate with farnesol unresponsiveness in Candida albicans. BMC Genomics 2023; 24:93. [PMID: 36859182 PMCID: PMC9979538 DOI: 10.1186/s12864-023-09174-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The quorum-sensing molecule farnesol, in opportunistic yeast Candida albicans, modulates its dimorphic switch between yeast and hyphal forms, and biofilm formation. Although there is an increasing interest in farnesol as a potential antifungal drug, the molecular mechanism by which C. albicans responds to this molecule is still not fully understood. RESULTS A comparative genomic analysis between C. albicans strains that are naturally unresponsive to 30 µM of farnesol on TYE plates at 37 °C versus responsive strains uncovered new molecular determinants involved in the response to farnesol. While no signature gene was identified, amino acid changes in specific proteins were shown to correlate with the unresponsiveness to farnesol, particularly with substitutions in proteins known to be involved in the farnesol response. Although amino acid changes occur primarily in disordered regions of proteins, some amino acid changes were also found in known domains. Finally, the genomic investigation of intermediate-response strains showed that the non-response to farnesol occurs gradually following the successive accumulation of amino acid changes at specific positions. CONCLUSION It is known that large genomic changes, such as recombinations and gene flow (losses and gains), can cause major phenotypic changes in pathogens. However, it is still not well known or documented how more subtle changes, such as amino acid substitutions, play a role in the adaptation of pathogens. The present study shows that amino acid changes can modulate C. albicans yeast's response to farnesol. This study also improves our understanding of the network of proteins involved in the response to farnesol, and of the involvement of amino acid substitutions in cellular behavior.
Collapse
Affiliation(s)
- Sima Mohammadi
- grid.23856.3a0000 0004 1936 8390Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Pavillon Paul-Comtois, 2425 rue de l’Agriculture, G1V 0A6 Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada
| | - Annie Leduc
- grid.14848.310000 0001 2292 3357Département de stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montreal City, QC Canada
| | - Steve J. Charette
- grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada ,grid.421142.00000 0000 8521 1798Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC Canada
| | - Jean Barbeau
- grid.14848.310000 0001 2292 3357Département de stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montreal City, QC Canada
| | - Antony T. Vincent
- grid.23856.3a0000 0004 1936 8390Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Pavillon Paul-Comtois, 2425 rue de l’Agriculture, G1V 0A6 Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada
| |
Collapse
|
27
|
Remodeling articular immune homeostasis with an efferocytosis-informed nanoimitator mitigates rheumatoid arthritis in mice. Nat Commun 2023; 14:817. [PMID: 36781864 PMCID: PMC9925448 DOI: 10.1038/s41467-023-36468-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Massive intra-articular infiltration of proinflammatory macrophages is a prominent feature of rheumatoid arthritis (RA) lesions, which are thought to underlie articular immune dysfunction, severe synovitis and ultimately joint erosion. Here we report an efferocytosis-informed nanoimitator (EINI) for in situ targeted reprogramming of synovial inflammatory macrophages (SIMs) that thwarts their autoimmune attack and reestablishes articular immune homeostasis, which mitigates RA. The EINI consists of a drug-based core with an oxidative stress-responsive phosphatidylserine (PtdSer) corona and a shell composed of a P-selectin-blocking motif, low molecular weight heparin (LMWH). When systemically administered, the LMWH on the EINI first binds to P-selectin overexpressed on the endothelium in subsynovial capillaries, which functions as an antagonist, disrupting neutrophil synovial trafficking. Due to the strong dysregulation of the synovial microvasculature, the EINI is subsequently enriched in the joint synovium where the shell is disassembled upon the reactive oxygen species stimulation, and PtdSer corona is then exposed. In an efferocytosis-like manner, the PtdSer-coroneted core is in turn phagocytosed by SIMs, which synergistically terminate SIM-initiated pathological cascades and serially reestablish intra-articular immune homeostasis, conferring a chondroprotective effect. These findings demonstrate that SIMs can be precisely remodeled via the efferocytosis-mimetic strategy, which holds potential for RA treatment.
Collapse
|
28
|
Poon Y, Hui M. Inhibitory effect of lactobacilli supernatants on biofilm and filamentation of Candida albicans, Candida tropicalis, and Candida parapsilosis. Front Microbiol 2023; 14:1105949. [PMID: 36860488 PMCID: PMC9969145 DOI: 10.3389/fmicb.2023.1105949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Probiotic Lactobacillus strains had been investigated for the potential to protect against infection caused by the major fungal pathogen of human, Candida albicans. Besides antifungal activity, lactobacilli demonstrated a promising inhibitory effect on biofilm formation and filamentation of C. albicans. On the other hand, two commonly isolated non-albicans Candida species, C. tropicalis and C. parapsilosis, have similar characteristics in filamentation and biofilm formation with C. albicans. However, there is scant information of the effect of lactobacilli on the two species. Methods In this study, biofilm inhibitory effects of L. rhamnosus ATCC 53103, L. plantarum ATCC 8014, and L. acidophilus ATCC 4356 were tested on the reference strain C. albicans SC5314 and six bloodstream isolated clinical strains, two each of C. albicans, C. tropicalis, and C. parapsilosis. Results and Discussion Cell-free culture supernatants (CFSs) of L. rhamnosus and L. plantarum significantly inhibited in vitro biofilm growth of C. albicans and C. tropicalis. L. acidophilus, conversely, had little effect on C. albicans and C. tropicalis but was more effective on inhibiting C. parapsilosis biofilms. Neutralized L. rhamnosus CFS at pH 7 retained the inhibitory effect, suggesting that exometabolites other than lactic acid produced by the Lactobacillus strain might be accounted for the effect. Furthermore, we evaluated the inhibitory effects of L. rhamnosus and L. plantarum CFSs on the filamentation of C. albicans and C. tropicalis strains. Significantly less Candida filaments were observed after co-incubating with CFSs under hyphae-inducing conditions. Expressions of six biofilm-related genes (ALS1, ALS3, BCR1, EFG1, TEC1, and UME6 in C. albicans and corresponding orthologs in C. tropicalis) in biofilms co-incubated with CFSs were analyzed using quantitative real-time PCR. When compared to untreated control, the expressions of ALS1, ALS3, EFG1, and TEC1 genes were downregulated in C. albicans biofilm. In C. tropicalis biofilms, ALS3 and UME6 were downregulated while TEC1 was upregulated. Taken together, the L. rhamnosus and L. plantarum strains demonstrated an inhibitory effect, which is likely mediated by the metabolites secreted into culture medium, on filamentation and biofilm formation of C. albicans and C. tropicalis. Our finding suggested an alternative to antifungals for controlling Candida biofilm.
