1
|
Gandhale P, Chikhale R, Khanal P, Biswa V, Ali R, Khan MS, Gurav N, Ayyanar M, Das S, Gurav S. Quest for Anti-SARS-CoV-2 antiviral therapeutics: in-silico and in-vitro analysis of edible mushroom- Cordyceps militaris. J Ayurveda Integr Med 2024; 15:100979. [PMID: 38871595 PMCID: PMC11282376 DOI: 10.1016/j.jaim.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND The emergence and evolution of SARS-CoV-2 resulted a severe threat to public health globally. Due to the lack of an effective vaccine with durable immunity, the disease transited into the endemic phase, necessitating potent antiviral therapy including a scientific basis for current traditional herbal medicine. OBJECTIVE This study aimed to conduct a pharmacoinformatic analysis of selected chemical ingredients and in-vitro evaluation of Cordyceps militaris extract against SARS-CoV-2. MATERIALS AND METHODS C. militaris, the widely used fungus in conventional herbal medicine, was subjected to computational investigation using molecular docking, molecular dynamic simulation and network pharmacology analysis followed by the in-vitro assay for evaluating its anti-SARS-CoV-2 potential. RESULTS The molecular docking analysis of C. militaris revealed the Cordycepin's highest affinity (-9.71 kcal/mol) than other molecules, i.e., Cicadapeptin-I, Cicadapeptin-II, Cordycerebroside-B, and N-Acetyl galactosamine to the receptor binding domain of the SARS-CoV-2 spike protein. C. militaris aqueous extract could reduce the SARS-CoV-2 viral copy numbers by 50.24% using crude extract at 100 μg/mL concentration. CONCLUSION These findings suggest that C. militaris has promising anti-SARS-CoV-2 activity and may be explored as traditional medicine for managing the COVID-19 surge in the endemic phase.
Collapse
Affiliation(s)
- Pradeep Gandhale
- ICAR-National Institute of High-Security Animal Diseases, Bhopal, Madhya Pradesh- 462 021, India
| | - Rupesh Chikhale
- UCL School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Pukar Khanal
- Department of Pharmacology, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER) Belagavi- 590010, India
| | - Vashkar Biswa
- Department of Biotechnology, Bodoland University, Assam, 783 370, India
| | - Raju Ali
- Department of Biotechnology, Bodoland University, Assam, 783 370, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nilambari Gurav
- Department of Pharmacognosy, PES's Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa-403 401, India
| | - Muniappan Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Poondi (Affiliated to Bharathidasan University), Thanjavur, Tamil Nadu, India
| | - Sandeep Das
- Department of Biotechnology, Bodoland University, Assam, 783 370, India
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa- 403 001, India.
| |
Collapse
|
2
|
Dubhashi S, Sinha S, Dwivedi S, Ghanekar J, Kadam S, Samant P, Datta V, Singh S, Chaudry IH, Gurmet P, Kelkar H, Mishra R, Galwankar S, Agrawal A. Early Trends to Show the Efficacy of Cordyceps militaris in Mild to Moderate COVID Inflammation. Cureus 2023; 15:e43731. [PMID: 37727187 PMCID: PMC10505833 DOI: 10.7759/cureus.43731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Background/objective Cordyceps enhances animal survival against influenza by boosting the immune system. In animal studies, it also had anti-inflammatory and preventive properties. Cordyceps stimulates the immune system by increasing the activity and production of various immune cells. Some studies have shown the role of Cordyceps in the novel SARS-CoV-2 virus responsible for the COVID-19 pandemic, in addition to other respiratory diseases caused by the Picorna viruses, SARS-CoV, MERS-CoV, and Influenza viruses. However, it remains unknown whether this food supplement is safe and has anti-inflammatory effects in patients with COVID-19. Therefore, the objectives of this study were to evaluate the use and efficacy of Cordyceps capsules as an adjunct to standard treatment in patients with mild (symptomatic) to moderate COVID-19 infection. Methods A randomised, double-blind, placebo-controlled study was conducted to evaluate the efficacy and safety of Cordyceps capsules (a food supplement) 500 mg as adjuvant therapy in patients with COVID-19. The rationale for dose selection was as per the existing evidence from toxicity studies. The inclusion criteria were patients with either a mild or moderate COVID-19 infection. Clinical features suggestive of dyspnoea or hypoxia, fever, and cough, including SpO2 <94% (range 90-94%) on room air and a respiratory rate ≥24 per minute, were also included. Results Sixty-five patients were recruited for the study, with 33 in the Cordyceps group and 32 in the placebo group. Out of 58 evaluable patients, 33 recovered on day 5, 49 on day 10, and 58 on days 16 and 30. The recovery of patients steadily increased from 56.9% on day 5 to 100% on day 30. The time to clinical recovery was shorter in the Cordyceps group than in the placebo group (mean 6.6 vs. 7.3 days; p > 0.05) overall and for mild disease. However, there was no difference in the time to recovery (time from day 1 to the resolution of all symptoms) for moderate disease. A lower frequency of normal chest X-rays on day 1 and a higher number on day 16 in the treatment group than in the placebo group suggest an improvement in the number of normal chest X-rays with Cordyceps. Significant changes were seen in biomarkers MCPIP, CxCL10, and IL-1β for overall (both mild and moderate patients) on days 5 and 10 as compared to baseline, and in biomarkers CRP and CxCL10 in moderate category patients on days 5 and 10, respectively. There were no statistically significant changes in IL-6, ferritin, lactate dehydrogenase (LDH), C-reactive protein (CRP), or D-dimer levels between baseline and day 5/10 in patients taking Cordyceps capsules and also between the treatment and placebo groups. Conclusion Cordyceps capsules administered at a dose of 500 mg three times a day along with supportive treatment showed effectiveness in patients with mild to moderate COVID-19 infection, as evidenced by the proportionately higher number of recoveries on day 5, the relatively shorter time for improvement of clinical symptoms, and the proportionately higher number of patients showing negative RT-PCR tests on day 10. Thus, Cordyceps appears to be a safe immunological adjuvant for the treatment of patients with mild-to-moderate COVID-19. Future studies with a larger sample size would shed more light on the evidence, as there are limitations in the generalizability of the results from the present study due to the small sample size.
