1
|
Tang Y, Tian C, Yao D, Yang S, Shi L, Yi L, Peng Q. Community assembly and potential function analysis of the endophyte in Eucommia ulmoides. BMC Microbiol 2024; 24:460. [PMID: 39511491 DOI: 10.1186/s12866-024-03601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Endophytes play a pivotal role in protecting host plants from both biotic and abiotic stresses, promoting the production of active components (AC) and plant growth. However, the succession of the endophyte community in Eucommia ulmoides (E. ulmoides), particularly the community assembly and function, has not been extensively investigated. In this study, we employed high-throughput sequencing and bioinformatics tools to analyze endophyte diversity across different tree ages, parts, and periods. We examined the population differences, correlations, community assembly mechanisms, and functional roles of these endophytes. Functional predictions via PICRUSt2 revealed that most endophytic fungal functions were linked to biosynthesis, with significant differences in biosynthetic functional abundance across parts and periods. In contrast, the metabolic activity of endophytic bacteria remained stable across different periods and parts. Correlation analysis further confirmed a strong positive relationship between ACs and certain endophytic fungi. Among them, the fungal phyla Ascomycota and Basidiomycota were identified as key contributors to the metabolism of chlorogenic acid (CA), while Aucubin was significantly positively correlated with several endophytic bacteria. These findings provide valuable insights into the functional roles and community assembly mechanism of E. ulmoides endophytes, as well as their symbiotic relationships.
Collapse
Affiliation(s)
- Yunzhe Tang
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Chunlian Tian
- Hunan Provincial Key Laboratory of Forestry and Chemical Engineering, Jishou University, Jishou, Hunan, China
| | - Di Yao
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Shuai Yang
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Linfang Shi
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China
| | - Langbo Yi
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China.
- Key Laboratory of Ecological Conservation and Sustainable Utilization of Resources in Wuling Mountain Area, Hunan Province, Jishou University, Jishou, Hunan, China.
| | - Qingzhong Peng
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan, China.
- Key Laboratory of Ecological Conservation and Sustainable Utilization of Resources in Wuling Mountain Area, Hunan Province, Jishou University, Jishou, Hunan, China.
| |
Collapse
|
2
|
Hirpara KR, Hinsu AT, Kothari RK. Metagenomic evaluation of peanut rhizosphere microbiome from the farms of Saurashtra regions of Gujarat, India. Sci Rep 2024; 14:10525. [PMID: 38720057 PMCID: PMC11079051 DOI: 10.1038/s41598-024-61343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/05/2024] [Indexed: 05/12/2024] Open
Abstract
The narrow zone of soil around the plant roots with maximum microbial activity termed as rhizosphere. Rhizospheric bacteria promote the plant growth directly or indirectly by providing the nutrients and producing antimicrobial compounds. In this study, the rhizospheric microbiota of peanut plants was characterized from different farms using an Illumina-based partial 16S rRNA gene sequencing to evaluate microbial diversity and identify the core microbiome through culture-independent (CI) approach. Further, all rhizospheric bacteria that could grow on various nutrient media were identified, and the diversity of those microbes through culture-dependent method (CD) was then directly compared with their CI counterparts. The microbial population profiles showed a significant correlation with organic carbon and concentration of phosphate, manganese, and potassium in the rhizospheric soil. Genera like Sphingomicrobium, Actinoplanes, Aureimonas _A, Chryseobacterium, members from Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae family, and Bacilli class were found in the core microbiome of peanut plants. As expected, the current study demonstrated more bacterial diversity in the CI method. However, a higher number of sequence variants were exclusively present in the CD approach compared to the number of sequence variants shared between both approaches. These CD-exclusive variants belonged to organisms that are more typically found in soil. Overall, this study portrayed the changes in the rhizospheric microbiota of peanuts in different rhizospheric soil and environmental conditions and gave an idea about core microbiome of peanut plant and comparative bacterial diversity identified through both approaches.
Collapse
Affiliation(s)
- Krunal R Hirpara
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Ankit T Hinsu
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, 360005, India
- Royal Veterinary College, London, AL9 7TA, UK
| | - Ramesh K Kothari
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, 360005, India.
| |
Collapse
|
3
|
Zhao L, Zhang S, Xiao R, Zhang C, Lyu Z, Zhang F. Diversity and Functionality of Bacteria Associated with Different Tissues of Spider Heteropoda venatoria Revealed through Integration of High-Throughput Sequencing and Culturomics Approaches. MICROBIAL ECOLOGY 2024; 87:67. [PMID: 38703220 PMCID: PMC11069485 DOI: 10.1007/s00248-024-02383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Spiders host a diverse range of bacteria in their guts and other tissues, which have been found to play a significant role in their fitness. This study aimed to investigate the community diversity and functional characteristics of spider-associated bacteria in four tissues of Heteropoda venatoria using HTS of the 16S rRNA gene and culturomics technologies, as well as the functional verification of the isolated strains. The results of HTS showed that the spider-associated bacteria in different tissues belonged to 34 phyla, 72 classes, 170 orders, 277 families, and 458 genera. Bacillus was found to be the most abundant bacteria in the venom gland, silk gland, and ovary, while Stenotrophomonas, Acinetobacter, and Sphingomonas were dominant in the gut microbiota. Based on the amplicon sequencing results, 21 distinct cultivation conditions were developed using culturomics to isolate bacteria from the ovary, gut, venom gland, and silk gland. A total of 119 bacterial strains, representing 4 phyla and 25 genera, with Bacillus and Serratia as the dominant genera, were isolated. Five strains exhibited high efficiency in degrading pesticides in the in vitro experiments. Out of the 119 isolates, 28 exhibited antibacterial activity against at least one of the tested bacterial strains, including the pathogenic bacteria Staphylococcus aureus, Acinetobacter baumanii, and Enterococcus faecalis. The study also identified three strains, GL312, PL211, and PL316, which exhibited significant cytotoxicity against MGC-803. The crude extract from the fermentation broth of strain PL316 was found to effectively induce apoptosis in MGC-803 cells. Overall, this study offers a comprehensive understanding of the bacterial community structure associated with H. venatoria. It also provides valuable insights into discovering novel antitumor natural products for gastric cancer and xenobiotic-degrading bacteria of spiders.