Collapse
|
29
|
Brenes LR, Johnson AD, Lohse MB. Farnesol and phosphorylation of the transcriptional regulator Efg1 affect Candida albicans white-opaque switching rates. PLoS One 2023; 18:e0280233. [PMID: 36662710 PMCID: PMC9858334 DOI: 10.1371/journal.pone.0280233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/24/2022] [Indexed: 01/21/2023] Open
Abstract
Candida albicans is a normal member of the human microbiome and an opportunistic fungal pathogen. This species undergoes several morphological transitions, and here we consider white-opaque switching. In this switching program, C. albicans reversibly alternates between two cell types, named "white" and "opaque," each of which is normally stable across thousands of cell divisions. Although switching under most conditions is stochastic and rare, certain environmental signals or genetic manipulations can dramatically increase the rate of switching. Here, we report the identification of two new inputs which affect white-to-opaque switching rates. The first, exposure to sub-micromolar concentrations of (E,E)-farnesol, reduces white-to-opaque switching by ten-fold or more. The second input, an inferred PKA phosphorylation of residue T208 on the transcriptional regulator Efg1, increases white-to-opaque switching ten-fold. Combining these and other environmental inputs results in a variety of different switching rates, indicating that a given rate represents the integration of multiple inputs.
Collapse
Affiliation(s)
- Lucas R. Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Matthew B. Lohse
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
30
|
Khan A, Moni SS, Ali M, Mohan S, Jan H, Rasool S, Kamal MA, Alshahrani S, Halawi M, Alhazmi HA. Antifungal Activity of Plant Secondary Metabolites on Candida albicans: An Updated Review. Curr Mol Pharmacol 2023; 16:15-42. [PMID: 35249516 DOI: 10.2174/1874467215666220304143332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022]
Abstract
Fungal infections have been increasing continuously worldwide, especially in immunocompromised individuals. Fungi, regarded as eukaryotic pathogens, have many similarities to the host cells, which inhibit anti-fungal drug development progress. Various fungal model systems have been studied, and it was concluded that Candida spp. is the most common disease-causing fungus. Candida species are well known to cause infections not only in our mouth, skin, and vagina, but they are also a frequent cause of life-threatening hospital bloodstream infections. The morphological and developmental pathways of Candida have been studied extensively, providing insight into the fungus development. Candida albicans is known to be the most pathogenic species responsible for a variety of infections in humans. Conventional anti-fungal drugs, mainly azoles drugs available in the market, have been used for years developing resistance in C. albicans. Hence, the production of new anti-fungal drugs, which require detailed molecular knowledge of fungal pathogenesis, needs to be encouraged. Therefore, this review targets the new approach of "Green Medicines" or the phytochemicals and their secondary metabolites as a source of novel anti-fungal agents to overcome the drug resistance of C. albicans, their mechanism of action, and their combined effects with the available anti-fungal drugs.
Collapse
Affiliation(s)
- Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | | | - M Ali
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Huma Jan
- Department of Clinical Biochemistry, University of Kashmir, Hazratbal, Srinagar -190006, J&K, India
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001 J&K, India
| | - Mohammad A Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589. Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Maryam Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
31
|
Zhang J, Yang F, Sun Z, Fang Y, Zhu H, Zhang D, Zeng X, Liu W, Liu T, Liu Y, Chi W, Wang S, Ding L, Wu Y, Zhang Y, Zhao H. Rapid and precise identification of bloodstream infections using a pre-treatment protocol combined with high-throughput multiplex genetic detection system. BMC Infect Dis 2022; 22:823. [DOI: 10.1186/s12879-022-07793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Bloodstream infection (BSI) is a life-threatening condition with high morbidity and mortality rates worldwide. Early diagnosis of BSI is critical to avoid the unnecessary application of antimicrobial agents and for proper treatment. However, the current standard methods based on blood culture are time-consuming, thus failing to provide a timely etiological diagnosis of BSI, and common PCR-based detection might be inhibited by matrix components.
Methods
The current study explored an integrated pre-analytical treatment protocol for whole blood samples, wherein pathogens are enriched and purified by incubation and concentration, and inhibitors are inactivated and removed. Further, this study developed and evaluated a novel high-throughput multiplex genetic detection system (HMGS) to detect 24 of the most clinically prevalent BSI pathogens in blood culture samples and pre-treated whole blood samples. The specificity and sensitivity were evaluated using related reference strains and quantified bacterial/fungal suspensions. The clinical utility of BSI-HMGS combined with the pre-analytical treatment protocol was verified using blood cultures and whole blood samples.
Results
The combined pre-treatment protocol and BSI-HMGS was highly specific for target pathogens and possessed a low detection limit for clinical whole blood samples. The pre-treatment protocol could deplete the PCR inhibitors effectively. For blood culture samples, the current method showed 100.0% negative percent agreements and > 87.5% positive percent agreements compared to the reference results based on blood culture findings. For whole blood samples, the current method showed 100.0% negative percent agreements and > 80.0% positive percent agreements compared to the reference results for most pathogens. The turnaround time was ≤ 8 h, and all the procedures could be conducted in a general clinical laboratory.
Conclusion
The BSI-HMGS combined with the pre-treatment protocol was a practical and promising method for early and precise detection of BSIs, especially for areas without access to advanced medical facilities.