Collapse
Affiliation(s)
| | - Sagar Sinha
- Emergency Medicine, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Navi Mumbai, IND
| | - Sankalp Dwivedi
- General Surgery, Maharishi Markandeshwar (MM) Institute of Medical Sciences and Research, Mullana, IND
| | - Jaishree Ghanekar
- Internal Medicine, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Navi Mumbai, IND
| | - Sameer Kadam
- Cardiovascular Surgery, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Navi Mumbai, IND
| | - Parineeta Samant
- Biochemistry, Mahatma Gandhi Mission (MGM) Medical College and Hospital, Navi Mumbai, IND
| | - Vibha Datta
- Pathology, All India Institute of Medical Sciences, Nagpur, Nagpur, IND
| | - Sarman Singh
- Medical Science and Engineering Research (MEDSER) Center, Indian Institute of Science Education and Research (IISER), Bhopal, IND
| | | | - Padma Gurmet
- Miscellaneous, National Institute of Sowa-Rigpa, Leh, IND
| | | | - Rakesh Mishra
- Neurosurgery, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| | - Sagar Galwankar
- Emergency Medicine, Florida State University College of Medicine, Sarasota, USA
| | - Amit Agrawal
- Neurosurgery, All India Institute of Medical Sciences, Bhopal, Bhopal, IND
| |
Collapse
|
3
|
Zhang ZJ, Yin YY, Cui Y, Zhang YX, Liu BY, Ma YC, Liu YN, Liu GQ. Chitinase Is Involved in the Fruiting Body Development of Medicinal Fungus Cordyceps militaris. Life (Basel) 2023; 13:life13030764. [PMID: 36983919 PMCID: PMC10051443 DOI: 10.3390/life13030764] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Cordyceps militaris is a famous traditional edible and medicinal fungus in Asia, and its fruiting body has rich medicinal value. The molecular mechanism of fruiting body development is still not well understood in C. militaris. In this study, phylogenetically analysis and protein domains prediction of the 14 putative chitinases were performed. The transcription level and enzyme activity of chitinase were significant increased during fruiting body development of C. militaris. Then, two chitinase genes (Chi1 and Chi4) were selected to construct gene silencing strain by RNA interference. When Chi1 and Chi4 genes were knockdown, the differentiation of the primordium was blocked, and the number of fruiting body was significantly decreased approximately by 50% compared to wild-type (WT) strain. The length of the single mature fruiting body was shortened by 27% and 38% in Chi1- and Chi4-silenced strains, respectively. In addition, the chitin content and cell wall thickness were significantly increased in Chi1- and Chi4-silenced strains. These results provide new insights into the biological functions of chitinase in fruiting body development of C. militaris.
Collapse
Affiliation(s)
- Zi-Juan Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - Yuan-Yuan Yin
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - Yao Cui
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - Yue-Xuan Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - Bi-Yang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - You-Chu Ma
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
| | - Yong-Nan Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
- Correspondence: (Y.-N.L.); (G.-Q.L.); Tel./Fax: +86-731-8562-3490 (Y.N.-L.)