Collapse
Affiliation(s)
- Likun Zhao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, People's Republic of China
| | - Shanfeng Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Ruoyi Xiao
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Chao Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Zhitang Lyu
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
- The Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, People's Republic of China.
| | - Feng Zhang
- College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, People's Republic of China.
- The Key Laboratory of Zoological Systematics and Application of Hebei Province, Baoding, 071002, People's Republic of China.
| |
Collapse
|
4
|
Sondo M, Wonni I, Koïta K, Rimbault I, Barro M, Tollenaere C, Moulin L, Klonowska A. Diversity and plant growth promoting ability of rice root-associated bacteria in Burkina-Faso and cross-comparison with metabarcoding data. PLoS One 2023; 18:e0287084. [PMID: 38032916 PMCID: PMC10688718 DOI: 10.1371/journal.pone.0287084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Plant-associated bacteria are essential partners in plant health and development. In addition to taking advantage of the rapid advances recently achieved in high-throughput sequencing approaches, studies on plant-microbiome interactions require experiments with culturable bacteria. A study on the rice root microbiome was recently initiated in Burkina Faso. As a follow up, the aim of the present study was to develop a collection of corresponding rice root-associated bacteria covering maximum diversity, to assess the diversity of the obtained isolates based on the culture medium used, and to describe the taxonomy, phenotype and abundance of selected isolates in the rice microbiome. More than 3,000 isolates were obtained using five culture media (TSA, NGN, NFb, PCAT, Baz). The 16S rRNA fragment sequencing of 1,013 selected isolates showed that our working collection covered four bacterial phyla (Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes) and represented 33% of the previously described diversity of the rice root microbiome at the order level. Phenotypic in vitro analysis of the plant growth promoting capacity of the isolates revealed an overall ammonium production and auxin biosynthesis capacity, while siderophore production and phosphate solubilisation were enriched in Burkholderia, Ralstonia, Acinetobacter and Pseudomonas species. Of 45 representative isolates screened for growth promotion on seedlings of two rice cultivars, five showed an ability to improve the growth of both cultivars, while five others were effective on only one cultivar. The best results were obtained with Pseudomonas taiwanensis ABIP 2315 and Azorhizobium caulinodans ABIP 1219, which increased seedling growth by 158% and 47%, respectively. Among the 14 best performing isolates, eight appeared to be abundant in the rice root microbiome dataset from previous study. The findings of this research contribute to the in vitro and in planta PGP capacities description of rice root-associated bacteria and their potential importance for plants by providing, for the first time, insight into their prevalence in the rice root microbiome.
Collapse
Affiliation(s)
- Moussa Sondo
- INERA, Institut de l’Environnement et de Recherches Agricoles du Burkina Faso, Bobo-Dioulasso, Burkina Faso
- PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
- Université Joseph Ki Zerbo, Ouagadougou, Burkina Faso
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Issa Wonni
- INERA, Institut de l’Environnement et de Recherches Agricoles du Burkina Faso, Bobo-Dioulasso, Burkina Faso
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Kadidia Koïta
- Université Joseph Ki Zerbo, Ouagadougou, Burkina Faso
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Isabelle Rimbault
- PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
| | - Mariam Barro
- INERA, Institut de l’Environnement et de Recherches Agricoles du Burkina Faso, Bobo-Dioulasso, Burkina Faso
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Charlotte Tollenaere
- PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| | - Lionel Moulin
- PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
| | - Agnieszka Klonowska
- PHIM Plant Health Institute, IRD, CIRAD, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
- LMI Pathobios, Observatoire des Agents Phytopathogènes en Afrique de l’Ouest, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
5
|
Xu W, Sun T, Du J, Jin S, Zhang Y, Bai G, Li W, Yin D. Structure and ecological function of the soil microbiome associated with 'Sanghuang' mushrooms suffering from fungal diseases. BMC Microbiol 2023; 23:218. [PMID: 37573330 PMCID: PMC10422728 DOI: 10.1186/s12866-023-02965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND The most serious challenges in medicinal 'Sanghuang' mushroom production are the fungal diseases caused by various molds. Application of biological agents has been regarded as a potential crop disease management strategy. Here, the soil microbiome associated with 'Sanghuang' mushroom affected by fungal diseases grown under field cultivation (FC) and hanging cultivation (HC) was characterized using culture-dependent and culture-independent methods. RESULTS A total of 12,525 operational taxonomic units (OTUs) and 168 pure cultures were obtained using high-throughput sequencing and a culture-dependent method, respectively. From high-throughput sequencing, we found that HC samples had more OTUs, higher α-diversity, and greater microbial community complexity than FC samples. Analysis of β-diversity divided the soil microbes into two groups according to cultivation mode. Basidiomycota (48.6%) and Ascomycota (46.5%) were the two dominant fungal phyla in FC samples, with the representative genera Trichoderma (56.3%), Coprinellus (29.4%) and Discosia (4.8%), while only the phylum Ascomycota (84.5%) was predominant in HC samples, with the representative genera Discosia (34.0%), Trichoderma (30.2%), Penicillium (14.9%), and Aspergillus (7.8%). Notably, Trichoderma was predominant in both the culture-independent and culture-dependent analyses, with Trichoderma sp. FZ0005 showing high host pathogenicity. Among the 87 culturable bacteria, 15 exhibited varying extents of antifungal activity against Trichoderma sp. FZ0005, with three strains of Bacillus spp. (HX0037, HX0016, and HX0039) showing outstanding antifungal capacity. CONCLUSIONS Overall, our results suggest that Trichoderma is the major causal agent of 'Sanghuang' fungal diseases and that Bacillus strains may be used as biocontrol agents in 'Sanghuang' cultivation.