Collapse
|
32
|
Jacobo U, Kopel J, Reed J, Patel S, Jain S, Tran P, Abidi N, Bergfeld N, Reid T. The efficacy of organo-selenium conjugated cellulose polymer dressing to inhibit Candida albicans biofilm formation. METHODS IN MICROBIOLOGY 2022; 202:106598. [DOI: 10.1016/j.mimet.2022.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 10/31/2022]
|
33
|
Mahendrarajan V, Bari VK. A critical role of farnesol in the modulation of Amphotericin B and Aureobasidin A antifungal drug susceptibility. Mycology 2022; 13:305-317. [DOI: 10.1080/21501203.2022.2138599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Venkatramanan Mahendrarajan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, India
| |
Collapse
|
34
|
Schleker ESM, Buschmann S, Xie H, Welsch S, Michel H, Reinhart C. Structural and functional investigation of ABC transporter STE6-2p from Pichia pastoris reveals unexpected interaction with sterol molecules. Proc Natl Acad Sci U S A 2022; 119:e2202822119. [PMID: 36256814 PMCID: PMC9618074 DOI: 10.1073/pnas.2202822119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are multidomain transmembrane proteins, which facilitate the transport of various substances across cell membranes using energy derived from ATP hydrolysis. They are important drug targets since they mediate decreased drug susceptibility during pharmacological treatments. For the methylotrophic yeast Pichia pastoris, a model organism that is a widely used host for protein expression, the role and function of its ABC transporters is unexplored. In this work, we investigated the Pichia ABC-B transporter STE6-2p. Functional investigations revealed that STE6-2p is capable of transporting rhodamines in vivo and is active in the presence of verapamil and triazoles in vitro. A phylogenetic analysis displays homology among multidrug resistance (MDR) transporters from pathogenic fungi to human ABC-B transporters. Further, we present high-resolution single-particle electron cryomicroscopy structures of an ABC transporter from P. pastoris in the apo conformation (3.1 Å) and in complex with verapamil and adenylyl imidodiphosphate (AMP-PNP) (3.2 Å). An unknown density between transmembrane helices 4, 5, and 6 in both structures suggests the presence of a sterol-binding site of unknown function.
Collapse
Affiliation(s)
- E. Sabine M. Schleker
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Sabine Buschmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| | - Christoph Reinhart
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
35
|
Fernandes GL, Vieira APM, Danelon M, Emerenciano NG, Berretta AA, Buszinski AFM, Hori JI, de Lima MHF, dos Reis TF, de Lima JA, Delbem ACB, da Silva SCM, Barbosa DB. Pomegranate Extract Potentiates the Anti-Demineralizing, Anti-Biofilm, and Anti-Inflammatory Actions of Non-Alcoholic Mouthwash When Associated with Sodium-Fluoride Trimetaphosphate. Antibiotics (Basel) 2022; 11:1477. [PMID: 36358132 PMCID: PMC9686636 DOI: 10.3390/antibiotics11111477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 12/01/2023] Open
Abstract
This study investigated the anti-caries and anti-inflammatory effects of mouthwash formulations containing Punica granatum (pomegranate) peel extract (PPE), sodium-trimetaphosphate, and low concentrations of fluoride. PPE was characterized using high-performance liquid chromatography (ellagic acid and punicalagin). Total phenolics were quantified among formulations, and their stability was analyzed for 28 days. The formulation effects were evaluated as follows: (1) inorganic component concentration and reduced demineralization on bovine enamel blocks subjected to pH cycling; (2) anti-biofilm effect on dual-biofilms of Streptococcus mutans ATCC 25175 and Candida albicans ATCC 10231 treated for 1 and 10 min, respectively; and (3) cytotoxicity and production of inflammatory mediators (interleukin-6 and tumor necrosis factor-alpha). The formulation containing 3% PPE, 0.3% sodium-trimetaphosphate, and 225 ppm of fluoride resulted in a 34.5% surface hardness loss; a 13% (treated for 1 min) and 36% (treated for 10 min) biofilm reduction in S. mutans; a 26% (1 min) and 36% (10 min) biofilm reduction in C. albicans; absence of cytotoxicity; and anti-inflammatory activity confirmed by decreased interleukin-6 production in mouse macrophages. Thus, our results provide a promising prospect for the development of an alcohol-free commercial dental product with the health benefits of P. granatum that have been recognized for a millennium.
Collapse
Affiliation(s)
- Gabriela Lopes Fernandes
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Ana Paula Miranda Vieira
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Marcelle Danelon
- School of Dentistry, University of Ribeirão Preto—UNAERP, Ribeirão Preto 14096-039, São Paulo, Brazil
- Department of Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | - Nayara Gonçalves Emerenciano
- Graduate Program of Dental Science, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | | | - Juliana Issa Hori
- Apis Flora Industrial and Comercial Ltd. Ribeirão Preto 14020-670, São Paulo, Brazil
| | - Mikhael Haruo Fernandes de Lima
- Department of Biochemistry and Immunology, University of São Paulo Ribeirão Preto, Ribeirão Preto 14049-900, São Paulo, Brazil
| | - Thaila Fernanda dos Reis
- Department of Dental Materials and Prosthodontics, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | - Alberto Carlos Botazzo Delbem
- Department of Restorative Dentistry, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| | | | - Debora Barros Barbosa
- Department of Dental Materials and Prosthodontics, School of Dentistry, Araçatuba, São Paulo State University (UNESP), Araçatuba 16015-050, São Paulo, Brazil
| |
Collapse
|
36
|
Yaldiz B, Saglam-Metiner P, Cakmak B, Kaya E, Deliogullari B, Yesil-Celiktas O. Essential Oil and Supercritical Carbon Dioxide Extract of Grapefruit Peels Formulated for Candida albicans Infections: Evaluation by an in Vitro Model to Study Fungal-Host Interactions. ACS OMEGA 2022; 7:37427-37435. [PMID: 36312386 PMCID: PMC9608417 DOI: 10.1021/acsomega.2c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Resistance to currently available antifungal agents raises the need to develop alternative remedies. Candida albicans is the most common opportunistic pathogenic fungus of humans, colonizing in the genital and intestinal mucosa, skin, and oral-nasal cavity and reducing quality of life. Herein, essential oil from grapefruit (Citrus paradise) peels was obtained by hydrodistillation, and the remaining plant material was sequentially subjected to supercritical carbon dioxide (SC-CO2) extraction to determine the conditions for maximizing phenolic compounds. A statistical design was used to evaluate the effect of temperature (30, 50, 70 °C), pressure (80, 150, 220 bar), and ethanol as a cosolvent (0%, 10%, and 20% v/v). Essential oil and SC-CO2 extracts were mixed at various ratios to develop an effective antifungal formulation. Subsequently, fungal infection was modeled by coculturing C. albicans with human skin keratinocytes (HaCaT) to mimic dermal mycoses, endothelial cells (HUVEC) to evaluate vascular fate, and cervical adenocarcinoma (HeLa) cells to represent additional genital mycoses. Treatment with essential oil and extract (25:75%) formulation for 8 h exhibited slight cytotoxicity toward HeLa cells, no toxicity toward HaCaT and HUVECs, whereas inhibition of C. albicans. Considering the clinical significance, such in vitro models are essential to screen potential compounds for the treatment of opportunistic fungal infections.