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha 410004, China
- Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha 410004, China
- Correspondence: (Y.-N.L.); (G.-Q.L.); Tel./Fax: +86-731-8562-3490 (Y.N.-L.)
| |
Collapse
|
4
|
Zhang Y, Zhang G, Ling J. Medicinal Fungi with Antiviral Effect. Molecules 2022; 27:molecules27144457. [PMID: 35889330 PMCID: PMC9322162 DOI: 10.3390/molecules27144457] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Pandemics from various viruses make natural organisms face challenges over and over again. Therefore, new antiviral drugs urgently need to be found to solve this problem. However, drug research and development is a very difficult task, and finding new antiviral compounds is desirable. A range of medicinal fungi such as Ganoderma lucidum and Cordyceps sinensis are widely used all over the world, and they can enhance human immunity and direct anti-virus activities and other aspects to play an antiviral role. Medicinal fungi are used as foods or as food supplements. In this review, the species of medicinal fungi with antiviral activity in recent decades and the mechanism of antiviral components were reviewed from the perspectives of human, animal, and plant viruses to provide a comprehensive theory based on better clinical utilization of medicinal fungi as antiviral agents.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- Correspondence: (G.Z.); (J.L.); Tel.: +86-0531-89628200 (G.Z.); +86-0532-58631501 (J.L.)
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Correspondence: (G.Z.); (J.L.); Tel.: +86-0531-89628200 (G.Z.); +86-0532-58631501 (J.L.)
| |
Collapse
|
5
|
MALLARD MG. Un caso di COVID-19 curato con la micoterapia. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022. [DOI: 10.23736/s0393-3660.20.04411-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Phull AR, Ahmed M, Park HJ. Cordyceps militaris as a Bio Functional Food Source: Pharmacological Potential, Anti-Inflammatory Actions and Related Molecular Mechanisms. Microorganisms 2022; 10:microorganisms10020405. [PMID: 35208860 PMCID: PMC8875674 DOI: 10.3390/microorganisms10020405] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a medicinal mushroom possessing a variety of biofunctionalities. It has several biologically important components such as polysaccharides and others. The diverse pharmacological potential of C. militaris has generated interest in reviewing the current scientific literature, with a particular focus on prevention and associated molecular mechanisms in inflammatory diseases. Due to rising global demand, research on C. militaris has continued to increase in recent years. C. militaris has shown the potential for inhibiting inflammation-related events, both in in vivo and in vitro experiments. Inflammation is a multifaceted biological process that contributes to the development and severity of diseases, including cancer, colitis, and allergies. These functions make C. militaris a suitable functional food for inhibiting inflammatory responses such as the regulation of proinflammatory cytokines. Therefore, on the basis of existing information, the current study provides insights towards the understanding of anti-inflammatory activity-related mechanisms. This article presents a foundation for clinical use, and analyzes the roadmap for future studies concerning the medical use of C. militaris and its constituents in the next generation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
- Correspondence:
| |
Collapse
|
7
|
Chun S, Gopal J, Muthu M. Antioxidant Activity of Mushroom Extracts/Polysaccharides-Their Antiviral Properties and Plausible AntiCOVID-19 Properties. Antioxidants (Basel) 2021; 10:1899. [PMID: 34943001 PMCID: PMC8750169 DOI: 10.3390/antiox10121899] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mushrooms have been long accomplished for their medicinal properties and bioactivity. The ancients benefitted from it, even before they knew that there was more to mushrooms than just the culinary aspect. This review addresses the benefits of mushrooms and specifically dwells on the positive attributes of mushroom polysaccharides. Compared to mushroom research, mushroom polysaccharide-based reports were observed to be significantly less frequent. This review highlights the antioxidant properties and mechanisms as well as consolidates the various antioxidant applications of mushroom polysaccharides. The biological activities of mushroom polysaccharides are also briefly discussed. The antiviral properties of mushrooms and their polysaccharides have been reviewed and presented. The lacunae in implementation of the antiviral benefits into antiCOVID-19 pursuits has been highlighted. The need for expansion and extrapolation of the knowns of mushrooms to extend into the unknown is emphasized.
Collapse
Affiliation(s)
| | | | - Manikandan Muthu
- Department of Environmental Health Science, Konkuk University, Seoul 143-701, Korea; (S.C.); (J.G.)