Collapse
Affiliation(s)
- Weifang Xu
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Tao Sun
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiahui Du
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shuqing Jin
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ying Zhang
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guofa Bai
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wanyu Li
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
6
|
Yang Z, Lian Z, Liu L, Fang B, Li W, Jiao J. Cultivation strategies for prokaryotes from extreme environments. IMETA 2023; 2:e123. [PMID: 38867929 PMCID: PMC10989778 DOI: 10.1002/imt2.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2024]
Abstract
The great majority of microorganisms are as-yet-uncultivated, mostly found in extreme environments. High-throughput sequencing provides data-rich genomes from single-cell and metagenomic techniques, which has enabled researchers to obtain a glimpse of the unexpected genetic diversity of "microbial dark matter." However, cultivating microorganisms from extreme environments remains essential for dissecting and utilizing the functions of extremophiles. Here, we provide a straightforward protocol for efficiently isolating prokaryotic microorganisms from different extreme habitats (thermal, xeric, saline, alkaline, acidic, and cryogenic environments), which was established through previous successful work and our long-term experience in extremophile resource mining. We propose common processes for extremophile isolation at first and then summarize multiple cultivation strategies for recovering prokaryotic microorganisms from extreme environments and meanwhile provide specific isolation tips that are always overlooked but important. Furthermore, we propose the use of multi-omics-guided microbial cultivation approaches for culturing these as-yet-uncultivated microorganisms and two examples are provided to introduce how these approaches work. In summary, the protocol allows researchers to significantly improve the isolation efficiency of pure cultures and novel taxa, which therefore paves the way for the protection and utilization of microbial resources from extreme environments.
Collapse
Affiliation(s)
- Zi‐Wen Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Zheng‐Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Bao‐Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Wen‐Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Jian‐Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Adedayo AA, Fadiji AE, Babalola OO. Unraveling the functional genes present in rhizosphere microbiomes of Solanum lycopersicum. PeerJ 2023; 11:e15432. [PMID: 37283894 PMCID: PMC10241170 DOI: 10.7717/peerj.15432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
The microbiomes living in the rhizosphere soil of the tomato plant contribute immensely to the state of health of the tomato plant alongside improving sustainable agriculture. With the aid of shotgun metagenomics sequencing, we characterized the putative functional genes (plant-growth-promoting and disease-resistant genes) produced by the microbial communities dwelling in the rhizosphere soil of healthy and powdery mildew-diseased tomato plants. The results identified twenty-one (21) plant growth promotion (PGP) genes in the microbiomes inhabiting the healthy rhizosphere (HR) which are more predomiant as compared to diseased rhizosphere (DR) that has nine (9) genes and four (4) genes in bulk soil (BR). Likewise, we identified some disease-resistant genes which include nucleotide binding genes and antimicrobial genes. Our study revealed fifteen (15) genes in HR which made it greater in comparison to DR that has three (3) genes and three (3) genes in bulk soil. Further studies should be conducted by isolating these microorganisms and introduce them to field experiments for cultivation of tomatoes.
Collapse
|
8
|
Anguita-Maeso M, Navas-Cortés JA, Landa BB. Insights into the Methodological, Biotic and Abiotic Factors Influencing the Characterization of Xylem-Inhabiting Microbial Communities of Olive Trees. PLANTS (BASEL, SWITZERLAND) 2023; 12:912. [PMID: 36840260 PMCID: PMC9967459 DOI: 10.3390/plants12040912] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Vascular pathogens are the causal agents of some of the most devastating plant diseases in the world, which can cause, under specific conditions, the destruction of entire crops. These plant pathogens activate a range of physiological and immune reactions in the host plant following infection, which may trigger the proliferation of a specific microbiome to combat them by, among others, inhibiting their growth and/or competing for space. Nowadays, it has been demonstrated that the plant microbiome can be modified by transplanting specific members of the microbiome, with exciting results for the control of plant diseases. However, its practical application in agriculture for the control of vascular plant pathogens is hampered by the limited knowledge of the plant endosphere, and, in particular, of the xylem niche. In this review, we present a comprehensive overview of how research on the plant microbiome has evolved during the last decades to unravel the factors and complex interactions that affect the associated microbial communities and their surrounding environment, focusing on the microbial communities inhabiting the xylem vessels of olive trees (Olea europaea subsp. europaea), the most ancient and important woody crop in the Mediterranean Basin. For that purpose, we have highlighted the role of xylem composition and its associated microorganisms in plants by describing the methodological approaches explored to study xylem microbiota, starting from the methods used to extract xylem microbial communities to their assessment by culture-dependent and next-generation sequencing approaches. Additionally, we have categorized some of the key biotic and abiotic factors, such as the host plant niche and genotype, the environment and the infection with vascular pathogens, that can be potential determinants to critically affect olive physiology and health status in a holobiont context (host and its associated organisms). Finally, we have outlined future directions and challenges for xylem microbiome studies based on the recent advances in molecular biology, focusing on metagenomics and culturomics, and bioinformatics network analysis. A better understanding of the xylem olive microbiome will contribute to facilitate the exploration and selection of specific keystone microorganisms that can live in close association with olives under a range of environmental/agronomic conditions. These microorganisms could be ideal targets for the design of microbial consortia that can be applied by endotherapy treatments to prevent or control diseases caused by vascular pathogens or modify the physiology and growth of olive trees.