Collapse
Affiliation(s)
- Burcu Yaldiz
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Pelin Saglam-Metiner
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Betul Cakmak
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Elif Kaya
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Buse Deliogullari
- Biomedical
Technologies Graduate Programme, Graduate School of Natural and Applied
Sciences, Ege University,35100 Bornova, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department
of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
37
|
Salah DB, Chakchouk-Mtibaa A, Mellouli L, Ghalla H, Koko W, Al-Hazmy SM, Mansour L, Al-Tamimi J, Dlala NA, Bouazizi Y, Dridi K, Hamdi N. Novel 3-phenyl-1- (alkylphenyl)-9-oxa-4-azaphenanthren-10-ones as inhibitors of some enzymes: synthesis, characterization, biological evaluation and molecular docking studies. J Biomol Struct Dyn 2022:1-17. [PMID: 36082583 DOI: 10.1080/07391102.2022.2114938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/13/2022] [Indexed: 10/14/2022]
Abstract
A series of novel 3-phenyl-1-(alkylphenyl)-9-oxa-4-azaphenanthren-10-ones and (E)-1-phenyl-3-(aryl)prop-2-en-1-ones were synthesized and characterized by IR, 1H NMR, 13C spectroscopy and elemental analysis. The synthesized Compounds 5a-f were subjected to molecular docking simulation with three proteins, namely, tyrosyl-tRNA synthetase, heme oxygenase 1 and acetylcholinesterase to evaluate the antibacterial, antioxidant and acetylcholinesterase inhibition, respectively. Moreover, the docked poses of all compounds inside the proteins were subjected to further dynamic simulation through the calculation of the binding free energy using MM-GBSA analysis. Compound 5d exhibits high potential inhibition against antibacterial, antioxidant and acetylcholinesterase activities. Compounds 3d, 3f, 5a and 5d recorded an important scavenging activity in DPPH and ABTS assays. Investigation of the anti-acetylcholinesterase activity of the synthesized compounds showed that Compounds 5a and 3d are the most potent inhibitors against AchE, with percent inhibition values of 38 and 30%, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Donia Ben Salah
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
| | - Ahlem Chakchouk-Mtibaa
- Laboratory of Microorganisms and Enzymatic Biotechnology and Biomolecules, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microorganisms and Enzymatic Biotechnology and Biomolecules, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Houcine Ghalla
- Quantum and Statistical Physics Laboratory, University of Monastir, Monastir, Tunisia
| | - Waleed Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| | - Sadeq M Al-Hazmy
- Chemistry Department, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Khaireddine Dridi
- Department of Chemistry, College of Science and Arts, QassimUniversity, Ar Rass, Saudi Arabia
| | - Naceur Hamdi
- Department of Chemistry, College of Science and Arts, QassimUniversity, Ar Rass, Saudi Arabia
| |
Collapse
|
38
|
Shuai M, Fu Y, Zhong HL, Gou W, Jiang Z, Liang Y, Miao Z, Xu JJ, Huynh T, Wahlqvist ML, Chen YM, Zheng JS. Mapping the human gut mycobiome in middle-aged and elderly adults: multiomics insights and implications for host metabolic health. Gut 2022; 71:1812-1820. [PMID: 35017200 PMCID: PMC9380515 DOI: 10.1136/gutjnl-2021-326298] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The human gut fungal community, known as the mycobiome, plays a fundamental role in the gut ecosystem and health. Here we aimed to investigate the determinants and long-term stability of gut mycobiome among middle-aged and elderly adults. We further explored the interplay between gut fungi and bacteria on metabolic health. DESIGN The present study included 1244 participants from the Guangzhou Nutrition and Health Study. We characterised the long-term stability and determinants of the human gut mycobiome, especially long-term habitual dietary consumption. The comprehensive multiomics analyses were performed to investigate the ecological links between gut bacteria, fungi and faecal metabolome. Finally, we examined whether the interaction between gut bacteria and fungi could modulate the metabolic risk. RESULTS The gut fungal composition was temporally stable and mainly determined by age, long-term habitual diet and host physiological states. Specifically, compared with middle-aged individuals, Blastobotrys and Agaricomycetes spp were depleted, while Malassezia was enriched in the elderly. Dairy consumption was positively associated with Saccharomyces but inversely associated with Candida. Notably, Saccharomycetales spp interacted with gut bacterial diversity to influence insulin resistance. Bidirectional mediation analyses indicated that bacterial function or faecal histidine might causally mediate an impact of Pichia on blood cholesterol. CONCLUSION We depict the sociodemographic and dietary determinants of human gut mycobiome in middle-aged and elderly individuals, and further reveal that the gut mycobiome may be closely associated with the host metabolic health through regulating gut bacterial functions and metabolites.