| |
Collapse
|
8
|
Kumar Verma A, Kumar V, Singh S, Goswami BC, Camps I, Sekar A, Yoon S, Lee KW. Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomed Pharmacother 2021; 137:111356. [PMID: 33561649 PMCID: PMC7857054 DOI: 10.1016/j.biopha.2021.111356] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022] Open
Abstract
All the plants and their secondary metabolites used in the present study were obtained from Ayurveda, with historical roots in the Indian subcontinent. The selected secondary metabolites have been experimentally validated and reported as potent antiviral agents against genetically-close human viruses. The plants have also been used as a folk medicine to treat cold, cough, asthma, bronchitis, and severe acute respiratory syndrome in India and across the globe since time immemorial. The present study aimed to assess the repurposing possibility of potent antiviral compounds with SARS-CoV-2 target proteins and also with host-specific receptor and activator protease that facilitates the viral entry into the host body. Molecular docking (MDc) was performed to study molecular affinities of antiviral compounds with aforesaid target proteins. The top-scoring conformations identified through docking analysis were further validated by 100 ns molecular dynamic (MD) simulation run. The stability of the conformation was studied in detail by investigating the binding free energy using MM-PBSA method. Finally, the binding affinities of all the compounds were also compared with a reference ligand, remdesivir, against the target protein RdRp. Additionally, pharmacophore features, 3D structure alignment of potent compounds and Bayesian machine learning model were also used to support the MDc and MD simulation. Overall, the study emphasized that curcumin possesses a strong binding ability with host-specific receptors, furin and ACE2. In contrast, gingerol has shown strong interactions with spike protein, and RdRp and quercetin with main protease (Mpro) of SARS-CoV-2. In fact, all these target proteins play an essential role in mediating viral replication, and therefore, compounds targeting aforesaid target proteins are expected to block the viral replication and transcription. Overall, gingerol, curcumin and quercetin own multitarget binding ability that can be used alone or in combination to enhance therapeutic efficacy against COVID-19. The obtained results encourage further in vitro and in vivo investigations and also support the traditional use of antiviral plants preventively.
Collapse
Affiliation(s)
- Akalesh Kumar Verma
- Department of Zoology, Cell and Biochemical Technology Laboratory, Cotton University, Guwahati 781001, Assam, India.
| | - Vikas Kumar
- Division of Life Science, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Sweta Singh
- District Malaria Office, Amingaon, Guwahati, Assam 786031, India
| | | | - Ihosvany Camps
- Laboratório de Modelagem Computacional, Instituto de Ciências Exatas, Universidade Federal de Alfenas - UNIFAL-MG, Alfenas, Minas Gerais 37133-840, Brazil
| | - Aishwarya Sekar
- Department of Bioinformatics, Stella Maris College (Autonomous), Chennai, Tamil Nadu 600086, India
| | - Sanghwa Yoon
- Division of Life Science, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Keun Woo Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea.
| |
Collapse
|
9
|
Li RF, Zhou XB, Zhou HX, Yang ZF, Jiang HM, Wu X, Li WJ, Qiu JJ, Mi JN, Chen M, Zhong NS, Zhu GY, Jiang ZH. Novel Fatty Acid in Cordyceps Suppresses Influenza A (H1N1) Virus-Induced Proinflammatory Response Through Regulating Innate Signaling Pathways. ACS OMEGA 2021; 6:1505-1515. [PMID: 33490810 PMCID: PMC7818636 DOI: 10.1021/acsomega.0c05264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 05/05/2023]
Abstract
Influenza virus (IV) infections usually cause acute lung injury characterized by exaggerated proinflammatory responses. The paucity of therapeutic strategies that target host immune response to attenuate lung injury poses a substantial challenge in management of IV infections. In this study, we chemically synthesized a novel fatty acid (2Z,4E)-deca-2,4-dienoic acid (DDEA) identified from Chinese Cordyceps by using UHPLC-Q-TOF-MS techniques. The DDEA did not inhibit H1N1 virus replication but attenuated proinflammatory responses by reducing mRNA and protein levels of TNF-α, IFN-α, IFN-β, IL-6, CXCL-8/IL-8, CCL-2/MCP-1, CXCL-10/IP-10, CCL-3/MIP-1α, and CCL-4/MIP-1β in A549 cells and U937-derived macrophages. The anti-inflammatory effect occurred through downregulations of TLR-3-, RIG-I-, and type I IFN-activated innate immune signaling pathways. Altogether, our results indicate that DDEA may potentially be used as an anti-inflammatory therapy for the treatment of IV infections.