Collapse
|
9
|
Shrivas VL, Choudhary AK, Hariprasad P, Sharma S. Nutrient concentrations affect the antimicrobial resistance profiles of cattle manures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25141-25147. [PMID: 34757556 PMCID: PMC8578531 DOI: 10.1007/s11356-021-16700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR) in cattle is widespread because of the increased use of antibiotics to combat microbial diseases and enhance milk production. The cattle excreta released into the environment can be a potent source of contamination in spreading antibiotic resistance, especially upon its application in agriculture. However, the correlation of AMR profile of manure with other physico-chemical parameters is limited. Therefore, the study aimed to generate AMR profiles for manure samples collected from 25 different sites of two agriculturally important states in India, Madhya Pradesh and Uttar Pradesh. Samples were tested for physico-chemical parameters, viz., electrical conductivity, pH, total nitrogen (N), total phosphorus (P), and total potassium (K). Bacterial community analysis was done by culture-dependent and culture-independent methods. The influence of feeding practices, nutrient concentration, and bacterial abundance on antibiotic resistance profiles was observed in collected manure samples. Manures of intensive feeding animals harbored highly resistant profiles of bacteria as compared to natural grazing cattle.
Collapse
Affiliation(s)
- Vijay Laxmi Shrivas
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Anil Kumar Choudhary
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Puttaswamy Hariprasad
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
10
|
Siles JA, Hendrickson AJ, Terry N. Coupling of metataxonomics and culturing improves bacterial diversity characterization and identifies a novel Rhizorhapis sp. with metal resistance potential in a multi-contaminated waste sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116132. [PMID: 36067666 DOI: 10.1016/j.jenvman.2022.116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Long-term contaminated environments have been recognized as potential hotspots for bacterial discovery in taxonomic and functional terms for bioremediation purposes. Here, bacterial diversity in waste sediment collected from a former industrial dumpsite and contaminated with petroleum hydrocarbon and heavy metals was investigated through the parallel application of culture-independent (16S rRNA gene amplicon sequencing) and -dependent (plate culturing followed by colony picking and identification of isolates by 16S rRNA gene Sanger sequencing) approaches. The bacterial diversities retrieved by both approaches greatly differed. Bacteroidetes and Proteobacteria were dominant in the culture-independent community, while Firmicutes and Actinobacteria were the main culturable groups. Only 2.7% of OTUs (operational taxonomic units) in the culture-independent dataset were cultured. Most of the culturable OTUs were absent or in very low abundances in the culture-independent dataset, revealing that culturing is a useful tool to study the rare bacterial biosphere. One culturable OTUs (comprising only the isolate SPR117) was identified as a potential new species in the genus Rhizorhapis (class Alphaproteobacteria) and was selected for further characterization. Phytopathogenicity tests showed that Rhizorhapis sp. strain SPR117 (ATCC TSD-228) is not pathogenic to lettuce, despite the only described species in this genus, Rhizorhapis suberifaciens, is causal agent of the lettuce corky root disease. The genome of the strain SPR117 was sequenced, assembled in 256 contigs, with a length of 4,419,522 bp and a GC content of 59.9%, and its further annotation revealed the presence of genes related to the resistance to arsenic, copper, iron, and mercury, among other metals. Therefore, the coupling of metataxonomics and culturing is a useful tool to obtain not only an improved description of bacterial communities in contaminated environments, but also to isolate microorganisms with bioremediation potential.
Collapse
Affiliation(s)
- José A Siles
- Department of Plant & Microbial Biology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| | - Andrew J Hendrickson
- Department of Plant & Microbial Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Norman Terry
- Department of Plant & Microbial Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
11
|
Anzalone A, Mosca A, Dimaria G, Nicotra D, Tessitori M, Privitera GF, Pulvirenti A, Leonardi C, Catara V. Soil and Soilless Tomato Cultivation Promote Different Microbial Communities That Provide New Models for Future Crop Interventions. Int J Mol Sci 2022; 23:8820. [PMID: 35955951 PMCID: PMC9369415 DOI: 10.3390/ijms23158820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
The cultivation of soilless tomato in greenhouses has increased considerably, but little is known about the assembly of the root microbiome compared to plants grown in soil. To obtain such information, we constructed an assay in which we traced the bacterial and fungal communities by amplicon-based metagenomics during the cultivation chain from nursery to greenhouse. In the greenhouse, the plants were transplanted either into agricultural soil or into coconut fiber bags (soilless). At the phylum level, bacterial and fungal communities were primarily constituted in all microhabitats by Proteobacteria and Ascomycota, respectively. The results showed that the tomato rhizosphere microbiome was shaped by the substrate or soil in which the plants were grown. The microbiome was different particularly in terms of the bacterial communities. In agriculture, enrichment has been observed in putative biological control bacteria of the genera Pseudomonas and Bacillus and in potential phytopathogenic fungi. Overall, the study describes the different shaping of microbial communities in the two cultivation methods.