Collapse
Affiliation(s)
- Menglei Shuai
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Hai-li Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanglong Gou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Yuhui Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zelei Miao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jin-Jian Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tien Huynh
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Mark L Wahlqvist
- Monash Asia Institute, Monash University, Clayton, Victoria, Australia .,Institute of Nutrition and Health, Qingdao University, Qingdao, Shandong, China.,Institute of Population Health, National Health Research Institutes, Zhunan, Taiwan, China
| | - Yu-ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China .,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Wang X, Liu P, Jiang Y, Han B, Yan L. The prophylactic effects of monoclonal antibodies targeting the cell wall Pmt4 protein epitopes of Candida albicans in a murine model of invasive candidiasis. Front Microbiol 2022; 13:992275. [PMID: 36081783 PMCID: PMC9446456 DOI: 10.3389/fmicb.2022.992275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans (C. albicans) is the most prevalent opportunistic human pathogen, accounting for approximately half of all clinical cases of candidemia. Resistance to the existing antifungal drugs is a major challenge in clinical therapy, necessitating the development and identification of novel therapeutic agents and potential treatment strategies. Monoclonal antibody-based immunotherapy represents a promising therapeutic strategy against disseminated candidiasis. Protein mannosyltransferase (Pmt4) encodes mannosyltransferases initiating O-mannosylation of secretory proteins and is essential for cell wall composition and virulence of C. albicans. Therefore, the Pmt4 protein of C. albicans is an attractive target for the discovery of alternative antibody agents against invasive C. albicans infections. In the present study, we found that monoclonal antibodies (mAbs) C12 and C346 specifically targeted the recombinant protein mannosyltransferase 4 (rPmt4p) of C. albicans. These mAbs were produced and secreted by hybridoma cells isolated from the spleen of mice that were initially immunized with the purified rPmt4p to generate IgG antibodies. The mAbs C12 and C346 exhibited high affinity to C. albicans whole cells. Remarkably, these mAbs reduced the fungal burden, alleviated inflammation in the kidneys, and prolonged the survival rate significantly in the murine model of systemic candidiasis. Moreover, they could activate macrophage opsonophagocytic killing and neutrophil killing of C. albicans strain in vitro. These results suggested that anti-rPmt4p mAbs may provide immunotherapeutic interventions against disseminated candidiasis via opsonophagocytosis and opsonic killing activity. Our findings provide evidence for mAbs as a therapeutic option for the treatment of invasive candidiasis.
Collapse
Affiliation(s)
- Xiaojuan Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Gastroenterology, Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Han
- Department of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Bing Han,
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai, China
- Lan Yan,
| |
Collapse
|
40
|
Sahu SR, Bose S, Singh M, Kumari P, Dutta A, Utkalaja BG, Patel SK, Acharya N. Vaccines against candidiasis: Status, challenges and emerging opportunity. Front Cell Infect Microbiol 2022; 12:1002406. [PMID: 36061876 PMCID: PMC9433539 DOI: 10.3389/fcimb.2022.1002406] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Candidiasis is a mycosis caused by opportunistic Candida species. The occurrence of fungal infections has considerably increased in the last few years primarily due to an increase in the number of immune-suppressed individuals. Alarming bloodstream infections due to Candida sp. are associated with a higher rate of morbidity and mortality, and are emerged as major healthcare concerns worldwide. Currently, chemotherapy is the sole available option for combating fungal diseases. Moreover, the emergence of resistance to these limited available anti-fungal drugs has further accentuated the concern and highlighted the need for early detection of fungal infections, identification of novel antifungal drug targets, and development of effective therapeutics and prophylactics. Thus, there is an increasing interest in developing safe and potent immune-based therapeutics to tackle fungal diseases. In this context, vaccine design and its development have a priority. Nonetheless, despite significant advances in immune and vaccine biology over time, a viable commercialized vaccine remains awaited against fungal infections. In this minireview, we enumerate various concerted efforts made till date towards the development of anti-Candida vaccines, an option with pan-fugal vaccine, vaccines in the clinical trial, challenges, and future opportunities.
Collapse
Affiliation(s)
- Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Swagata Bose
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Manish Singh
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Abinash Dutta
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- *Correspondence: Narottam Acharya, ;
| |
Collapse
|
41
|
Xie Z, Manichanh C. FunOMIC: Pipeline with built-in fungal taxonomic and functional databases for human mycobiome profiling. Comput Struct Biotechnol J 2022; 20:3685-3694. [PMID: 35891785 PMCID: PMC9293737 DOI: 10.1016/j.csbj.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
While analysis of the bacterial microbiome has become routine, that of the fungal microbiome is still hampered by the lack of robust databases and bioinformatic pipelines. Here, we present FunOMIC, a pipeline with built-in taxonomic (1.6 million marker genes) and functional (3.4 million non-redundant fungal proteins) databases for the identification of fungi. Applied to more than 2,600 human metagenomic samples, the tool revealed fungal species associated with geography, body sites, and diseases. Correlation network analysis provided new insights into inter-kingdom interactions. With this pipeline and two of the most comprehensive fungal databases, we foresee a fast-growing resource for mycobiome studies.