Collapse
Affiliation(s)
- Run-Feng Li
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| | - Xiao-Bo Zhou
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| | | | - Zi-Feng Yang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
- KingMed
Virology Diagnostic & Translational Center, Guangzhou 510000, China
- Guangdong-Hong
Kong-Macao Joint Laboratory of Infectious Respiratory Disease, Guangzhou 510000, China
| | - Hai-Ming Jiang
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Xiao Wu
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Wen-Jia Li
- Dongguan
HEC Cordyceps R&D Co.,Ltd, Dongguan 523850, China
| | - Jian-Jian Qiu
- Dongguan
HEC Cordyceps R&D Co.,Ltd, Dongguan 523850, China
| | - Jia-Ning Mi
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| | - Ming Chen
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| | - Nan-Shan Zhong
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
- State
Key Laboratory of Respiratory Disease, National Clinical Research
Center for Respiratory Disease, Guangzhou Institute of Respiratory
Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Guo-Yuan Zhu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| | - Zhi-Hong Jiang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR) 519020, China
| |
Collapse
|
10
|
Li X, Wang F, Xu Y, Liu G, Dong C. Cysteine-Rich Hydrophobin Gene Family: Genome Wide Analysis, Phylogeny and Transcript Profiling in Cordyceps militaris. Int J Mol Sci 2021; 22:ijms22020643. [PMID: 33440688 PMCID: PMC7827705 DOI: 10.3390/ijms22020643] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrophobins are a family of small secreted proteins found exclusively in fungi, and they play various roles in the life cycle. In the present study, genome wide analysis and transcript profiling of the hydrophobin family in Cordyceps militaris, a well-known edible and medicinal mushroom, were studied. The distribution of hydrophobins in ascomycetes with different lifestyles showed that pathogenic fungi had significantly more hydrophobins than saprotrophic fungi, and class II members accounted for the majority. Phylogenetic analysis of hydrophobin proteins from the species of Cordyceps s.l. indicated that there was more variability among the class II members than class I. Only a few hydrophobin-encoding genes evolved by duplication in Cordyceps s.l., which was inconsistent with the important role of gene duplication in basidiomycetes. Different transcript patterns of four hydrophobin-encoding genes during the life cycle indicated the possible different functions for each. The transcripts of Cmhyd2, 3 and 4 can respond to light and were related with the photoreceptors. CmQHYD, with four hydrophobin II domains, was first found in C. militaris, and multi-domain hydrophobins were only distributed in the species of Cordycipitaceae and Clavicipitaceae. These results could be helpful for further function research of hydrophobins and could provide valuable information for the evolution of hydrophobins.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
| | - Yanyan Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
| | - Guijun Liu
- Beijing Radiation Center, Beijing 100101, China;
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.L.); (F.W.); (Y.X.)
- Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China
- Correspondence:
| |
Collapse
|
11
|
Xiao L, Sun S, Li K, Lei Z, Shimizu K, Zhang Z, Adachi Y. Effects of nanobubble water supplementation on biomass accumulation during mycelium cultivation of Cordyceps militaris and the antioxidant activities of extracted polysaccharides. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Lee CT, Huang KS, Shaw JF, Chen JR, Kuo WS, Shen G, Grumezescu AM, Holban AM, Wang YT, Wang JS, Hsiang YP, Lin YM, Hsu HH, Yang CH. Trends in the Immunomodulatory Effects of Cordyceps militaris: Total Extracts, Polysaccharides and Cordycepin. Front Pharmacol 2020; 11:575704. [PMID: 33328984 PMCID: PMC7735063 DOI: 10.3389/fphar.2020.575704] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a fungus with a long history of widespread use in folk medicine, and its biological and medicinal functions are well studied. A crucial pharmacological effect of C. militaris is immunomodulation. In this review, we catalog the immunomodulatory effects of different extracts of C. militaris, namely total extracts, polysaccharides and cordycepin. Total extracts obtained using water or 50% ethyl alcohol and polysaccharides from C. militaris were discovered to tend to promote type 1 immunity, whereas total extracts obtained using 70-80% ethyl alcohol and cordycepin from C. militaris were more likely to promote type 2 immunity. This article is the first to classify the immunomodulatory effects of different extracts of C. militaris. In addition, we discovered a relationship between different segments or extracts and differing types of immunity. This review can provide the readers a comprehensive understanding on the immunomodulatory effects of the precious folk medicine and guidance on its use for both health people and those with an immunodeficiency.
Collapse
Affiliation(s)
- Chun-Ting Lee
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Amulette Chinese Medicine Clinic, Tainan City, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Jung-Ren Chen
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Shuo Kuo
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Gangxu Shen
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Polytechnic University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, University of Bucharest, Bucharest, Romania
| | - Yi-Ting Wang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Jun-Sheng Wang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei, Taiwan
| | - Yi-Ping Hsiang