Collapse
Affiliation(s)
- Alice Anzalone
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Alexandros Mosca
- Department of Physics and Astronomy, University of Catania, 95123 Catania, Italy
| | - Giulio Dimaria
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Daniele Nicotra
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Matilde Tessitori
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | | | - Alfredo Pulvirenti
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Cherubino Leonardi
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| |
Collapse
|
12
|
Li S, Dong L, Lian WH, Lin ZL, Lu CY, Xu L, Li L, Hozzein WN, Li WJ. Exploring untapped potential of Streptomyces spp. in Gurbantunggut Desert by use of highly selective culture strategy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148235. [PMID: 34380255 DOI: 10.1016/j.scitotenv.2021.148235] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Streptomycetes have been, for over 70 years, one of the most abundant sources for the discovery of new antibiotics and clinic drugs. However, in recent decades, it has been more and more difficult to obtain new phylotypes of the genus Streptomyces by using conventional samples and culture strategies. In this study, we combined culture-dependent and culture-independent approaches to better explore the Streptomyces communities in desert sandy soils. Moreover, two different culture strategies termed Conventional Culture Procedure (CCP) and Streptomycetes Culture Procedure (SCP) were employed to evaluate the isolation efficiency of Streptomyces spp. with different intensities of selectivity. The 16S rRNA gene amplicon analysis revealed a very low abundance (0.04-0.37%, average 0.22%) of Streptomyces in all the desert samples, conversely the percentage of Streptomyces spp. obtained by the culture-dependent method was very high (5.20-39.57%, average 27.76%), especially in the rhizospheric sand soils (38.40-39.57%, average 38.99%). Meanwhile, a total of 1589 pure cultures were isolated successfully, dominated by Streptomyces (29.52%), Microvirga (8.06%) and Bacillus (7.68%). In addition, 400 potential new species were obtained, 48 of which belonged to the genus Streptomyces. More importantly, our study demonstrated the SCP strategy which had highly selectivity could greatly expand the number and phylotypes of Streptomyces spp. by almost 4-fold than CCP strategy. These results provide insights on the diversity investigation of desert Streptomyces, and it could be reference for researchers to bring more novel actinobacteria strains from the environment into culture.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chun-Yan Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lu Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wael N Hozzein
- Zoology Department, College of Science, King Saud University, Riyadh 999088, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
13
|
Hinsu A, Dumadiya A, Joshi A, Kotadiya R, Andharia K, Koringa P, Kothari R. To culture or not to culture: a snapshot of culture-dependent and culture-independent bacterial diversity from peanut rhizosphere. PeerJ 2021; 9:e12035. [PMID: 34557347 PMCID: PMC8418214 DOI: 10.7717/peerj.12035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/01/2021] [Indexed: 12/16/2022] Open
Abstract
Background Sequencing driven metagenomics studies have been instrumental in various aspects of microbiology including identification of newer taxa. While this culture-independent approach has its own merits and demerits, several studies have focussed on comparing it with traditional culture-dependent (CD) approach. However, most of these comparative studies rely on Sanger sequencing of complete 16S rRNA gene from pure culture colonies to determine the culturable bacterial diversity. This approach undercounts culturable diversity as only fewer isolates are selected, sequenced, and identified. Methods In this study, we have used an Illumina based partial 16S sequencing to identify all the microbes growing on the media and directly comparing with its culture-independent (CI) counterpart. Eight different media were used to target different organisms from soil. Diversity on these media were compared with their CI counterpart. The NGS data was analysed using DADA2 to provide more resolution to the data. Results In line with studies of similar nature, current study presented higher bacterial diversity in CI approach. However, the current study reflected that a greater number of sequence variants were missed out in CI approach as compared to number of sequence variants shared with CD approach. We observed around 322 (5.98%) ASVs (Amplicon Sequence Variants) exclusively present in CD samples while, 234 (4.35%) ASVs were shared between both approaches. Most of these 322 CD exclusive ASVs were classified as Enterobacteriaceae family and Bacillus genus, with several ASVs annotated at the species level as well, and these organisms are more commonly observed in soil and were also detected in CI approach. Furthermore, 22 genera were exclusively detected in CD samples, most of which were reported from soil and water.
Collapse
Affiliation(s)
- Ankit Hinsu
- Department of Biosciences, Saurashtra University, Rajkot, India.,Department of Animal Biotechnology, Anand Agricultural University, Anand, India
| | - Ashvin Dumadiya
- Department of Biosciences, Saurashtra University, Rajkot, India
| | - Anjali Joshi
- Department of Biosciences, Saurashtra University, Rajkot, India
| | | | - Kavan Andharia
- Department of Biosciences, Saurashtra University, Rajkot, India
| | - Prakash Koringa
- Department of Animal Biotechnology, Anand Agricultural University, Anand, India
| | - Ramesh Kothari
- Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
14
|
Metagenomic Study of the Community Structure and Functional Potentials in Maize Rhizosphere Microbiome: Elucidation of Mechanisms behind the Improvement in Plants under Normal and Stress Conditions. SUSTAINABILITY 2021. [DOI: 10.3390/su13148079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The community of microbes in the rhizosphere region is diverse and contributes significantly to plant growth and crop production. Being an important staple and economic crop, the maize rhizosphere microbiota has been studied in the past using culture-dependent techniques. However, these limited culturing methods often do not help in understanding the complex community of microbes in the rhizosphere. Moreover, the vital biogeochemical processes carried out by these organisms are yet to be fully characterized. Herein, shotgun metagenomics, which enables the holistic study of several microbial environments, was employed to examine the community structure and functional potentials of microbes in the maize rhizosphere and to assess the influence of environmental variables on these. The dominant microbial phyla found in the soil environments include Actinobacteria, Microsporidia, Bacteroidetes, Thaumarchaeota, Proteobacteria and Firmicutes. Carbohydrate metabolism, protein metabolism and stress metabolism constitute the major functional categories in the environments. The beta diversity analysis indicated significant differences (p = 0.01) in the community structure and functional categories across the samples. A correlation was seen between the physical and chemical properties of the soil, and the structural and functional diversities. The canonical correspondence analysis carried out showed that phosphorus, N-NO3, potassium and organic matter were the soil properties that best influenced the structural and functional diversities of the soil microbes. It can be inferred from this study that the maize rhizosphere is a hotspot for microorganisms of agricultural and biotechnological importance which can be used as bioinoculants for sustainable agriculture.