Collapse
Key Words
- CD, Crohn’s disease
- ESRD, End-stage renal disease
- FDR, False discovery rate
- Fungal databases
- GS, Gallstones
- HC, Healthy control
- HTS, High throughput sequencing
- ITS, internal transcribed spacer
- Inter-kingdom interactions
- Mycobiome
- NA, Not applicable
- PLWH, People live with HIV
- PSO, Psoriasis
- SCFA, Short chain fatty acid
- SCZ, Schizophrenia
- Shotgun metagenomics
- T1D, Type 1 diabetes
- T2D, Type 2 diabetes
- TB, Tuberculosis
- Taxonomy and functions
- UC, Ulcerative colitis
Collapse
Affiliation(s)
- Zixuan Xie
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Chaysavanh Manichanh
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
42
|
β-Glucan-Functionalized Nanoparticles Down-Modulate the Proinflammatory Response of Mononuclear Phagocytes Challenged with Candida albicans. NANOMATERIALS 2022; 12:nano12142475. [PMID: 35889700 PMCID: PMC9317568 DOI: 10.3390/nano12142475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/04/2022]
Abstract
Systemic fungal infections are associated with significant morbidity and mortality, and Candida albicans is the most common causative agent. Recognition of yeast cells by immune cell surface receptors can trigger phagocytosis of fungal pathogens and a pro-inflammatory response that may contribute to fungal elimination. Nevertheless, the elicited inflammatory response may be deleterious to the host by causing excessive tissue damage. We developed a nanoparticle-based approach to modulate the host deleterious inflammatory consequences of fungal infection by using β1,3-glucan-functionalized polystyrene (β-Glc-PS) nanoparticles. β-Glc-PS nanoparticles decreased the levels of the proinflammatory cytokines TNF-α, IL-6, IL-1β and IL-12p40 detected in in vitro culture supernatants of bone marrow-derived dendritic cells and macrophage challenged with C. albicans cells. Moreover, β-Glc-PS nanoparticles impaired the production of reactive oxygen species by bone marrow-derived dendritic cells incubated with C. albicans. This immunomodulatory effect was dependent on the nanoparticle size. Overall, β-Glc-PS nanoparticles reduced the proinflammatory response elicited by fungal cells in mononuclear phagocytes, setting the basis for a targeted therapy aimed at protecting the host by lowering the inflammatory cost of infection.
Collapse
|
43
|
Samet S, Ayachi A, Fourati M, Mallouli L, Allouche N, Treilhou M, Téné N, Mezghani-Jarraya R. Antioxidant and Antimicrobial Activities of Erodium arborescens Aerial Part Extracts and Characterization by LC-HESI-MS 2 of Its Acetone Extract. Molecules 2022; 27:molecules27144399. [PMID: 35889269 PMCID: PMC9318634 DOI: 10.3390/molecules27144399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
The phytochemical analysis of antioxidant and antibacterial activities of Erodium arborescens aerial part extracts constitute the focus of this research. The chemical composition of an acetone extract was investigated using LC-HESI-MS2, which revealed the presence of 70 compounds. The major identified components were tannin derivatives. Total polyphenol and total flavonoid contents were assessed in plant extracts (hexane, ethyl acetate, acetone and methanol). The results showed that the acetone extract exhibited the highest contents of polyphenols and flavonoids, 895.54 and 36.39 mg QE/g DE, respectively. Furthermore, when compared to other extracts, Erodium arborescens acetone extract was endowed with the highest antioxidant activity with 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and total antioxidant capacity (TAC) tests. In addition, the four extracts of Erodium arborescens showed variable degrees of antimicrobial activity against the tested strains, and the interesting activity was obtained with acetone and methanol extracts.
Collapse
Affiliation(s)
- Sonda Samet
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| | - Amani Ayachi
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Enzyme Engineering of the Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P.B. 1177, Sfax 3018, Tunisia; (M.F.); (L.M.)
| | - Lotfi Mallouli
- Laboratory of Microbial Biotechnology and Enzyme Engineering of the Center of Biotechnology of Sfax, University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P.B. 1177, Sfax 3018, Tunisia; (M.F.); (L.M.)
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| | - Michel Treilhou
- Equipe BTSB-EA 7417, Institut National Universitaire Jean-François Champollion, Université de Toulouse, Place de Verdun, 81012 Albi, France;
| | - Nathan Téné
- Equipe BTSB-EA 7417, Institut National Universitaire Jean-François Champollion, Université de Toulouse, Place de Verdun, 81012 Albi, France;
- Correspondence: ; Tel.: +33-667276471
| | - Raoudha Mezghani-Jarraya
- Laboratory of Organic Chemistry LR17ES08, Natural Substances Team, Faculty of Sciences of Sfax, University of Sfax, P.B. 1171, Sfax 3000, Tunisia; (S.S.); (A.A.); (N.A.); (R.M.-J.)
| |
Collapse
|
44
|
Saravanakumar K, Santosh SS, Ahamed MA, Sathiyaseelan A, Sultan G, Irfan N, Ali DM, Wang MH. Bioinformatics strategies for studying the molecular mechanisms of fungal extracellular vesicles with a focus on infection and immune responses. Brief Bioinform 2022; 23:6632620. [PMID: 35794708 DOI: 10.1093/bib/bbac250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 01/19/2023] Open
Abstract
Fungal extracellular vesicles (EVs) are released during pathogenesis and are found to be an opportunistic infection in most cases. EVs are immunocompetent with their host and have paved the way for new biomedical approaches to drug delivery and the treatment of complex diseases including cancer. With computing and processing advancements, the rise of bioinformatics tools for the evaluation of various parameters involved in fungal EVs has blossomed. In this review, we have complied and explored the bioinformatics tools to analyze the host-pathogen interaction, toxicity, omics and pathogenesis with an array of specific tools that have depicted the ability of EVs as vector/carrier for therapeutic agents and as a potential theme for immunotherapy. We have also discussed the generation and pathways involved in the production, transport, pathogenic action and immunological interactions of EVs in the host system. The incorporation of network pharmacology approaches has been discussed regarding fungal pathogens and their significance in drug discovery. To represent the overview, we have presented and demonstrated an in silico study model to portray the human Cryptococcal interactions.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | | | - MohamedAli Afaan Ahamed
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Ghazala Sultan
- Department of Computer Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Navabshan Irfan
- Crescent School of Pharmacy, B.S Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India
| | - Davoodbasha Mubarak Ali
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu 600048, India
| | - Myeong-Hyeon Wang
- Department of Bio-Health convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| |
Collapse
|
45
|
Schrevens S, Durandau E, Tran VDT, Sanglard D. Using in vivo transcriptomics and RNA enrichment to identify genes involved in virulence of Candida glabrata. Virulence 2022; 13:1285-1303. [PMID: 35795910 PMCID: PMC9348041 DOI: 10.1080/21505594.2022.2095716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Candida species are the most commonly isolated opportunistic fungal pathogens in humans. Candida albicans causes most of the diagnosed infections, closely followed by Candida glabrata. C. albicans is well studied, and many genes have been shown to be important for infection and colonization of the host. It is however less clear how C. glabrata infects the host. With the help of fungal RNA enrichment, we here investigated for the first time the transcriptomic profile of C. glabrata during urinary tract infection (UTI) in mice. In the UTI model, bladders and kidneys are major target organs and therefore fungal transcriptomes were addressed in these organs. Our results showed that, next to adhesins and proteases, nitrogen metabolism and regulation play a vital role during C. glabrata UTI. Genes involved in nitrogen metabolism were upregulated and among them we show that DUR1,2 (urea amidolyase) and GAP1 (amino acid permease) were important for virulence. Furthermore, we confirmed the importance of the glyoxylate cycle in the host and identified MLS1 (malate synthase) as an important gene necessary for C. glabrata virulence. In conclusion, our study shows with the support of in vivo transcriptomics how C. glabrata adapts to host conditions.