- Pharmacy Department of E-Da Hospital, Kaohsiung City, Taiwan
| | - Yu-Mei Lin
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
| | - Hsiao-Han Hsu
- Amulette Chinese Medicine Clinic, Tainan City, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei, Taiwan
- Pharmacy Department of E-Da Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
13
|
Liu YN, Liu BY, Ma YC, Yang HL, Liu GQ. Analysis of reference genes stability and histidine kinase expression under cold stress in Cordyceps militaris. PLoS One 2020; 15:e0236898. [PMID: 32785280 PMCID: PMC7423124 DOI: 10.1371/journal.pone.0236898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022] Open
Abstract
The development of fungal fruiting bodies from a hyphal thallus is inducible under low temperature (cold stress). The molecular mechanism has been subject to surprisingly few studies. Analysis of gene expression level has become an important means to study gene function and its regulation mechanism. But identification of reference genes (RGs) stability under cold stress have not been reported in famous medicinal mushroom-forming fungi Cordyceps militaris. Herein, 12 candidate RGs had been systematically validated under cold stress in C. militaris. Three different algorithms, geNorm, NormFinder and BestKeeper were applied to evaluate the expression stability of the RGs. Our results showed that UBC and UBQ were the most stable RGs for cold treatments in short and long periods, respectively. 2 RGs (UBC and PP2A) and 3 RGs (UBQ, TUB and CYP) were the suitable RGs for cold treatments in short and long periods, respectively. Moreover, target genes, two-component-system histidine kinase genes, were selected to validate the most and least stable RGs under cold treatment, which indicated that use of unstable expressed genes as RGs leads to biased results. Our results provide a good starting point for accurate reverse transcriptase quantitative polymerase chain reaction normalization by using UBC and UBQ in C. militaris under cold stress and better support for understanding the mechanism of response to cold stress and fruiting body formation in C. militaris and other mushroom-forming fungi in future research.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| | - Bi-Yang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| | - You-Chu Ma
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| | - Hai-Long Yang
- College of Environmental & Life Science, Wenzhou University, Wenzhou, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
14
|
Zhang J, Wang F, Yang Y, Wang Y, Dong C. CmVVD is involved in fruiting body development and carotenoid production and the transcriptional linkage among three blue-light receptors in edible fungus Cordyceps militaris. Environ Microbiol 2019; 22:466-482. [PMID: 31742850 DOI: 10.1111/1462-2920.14867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
Abstract
Fruiting body development and carotenoid production are light-induced in Cordyceps militaris. Our previous studies have shown that two blue-light receptors, CmWC-1 and CmCRY-DASH, regulate fruiting body development and secondary metabolism. However, the photosensory system of C. militaris remains unclear. Here, gene deletion of Cmvvd, coding for another blue-light receptor, resulted in reduced conidiation level and significant promotion of carotenoid content. Cmvvd transcription levels at fruiting body stages were higher than at other stages, and fruiting bodies could not develop normally in ΔCmvvd strains, indicating that Cmvvd might play an important role in fruiting body development. Rhythm loops were not affected in ΔCmvvd strains but were regulated by Cmwc-1, and the expression of the rhythm regulator gene Cmfrq was dependent on CmWC-1. Chromatin immunoprecipitation assay confirmed that Cmvvd is the direct target of CmWC-1 in this fungus. Our results also revealed interdependent transcriptional relationships between Cmwc-1 and Cmvvd, and between Cmwc-1 and Cmcry-DASH. Cmcry-DASH expression was affected by Cmvvd, and the function-loss of Cmcry-DASH might be compensated by the high transcription of Cmvvd. This is the first report of the transcriptional linkage among the three blue-light receptors in edible fungi and will be helpful for studies of multicellular development in this fungus.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
15
|
Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int J Biol Macromol 2019; 132:906-914. [DOI: 10.1016/j.ijbiomac.2019.04.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
|
16
|
Xue Y, Wu L, Ding Y, Cui X, Han Z, Xu H. A new nucleoside and two new pyrrole alkaloid derivatives from Cordyceps militaris. Nat Prod Res 2018; 34:341-350. [PMID: 30580621 DOI: 10.1080/14786419.2018.1531861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A new nucleoside, a new natural product nucleoside, and two new pyrrole alkaloids derivatives with eight known compounds were isolated from the fruiting body of Cordyceps militaris. The structures of the new compounds were elucidated through extensive analysis of spectroscopic data including 1D and 2D NMR, HRESIMS, IR and UV. All the isolated compounds were detected for their bioactivities against LPS-induced NO production in RAW 264.7 cells. Unfortunately, all the isolates have shown no obvious activity.
Collapse
Affiliation(s)
- Yafu Xue
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of Traditional Chinese Medicine Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Leilei Wu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of Traditional Chinese Medicine Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yulian Ding
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of Traditional Chinese Medicine Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xinming Cui