Collapse
|
15
|
Wu SC, Gao JK, Chang BS. Isolation of lindane- and endosulfan-degrading bacteria and dominance analysis in the microbial communities by culture-dependent and independent methods. Microbiol Res 2021; 251:126817. [PMID: 34303071 DOI: 10.1016/j.micres.2021.126817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Bioremediation for lindane and endosulfan removal is a cost-effective approach, but its effectiveness depends on the ability to isolate degrading functionalized microorganisms. Researchers have isolated many lindane and endosulfan degrading bacteria from enrichment cultures based on culture-dependent methods during the past decades. However, it is unknown whether the isolated bacteria can reflect the indigenous predominant degraders in enriching cultures. In this study, we compared the culture-dependent method with selective medium isolation with culture-independent method (PacBio SMRT sequencing of full-length 16S rRNA amplicon) to analyze the bacterial communities from four distinct lindane (LA1 and LC1) and endosulfan (EA1 and EC1) enrichment cultures. From all the isolates we harvested from lindane (63 isolates) and endosulfan (61 isolates) enrichment cultures, their BLAST alignment can only match 5.49 % and 4.32 % of the bacterial operational taxonomic units (OTUs), respectively. Rhodanbacter lindaniclasticus and Pandoraea thiooxydans were the rarely seen potential degrading representatives that were simultaneously enriched and isolated. This study is the first comparative analysis of microbial communities from lindane and endosulfan enrichment culture using culture-dependent and culture-independent methods. Our results suggested that developing a target-specific and efficient microbial isolation method is necessary to harvest and study representative degrading bacteria in the community.
Collapse
Affiliation(s)
- Siang Chen Wu
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Jian-Kai Gao
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Bo-Sheng Chang
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| |
Collapse
|
16
|
Abstract
The integral role of microbial communities in plant growth and health is now widely recognized, and, increasingly, the constituents of the microbiome are being defined. While phylogenetic surveys have revealed the taxa present in a microbiome and show that this composition can depend on, and respond to, environmental perturbations, the challenge shifts to determining why particular microbes are selected and how they collectively function in concert with their host. In this study, we targeted the isolation of representative bacterial strains from environmental samples of Populus roots using a direct plating approach and compared them to amplicon-based sequencing analysis of root samples. The resulting culture collection contains 3,211 unique isolates representing 10 classes, 18 orders, 45 families, and 120 genera from 6 phyla, based on 16S rRNA gene sequence analysis. The collection accounts for ∼50% of the natural community of plant-associated bacteria as determined by phylogenetic analysis. Additionally, a representative set of 553 had their genomes sequenced to facilitate functional analyses. The top sequence variants in the amplicon data, identified as Pseudomonas, had multiple representatives within the culture collection. We then explore a simplified microbiome, comprised of 10 strains representing abundant taxa from environmental samples, and tested for their ability to reproducibly colonize Populus root tissue. The 10-member simplified community was able to reproducibly colonize on Populus roots after 21 days, with some taxa found in surface-sterilized aboveground tissue. This study presents a comprehensive collection of bacteria isolated from Populus for use in exploring microbial function and community inoculation experiments to understand basic concepts of plant and environmental selection. IMPORTANCE Microbial communities play an integral role in the health and survival of their plant hosts. Many studies have identified key members in these communities and led to the use of synthetic communities for elucidating their function; however, these studies are limited by the available cultured bacterial representatives. Here, we present a bacterial culture collection comprising 3,211 isolates that is representative of the root community of Populus. We then demonstrate the ability to examine underlying microbe-microbe interactions using a synthetic community approach. This culture collection will allow for the greater exploration of the microbial community function through targeted experimentation and manipulation.
Collapse
|
17
|
Manure-Based Amendments Influence Surface-Associated Bacteria and Markers of Antibiotic Resistance on Radishes Grown in Soils with Different Textures. Appl Environ Microbiol 2021; 87:AEM.02753-20. [PMID: 33712421 DOI: 10.1128/aem.02753-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
A controlled greenhouse study was performed to determine the effect of manure or compost amendments, derived during or in the absence of antibiotic treatment of beef and dairy cattle, on radish taproot-associated microbiota and indicators of antibiotic resistance when grown in different soil textures. Bacterial beta diversity, determined by 16S rRNA gene amplicon sequencing, bifurcated according to soil texture (P < 0.001, R = 0.501). There was a striking cross-effect in which raw manure from antibiotic-treated and antibiotic-free beef and dairy cattle added to loamy sand (LS) elevated relative (16S rRNA gene-normalized) (by 0.9 to 1.9 log10) and absolute (per-radish) (by 1.1 to 3.0 log10) abundances of intI1 (an integrase gene and indicator of mobile multiantibiotic resistance) on radishes at harvest compared to chemical fertilizer-only control conditions (P < 0.001). Radishes tended to carry fewer copies of intI1 and sul1 when grown in silty clay loam than LS. Composting reduced relative abundance of intI1 on LS-grown radishes (0.6 to 2.4 log10 decrease versus corresponding raw manure; P < 0.001). Effects of antibiotic use were rarely discernible. Heterotrophic plate count bacteria capable of growth on media containing tetracycline, vancomycin, sulfamethazine, or erythromycin tended to increase on radishes grown in turned composted antibiotic-treated dairy or beef control (no antibiotics) manures relative to the corresponding raw manure in LS (0.8- to 2.3-log10 increase; P < 0.001), suggesting that composting sometimes enriches cultivable bacteria with phenotypic resistance. This study demonstrates that combined effects of soil texture and manure-based amendments influence the microbiota of radish surfaces and markers of antibiotic resistance, illuminating future research directions for reducing agricultural sources of antibiotic resistance.IMPORTANCE In working toward a comprehensive strategy to combat the spread of antibiotic resistance, potential farm-to-fork routes of dissemination are gaining attention. The effects of preharvest factors on the microbiota and corresponding antibiotic resistance indicators on the surfaces of produce commonly eaten raw is of special interest. Here, we conducted a controlled greenhouse study, using radishes as a root vegetable grown in direct contact with soil, and compared the effects of manure-based soil amendments, antibiotic use in the cattle from which the manure was sourced, composting of the manure, and soil texture, with chemical fertilizer only as a control. We noted significant effects of amendment type and soil texture on the composition of the microbiota and genes used as indicators of antibiotic resistance on radish surfaces. The findings take a step toward identifying agricultural practices that aid in reducing carriage of antibiotic resistance and corresponding risks to consumers.