Collapse
Affiliation(s)
- Sanne Schrevens
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Eric Durandau
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - Van Du T Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| |
Collapse
|
46
|
Abdallah BM, Ali EM. Therapeutic Effect of Green Synthesized Silver Nanoparticles Using Erodium glaucophyllum Extract against Oral Candidiasis: In Vitro and In Vivo Study. Molecules 2022; 27:molecules27134221. [PMID: 35807474 PMCID: PMC9267989 DOI: 10.3390/molecules27134221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Oral candidiasis (OC) is a fungal infection caused by an opportunistic fungi Candida albicans, which is found in the normal flora of healthy people. In this study, we examined the anti-candidal effect of green synthesized silver nanoparticles using leaf extract of Erodium glaucophyllum (EG-AgNPs) against C. albicans in vitro and in vivo. EG-AgNPs were synthesized for the first time using E. glaucophyllum extract and characterized by imaging (transmission electron microscopy (TEM), UV-VIS spectroscopy, zeta potential, X-ray diffraction (XRD), Energy dispersive x-ray analysis (EDX), and Fourier transform infrared spectroscopy (FTIR). A mouse model of OC was used for in vivo study. The agar well diffusion method showed the anti-candidal activity of EG-AgNPs against C. albicans with MIC 50 µg/mL. EG-AgNPs inhibited the dimorphic transition of C. albicans and suppressed the formation of biofilm by 56.36% and 52%, respectively. Additionally, EG-AgNPs significantly inhibited the production of phospholipases and proteinases by 30% and 45%, respectively. EG-AgNPs cause cytoplasm disintegration and deterioration of cell wall as imaged by SEM and TEM. Interestingly, EG-AgNPs did not display any cytotoxicity on the human gingival fibroblast-1 HGF-1 cell line at MIC concentrations. Topical treatment of the tongue of the OC mouse model with EG-AgNPs showed significant reduction in candidal tissue invasion, less inflammatory changes, and no tissue modification, in association with marked low scare and hyphal counts as compared to control group. In conclusion, our data demonstrated the potent inhibitory action of EG-AgNPs on the growth and morphogenesis of C. albicans in vitro and in vivo. Thus, EG-AgNPs represent a novel plausible therapeutic approach for treatment of OC.
Collapse
Affiliation(s)
- Basem M. Abdallah
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: ; Tel.: +966-(013)-5899430
| | - Enas M. Ali
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo 12613, Egypt
| |
Collapse
|
47
|
Abdulghani M, Iram R, Chidrawar P, Bhosle K, Kazi R, Patil R, Kharat K, Zore G. Proteomic profile of Candida albicans biofilm. J Proteomics 2022; 265:104661. [PMID: 35728770 DOI: 10.1016/j.jprot.2022.104661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Candida albicans biofilms are characterized by structural and cellular heterogeneity that confers antifungal resistance and immune evasion. Despite this, biofilm formation remains poorly understood. In this study, we used proteomic analysis to understand biofilm formation in C. albicans related to morphophysiological and architectural features. LC-MS/MS analysis revealed that 64 proteins were significantly modulated, of which 31 were upregulated and 33 were downregulated. The results indicate that metabolism (25 proteins), gene expression (13 proteins), stress response (7 proteins), and cell wall (5 proteins) composition are modulated. The rate of oxidative phosphorylation (OxPhos) and biosynthesis of UDP-N-acetylglucosamine, vitamin B6, and thiamine increased, while the rate of methionine biosynthesis decreased. There was a significant modification of the cell wall architecture due to higher levels of Sun41, Pir1 and Csh1 and increased glycosylation of proteins. It was observed that C. albicans induces hyphal growth by upregulating the expression of genes involved in cAMP-PKA and MAPK pathways. This study is significant in that it suggests an increase in OxPhos and alteration of cell wall architecture that could be contributing to the recalcitrance of C. albicans cells growing in biofilms. Nevertheless, a deeper investigation is needed to explore it further. SIGNIFICANCE: Candida sps is included in the list of pathogens with potential drug resistance threat due to the increased frequency especially colonization of medical devices, and tissues among the patients, in recent years. Significance of our study is that we are reporting traits like modulation in cell wall composition, amino acid and vitamin biosynthesis and importantly energy generation (OxPhos) etc. These traits could be conferring antifungal resistance, host immune evasion etc. and thus survival, in addition to facilitating biofilm formation. These findings are expected to prime the further studies on devising potent strategy against biofilm growth among the patients.