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of Traditional Chinese Medicine Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.,Research and Development Department, Shanghai Guobao Enterprise Development Center, Shanghai, P.R. China
| | - Zhuzhen Han
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of Traditional Chinese Medicine Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Hong Xu
- The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, The State Administration of Traditional Chinese Medicine Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Shanghai R&D Center for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
17
|
Tung B, Lan D, Lan P, Nha P. Cordyceps militaris (L.) Link: Chemical Bioactive Compounds and Pharmacological Activities. ACTA ACUST UNITED AC 2016. [DOI: 10.6000/1927-5951.2016.06.04.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
18
|
Peng Y, Huang K, Shen L, Tao YY, Liu CH. Cultured Mycelium Cordyceps sinensis allevi¬ates CCl4-induced liver inflammation and fibrosis in mice by activating hepatic natural killer cells. Acta Pharmacol Sin 2016; 37:204-16. [PMID: 26592510 DOI: 10.1038/aps.2015.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/25/2015] [Indexed: 12/31/2022] Open
Abstract
AIM Recent evidence shows that cultured mycelium Cordyceps sinensis (CMCS) effectively protects against liver fibrosis in mice. Here, we investigated whether the anti-fibrotic action of CMCS was related to its regulation of the activity of hepatic natural killer (NK) cells in CCl4-treated mice. METHODS C57BL/6 mice were injected with 10% CCl4 (2 mL/kg, ip) 3 times per week for 4 weeks, and received CMCS (120 mg·kg(-1)·d(-1), ig) during this period. In another part of experiments, the mice were also injected with an NK cell-deleting antibody ASGM-1 (20 μg, ip) 5 times in the first 3 weeks. After the mice were sacrificed, serum liver function, and liver inflammation, hydroxyproline content and collagen deposition were assessed. The numbers of hepatic NK cells and expression of NKG2D (activation receptor of NK cells) on isolated liver lymphocytes were analyzed using flow cytometry. Desmin expression and cell apoptosis in liver tissues were studied using desmin staining and TUNEL assay, respectively. The levels of α-SMA, TGF-β, RAE-1δ and RAE-1ε in liver tissues were determined by RT-qPCR. RESULTS In CCl4-treated mice, CMCS administration significantly improved liver function, attenuated liver inflammation and fibrosis, and increased the numbers of hepatic NK cells and expression level of NKG2D on hepatic NK cells. Furthermore, CMCS administration significantly decreased desmin expression in liver tissues, and increased TUNEL staining adjacent to hepatic stellate cells. Injection with NK cell-deleting ASGM-1 not only diminished the numbers of hepatic NK cells, but also greatly accelerated liver inflammation and fibrosis in CCl4-treated mice. In CCl4-treated mice with NK cell depletion, CMCS administration decelerated the rate of liver fibrosis development, and mildly upregulated the numbers of hepatic NK cells but without changing NKG2D expression. CONCLUSION CMCS alleviates CCl4-induced liver inflammation and fibrosis via promoting activation of hepatic NK cells. CMCS partially reverses ASGM-1-induced depletion of hepatic NK cells.
Collapse
|
19
|
Liu X, Huang Y, Chen Y, Cao Y. Partial structural characterization, as well as immunomodulatory and anti-aging activities of CP2-c2-s2 polysaccharide from Cordyceps militaris. RSC Adv 2016. [DOI: 10.1039/c6ra23612j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Yang T, Guo M, Yang H, Guo S, Dong C. The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Appl Microbiol Biotechnol 2015; 100:743-55. [PMID: 26476643 DOI: 10.1007/s00253-015-7047-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022]
Abstract
Light is an essential factor for pigment formation and fruit body development in Cordyceps militaris, a well-known edible and medicinal fungus. Cmwc-1, a homolog of the blue-light receptor gene white collar-1 (wc-1) in Neurospora crassa, was cloned from the C. militaris genome in our previous study. Here, Cmwc-1 gene inactivation results in thicker aerial hyphae, disordered fruit body development, a significant reduction in conidial formation, and carotenoid and cordycepin production. These characteristics were restored when the ΔCmwc-1 strains were hybridized with wild-type strains of the opposite mating type. A genome-wide expression analysis revealed that there were 1042 light-responsive genes in the wild-type strain and only 458 in the ΔCmwc-1 strain. Among five putative photoreceptors identified, Vivid, cryptochrome-1, and cyclobutane pyrimidine dimer photolyase are strongly induced by light in a Cmwc-1-dependent manner, while phytochrome and cryptochrome-2 were not induced. The transcription factors involved in the fungal light reaction were mainly of the Zn2Cys6 type. CmWC-1 regulates adenylosuccinate synthase, an important enzyme for adenosine de novo synthesis, which could explain the reduction in cordycepin production. Some G protein-coupled receptors that control fungal fruit body formation and the sexual cycle were regulated by CmWC-1, and the cAMP pathway involved in light signal transduction in N. crassa was not critical for the photoreaction in the fungus here. A transcriptional analysis indicated that steroid biosynthesis was more active in the ΔCmwc-1 strain, suggesting that CmWC-1 might switch the vegetative growth state to primordia differentiation by suppressing the expression of related genes.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Mingmin Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101, China.,College of Chemistry and Life Science, Shenyang Normal University, Shenyang, 110034, China
| | - Huaijun Yang