Collapse
|
18
|
Anzalone A, Di Guardo M, Bella P, Ghadamgahi F, Dimaria G, Zago R, Cirvilleri G, Catara V. Bioprospecting of Beneficial Bacteria Traits Associated With Tomato Root in Greenhouse Environment Reveals That Sampling Sites Impact More Than the Root Compartment. FRONTIERS IN PLANT SCIENCE 2021; 12:637582. [PMID: 33927735 PMCID: PMC8078776 DOI: 10.3389/fpls.2021.637582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/10/2021] [Indexed: 05/06/2023]
Abstract
Tomato is subject to several diseases that affect both field- and greenhouse-grown crops. To select cost-effective potential biocontrol agents, we used laboratory throughput screening to identify bacterial strains with versatile characteristics suitable for multipurpose uses. The natural diversity of tomato root-associated bacterial communities was bioprospected under a real-world environment represented by an intensive tomato cultivation area characterized by extraseasonal productions in the greenhouse. Approximately 400 tomato root-associated bacterial isolates, in majority Gram-negative bacteria, were isolated from three compartments: the soil close to the root surface (rhizosphere, R), the root surface (rhizoplane, RP), and the root interior (endorhizosphere, E). A total of 33% of the isolates produced siderophores and were able to solubilize phosphates and grow on NA with 8% NaCl. A total of 30% of the root-associated bacteria showed antagonistic activity against all the tomato pathogens tested, i.e., Clavibacter michiganesis pv. michiganensis, Pseudomonas syringae pv. tomato, Pseudomonas corrugata and Xanthomonas euvesicatoria pv. perforans, and Fusarium oxysporum f. sp. lycopersici. We found that the sampling site rather than the root compartment of isolation influenced bacterial composition in terms of analyzed phenotype. This was demonstrated through a diversity analysis including general characteristics and PGPR traits, as well as biocontrol activity in vitro. Analysis of 16S rRNA gene (rDNA) sequencing of 77 culturable endophytic bacteria that shared multiple beneficial activity revealed a predominance of bacteria in Bacillales, Enterobacteriales, and Pseudomonadales. Their in vitro antagonistic activity showed that Bacillus species were significantly more active than the isolates in the other taxonomic group. In planta activity against phytopathogenic bacteria of a subset of Bacillus and Pseudomonas isolates was also assessed.
Collapse
Affiliation(s)
- Alice Anzalone
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Mario Di Guardo
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Patrizia Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Farideh Ghadamgahi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Giulio Dimaria
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | | | - Gabriella Cirvilleri
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Wang J, Carper DL, Burdick LH, Shrestha HK, Appidi MR, Abraham PE, Timm CM, Hettich RL, Pelletier DA, Doktycz MJ. Formation, characterization and modeling of emergent synthetic microbial communities. Comput Struct Biotechnol J 2021; 19:1917-1927. [PMID: 33995895 PMCID: PMC8079826 DOI: 10.1016/j.csbj.2021.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Microbial communities colonize plant tissues and contribute to host function. How these communities form and how individual members contribute to shaping the microbial community are not well understood. Synthetic microbial communities, where defined individual isolates are combined, can serve as valuable model systems for uncovering the organizational principles of communities. Using genome-defined organisms, systematic analysis by computationally-based network reconstruction can lead to mechanistic insights and the metabolic interactions between species. In this study, 10 bacterial strains isolated from the Populus deltoides rhizosphere were combined and passaged in two different media environments to form stable microbial communities. The membership and relative abundances of the strains stabilized after around 5 growth cycles and resulted in just a few dominant strains that depended on the medium. To unravel the underlying metabolic interactions, flux balance analysis was used to model microbial growth and identify potential metabolic exchanges involved in shaping the microbial communities. These analyses were complemented by growth curves of the individual isolates, pairwise interaction screens, and metaproteomics of the community. A fast growth rate is identified as one factor that can provide an advantage for maintaining presence in the community. Final community selection can also depend on selective antagonistic relationships and metabolic exchanges. Revealing the mechanisms of interaction among plant-associated microorganisms provides insights into strategies for engineering microbial communities that can potentially increase plant growth and disease resistance. Further, deciphering the membership and metabolic potentials of a bacterial community will enable the design of synthetic communities with desired biological functions.
Collapse
Affiliation(s)
- Jia Wang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dana L. Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Leah H. Burdick
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Him K. Shrestha
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Manasa R. Appidi
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Paul E. Abraham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Collin M. Timm
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Robert L. Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Corresponding authors.
| | - Mitchel J. Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Corresponding authors.