Collapse
Affiliation(s)
- Mazen Abdulghani
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Rasiqua Iram
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Priti Chidrawar
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Kajal Bhosle
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Rubina Kazi
- Division of Biochemical Sciences, CSIR-NCL, Pune 8, MS, India
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, MS, India
| | - Kiran Kharat
- Department of Biotechnology, Deogiri College, Aurangabad, MS, India
| | - Gajanan Zore
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India.
| |
Collapse
|
48
|
Schier C, Foerster (née Reiter) J, Heupel M, Dörner P, Klaas M, Schröder W, Rink L, Slusarenko AJ, Gruhlke MCH. Allicin as a Volatile or Nebulisable Antimycotic for the Treatment of Pulmonary Mycoses: In Vitro Studies Using a Lung Flow Test Rig. Int J Mol Sci 2022; 23:ijms23126607. [PMID: 35743050 PMCID: PMC9224539 DOI: 10.3390/ijms23126607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Fungal infections of the lung are an increasing problem worldwide and the search for novel therapeutic agents is a current challenge due to emerging resistance to current antimycotics. The volatile defence substance allicin is formed naturally by freshly injured garlic plants and exhibits broad antimicrobial potency. Chemically synthesised allicin was active against selected fungi upon direct contact and via the gas phase at comparable concentrations to the pharmaceutically used antimycotic amphotericin B. We investigated the suppression of fungal growth by allicin vapour and aerosols in vitro in a test rig at air flow conditions mimicking the human lung. The effect of allicin via the gas phase was enhanced by ethanol. Our results suggest that allicin is a potential candidate for development for use in antifungal therapy for lung and upper respiratory tract infections.
Collapse
Affiliation(s)
- Christina Schier
- Department of Plant Physiology, RWTH Aachen University, 52074 Aachen, Germany; (A.J.S.); (M.C.H.G.)
- Correspondence:
| | | | - Monika Heupel
- Landwirtschaftskammer Rheinland, 50765 Köln-Auweiler, Germany;
| | - Philipp Dörner
- Chair of Fluid Mechanics and Institute of Aerodynamics, RWTH Aachen University, 52062 Aachen, Germany; (P.D.); (M.K.); (W.S.)
| | - Michael Klaas
- Chair of Fluid Mechanics and Institute of Aerodynamics, RWTH Aachen University, 52062 Aachen, Germany; (P.D.); (M.K.); (W.S.)
| | - Wolfgang Schröder
- Chair of Fluid Mechanics and Institute of Aerodynamics, RWTH Aachen University, 52062 Aachen, Germany; (P.D.); (M.K.); (W.S.)
| | - Lothar Rink
- Institute of Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, 52074 Aachen, Germany; (A.J.S.); (M.C.H.G.)
- GENAWIF e.V.—Society for Natural Compound and Active Ingredient Research, 52070 Aachen, Germany;
| | - Martin C. H. Gruhlke
- Department of Plant Physiology, RWTH Aachen University, 52074 Aachen, Germany; (A.J.S.); (M.C.H.G.)
- GENAWIF e.V.—Society for Natural Compound and Active Ingredient Research, 52070 Aachen, Germany;
- Institute of Applied Microbiology—iAMB, Aachener Biology and Biotechnology—ABBt, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
49
|
Ziv N, Brenes LR, Johnson A. Multiple molecular events underlie stochastic switching between 2 heritable cell states in fungi. PLoS Biol 2022; 20:e3001657. [PMID: 35594297 PMCID: PMC9162332 DOI: 10.1371/journal.pbio.3001657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic transcriptional networks are often large and contain several levels of feedback regulation. Many of these networks have the ability to generate and maintain several distinct transcriptional states across multiple cell divisions and to switch between them. In certain instances, switching between cell states is stochastic, occurring in a small subset of cells of an isogenic population in a seemingly homogenous environment. Given the scarcity and unpredictability of switching in these cases, investigating the determining molecular events is challenging. White-opaque switching in the fungal species Candida albicans is an example of stably inherited cell states that are determined by a complex transcriptional network and can serve as an experimentally accessible model system to study characteristics important for stochastic cell fate switching in eukaryotes. In standard lab media, genetically identical cells maintain their cellular identity (either "white" or "opaque") through thousands of cell divisions, and switching between the states is rare and stochastic. By isolating populations of white or opaque cells, previous studies have elucidated the many differences between the 2 stable cell states and identified a set of transcriptional regulators needed for cell type switching and maintenance of the 2 cell types. Yet, little is known about the molecular events that determine the rare, stochastic switching events that occur in single cells. We use microfluidics combined with fluorescent reporters to directly observe rare switching events between the white and opaque states. We investigate the stochastic nature of switching by beginning with white cells and monitoring the activation of Wor1, a master regulator and marker for the opaque state, in single cells and throughout cell pedigrees. Our results indicate that switching requires 2 stochastic steps; first an event occurs that predisposes a lineage of cells to switch. In the second step, some, but not all, of those predisposed cells rapidly express high levels of Wor1 and commit to the opaque state. To further understand the rapid rise in Wor1, we used a synthetic inducible system in Saccharomyces cerevisiae into which a controllable C. albicans Wor1 and a reporter for its transcriptional control region have been introduced. We document that Wor1 positive autoregulation is highly cooperative (Hill coefficient > 3), leading to rapid activation and producing an "all or none" rather than a graded response. Taken together, our results suggest that reaching a threshold level of a master regulator is sufficient to drive cell type switching in single cells and that an earlier molecular event increases the probability of reaching that threshold in certain small lineages of cells. Quantitative molecular analysis of the white-opaque circuit can serve as a model for the general understanding of complex circuits.
Collapse
Affiliation(s)
- Naomi Ziv
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (NZ); (AJ)
| | - Lucas R. Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (NZ); (AJ)
| |
Collapse
|
50
|
Crosstalk between Body Microbiota and the Regulation of Immunity. J Immunol Res 2022; 2022:6274265. [PMID: 35647199 PMCID: PMC9135571 DOI: 10.1155/2022/6274265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
The microbiome corresponds to the genetic component of microorganisms (archaea, bacteria, phages, viruses, fungi, and protozoa) that coexist with an individual. During the last two decades, research on this topic has become massive demonstrating that in both homeostasis and disease, the microbiome plays an important role, and in some cases, a decisive one. To date, microbiota have been identified at different body locations, such as the eyes, lung, gastrointestinal and genitourinary tracts, and skin, and technological advances have permitted the taxonomic characterization of resident species and their metabolites, in addition to the cellular and molecular components of the host that maintain a crosstalk with local microorganisms. Here, we summarize recent studies regarding microbiota residing in different zones of the body and their relationship with the immune system. We emphasize the immune components underlying pathological conditions and how they interact with local (and distant) microbiota.
Collapse
|