- Shanxi Research Institute for Medicine and Life Science, Taiyuan, 030006, China
| | - Suping Guo
- Shanxi Research Institute for Medicine and Life Science, Taiyuan, 030006, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
21
|
Lee HH, Lee S, Lee K, Shin YS, Kang H, Cho H. Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis. ACTA ACUST UNITED AC 2015; 23:35. [PMID: 26141646 PMCID: PMC4491205 DOI: 10.1186/s40199-015-0117-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/19/2015] [Indexed: 01/01/2023]
Abstract
Background Cordyceps militaris has been used as a traditional medicine in Asian countries for a long time. Different types of Cordyceps extract were reported to have various pharmacological activities including an anti-cancer effect. We investigated the inhibitory effect of Cordyceps militaris ethanol extract on a human colorectal cancer-derived cell line, RKO. Methods RKO cells were treated with various concentrations of nucleosides-enriched ethanol extract of Cordyceps militaris for 48 h and cytotoxicity was measured using a CCK-8 assay. Then, xenograft Balb/c nude mice were injected with RKO cells and subsequently orally administered with ethanol extract of Cordyceps militaris every day for 3 weeks to examine the inhibitory effect on tumor growth. Lastly, the effect of Cordyceps militaris on cell cycle as well as apoptosis was measured using flow cytometry. Also, the expression of p53, caspase 9, cleaved caspase-3, cleaved PARP, Bim, Bax, Bak, and Bad were detected using western blot assay. Results RKO cells were highly susceptible to the ethanol extract of Cordyceps militaris (CME) and the growth of RKO cells-derived tumor was significantly delayed by the treatment of Cordyceps militaris. Cordyceps militaris induced cell cycle arrest in G2/M phase (untreated; 20.5 %, CME 100 μg/ml; 61.67 %, CME 300 μg/ml; 66.33 %) and increased early apoptosis (untreated; 1.01 %, CME 100 μg/ml; 8.48 %, CME 300 μg/ml; 18.07 %). The expression of p53, cleaved caspase 9, cleaved caspase-3, cleaved PARP, Bim, Bak, and Bad were upregulated by the treatment of Cordyceps militaris. Conclusion Ethanol extract of Cordyceps militaris was highly cytotoxic to human colorectal carcinoma RKO cells and inhibited the growth of tumor in xenograft model. The anti-tumor effect of Cordyceps militaris was associated with an induction of cell cycle arrest and mitochondrial-mediated apoptosis.
Collapse
Affiliation(s)
- Hwan Hee Lee
- College of Pharmacy, Duksung Women's University, Seoul, 132-714, Republic of Korea. .,Innovative Drug Center, Duksung Women's University, Seoul, 132-714, Republic of Korea.
| | - Seulki Lee
- College of Pharmacy, Duksung Women's University, Seoul, 132-714, Republic of Korea. .,Innovative Drug Center, Duksung Women's University, Seoul, 132-714, Republic of Korea.
| | - Kanghyo Lee
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Republic of Korea.
| | - Yu Su Shin
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Republic of Korea.
| | - Hyojeung Kang
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Institute for Microorganisms, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| | - Hyosun Cho
- College of Pharmacy, Duksung Women's University, Seoul, 132-714, Republic of Korea. .,Innovative Drug Center, Duksung Women's University, Seoul, 132-714, Republic of Korea.
| |
Collapse
|
22
|
Anti-tumor effect of Cordyceps militaris in HCV-infected human hepatocarcinoma 7.5 cells. J Microbiol 2015; 53:468-74. [DOI: 10.1007/s12275-015-5198-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
|
23
|
Abstract
Cordyceps, as a general term, describes a group of ascomycetous fungi growing on arthropods and other related fungi. Some cordyceps have been used in traditional Chinese medicine for centuries and cordyceps-derived products are currently a big industry in China. A number of medicinal and health products have been developed and extensively commercialized from natural Chinese cordyceps, its anamorphic fungus (Hirsutella sinensis), and other fungi known as Chinese cordyceps. The lack of a defined classification system for medicinal cordyceps fungi is a source of confusion in the industry and the public, and even among pharmaceutical scientists. This review summarizes the cordyceps fungi currently used in the industry in China with a special reference to clarify Chinese cordyceps and associated fungi. Cordyceps militaris, Cordyceps guangdongensis and Isaria cicadae are well recognized and commercialized cordyceps fungi in China. Except the natural Chinese cordyceps and its anamorphic fungus, Paecilomyces hepiali, Mortierella hepiali, Cephalosporium sinensis and Clonostachys rosea isolated from natural Chinese cordyceps are classified as Chinese cordyceps–associated fungi. P. hepiali is a cordyceps fungus based on current phylogenetic analysis of Hypocreales, while M. hepiali is a fungus in the Zygomycetes and should only be treated as associated fungus of Chinese cordyceps. C. sinensis and C. rosea belong to the Hypocreales and their relationship to cordyceps fungi should be further studied. The exploitation of the resources of cordyceps fungi and their quality control in the industry should be major topics for future studies. Cooperation between the industry and the research community will enhance the whole cordyceps industry.
Collapse
Affiliation(s)
- Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 Park 1, Beichen West Road, Chaoyang District, Beijing100101, China
| | - Suping Guo
- Bioengineering Laboratory, Shanxi Research Institute for Medicine and Life Science, Taiyuan030006, China
| | - Wenfeng Wang
- Research and Development Department, Jiangsu Shenhua Pharmaceutical Co., Ltd., Huaian211600, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No 3 Park 1, Beichen West Road, Chaoyang District, Beijing100101, China
| |
Collapse
|