| |
Collapse
|
20
|
Espinosa Zaragoza S, Sánchez Cruz R, Sanzón Gómez D, Escobar Sandoval MC, Yañez Ocampo G, Morales Constantino MA, Wong Villarreal A. IDENTIFICATION OF ENDOPHYTIC BACTERIA OF SEEDS FROM Cedrela odorata L. (Meliaceae) WITH BIOTECHNOLOGICAL CHARACTERISTICS. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n2.85325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the present study, 62 endophytic bacterial strains of cedar seeds (Cedrela odorataL.), collected in the municipalities of Huehuetán, Motozintla, and Pijijiapan in the state of Chiapas, Mexico were isolated. The goal was to identify characteristics of biotechnological interest such as biocontrol, promotion of plant growth, and growth in aromatic compounds. The strains were identified by the partial sequence of the 16S ribosomal gene as belonging to the Bacillusgenus. The biocontrol capacity of phytopathogenic fungi, production of indoleacetic acid (IAA), solubilization of phosphate, and growth in xenobiotic compounds (phenanthrene, benzene, anthracene, or phenol) were detected in 26 strains of the 62 isolates. 21 % of the strains inhibited the mycelial growth of Alternaria solaniand Fusariumsp., and 13 % of the Phytophthora capsicioomycete. IAA production was detected in 24 isolates, phosphate solubilizing activity was identified in 18 isolates, while the ability to grow in the presence of phenanthrene and benzene was found in 26 isolates; 24 isolates grew in the presence of anthracene and only two isolates grew in phenol as the only carbon sources. This is the first report of the isolation and identification of endophytic bacteria from cedar seeds, where biotechnological characteristics were detected for biological control, promotion of plant growth, and growth in the presence of xenobiotic compounds.
Collapse
|
21
|
Wang M, Noor S, Huan R, Liu C, Li J, Shi Q, Zhang YJ, Wu C, He H. Comparison of the diversity of cultured and total bacterial communities in marine sediment using culture-dependent and sequencing methods. PeerJ 2020; 8:e10060. [PMID: 33150062 PMCID: PMC7585373 DOI: 10.7717/peerj.10060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Despite recent great advances in microbial culture, most microbes have not yet been cultured, and the impact of medium composition on the isolation of microbes from natural systems has not been elucidated. To optimize media for culturing marine microbes, microbial communities in three sediment samples were described using high-throughput sequencing (HTS) and culture-dependent techniques. HTS revealed communities dominated by Gammaproteobacteria, and culture-based methods revealed communities dominated by Actinobacteria. Among the total operational taxonomic units (OTUs) from the HTS dataset, 6% were recovered in the culture collection. Four potentially novel bacterial strains belonging to Oceaniovalibus, Psychrobacter and Salegentibacter were isolated. The combination of media cultured more taxa than any single medium. Nutrient-rich and single-carbon/nitrogen-source media supported the growth of relatively few taxa, and the quality of nitrogen strongly influenced the types of bacteria isolated.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Science, Central South University, Changsha, China
| | - Samina Noor
- School of Life Science, Central South University, Changsha, China
| | - Ran Huan
- School of Life Science, Central South University, Changsha, China
| | - Congling Liu
- School of Life Science, Central South University, Changsha, China
| | - JiaYi Li
- School of Life Science, Central South University, Changsha, China
| | - Qingxin Shi
- School of Life Science, Central South University, Changsha, China
| | | | - Cuiling Wu
- Changzhi Medical College, Changzhi, China
| | - Hailun He
- School of Life Science, Central South University, Changsha, China
| |
Collapse
|
22
|
Barajas HR, Martínez-Sánchez S, Romero MF, Álvarez CH, Servín-González L, Peimbert M, Cruz-Ortega R, García-Oliva F, Alcaraz LD. Testing the Two-Step Model of Plant Root Microbiome Acquisition Under Multiple Plant Species and Soil Sources. Front Microbiol 2020; 11:542742. [PMID: 33162946 PMCID: PMC7581803 DOI: 10.3389/fmicb.2020.542742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022] Open
Abstract
The two-step model for plant root microbiomes considers soil as the primary microbial source. Active selection of the plant’s bacterial inhabitants results in a biodiversity decrease toward roots. We collected sixteen samples of in situ ruderal plant roots and their soils and used these soils as the main microbial input for single genotype tomatoes grown in a greenhouse. Our main goal was to test the soil influence in the structuring of rhizosphere microbiomes, minimizing environmental variability, while testing multiple plant species. We massively sequenced the 16S rRNA and shotgun metagenomes of the soils, in situ plants, and tomato roots. We identified a total of 271,940 bacterial operational taxonomic units (OTUs) within the soils, rhizosphere and endospheric microbiomes. We annotated by homology a total of 411,432 (13.07%) of the metagenome predicted proteins. Tomato roots did follow the two-step model with lower α-diversity than soil, while ruderal plants did not. Surprisingly, ruderal plants are probably working as a microenvironmental oasis providing moisture and plant-derived nutrients, supporting larger α-diversity. Ruderal plants and their soils are closer according to their microbiome community composition than tomato and its soil, based on OTUs and protein comparisons. We expected that tomato β-diversity clustered together with their soil, if it is the main rhizosphere microbiome structuring factor. However, tomato microbiome β-diversity was associated with plant genotype in most samples (81.2%), also supported by a larger set of enriched proteins in tomato rhizosphere than soil or ruderals. The most abundant bacteria found in soils was the Actinobacteria Solirubrobacter soli, ruderals were dominated by the Proteobacteria Sphingomonas sp. URGHD0057, and tomato mainly by the Bacteroidetes Ohtaekwangia koreensis, Flavobacterium terrae, Niastella vici, and Chryseolinea serpens. We calculated a metagenomic tomato root core of 51 bacterial genera and 2,762 proteins, which could be the basis for microbiome-oriented plant breeding programs. We attributed a larger diversity in ruderal plants roots exudates as an effect of the moisture and nutrient acting as a microbial harbor. The tomato and ruderal metagenomic differences are probably due to plant domestication trade-offs, impacting plant-bacteria interactions.
Collapse
Affiliation(s)
- Hugo R Barajas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Shamayim Martínez-Sánchez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel F Romero
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cristóbal Hernández Álvarez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Luis D Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
23
|
Kaplan I, Bokulich NA, Caporaso JG, Enders LS, Ghanem W, Ingerslew KS. Phylogenetic farming: Can evolutionary history predict crop rotation via the soil microbiome? Evol Appl 2020; 13:1984-1999. [PMID: 32908599 PMCID: PMC7463318 DOI: 10.1111/eva.12956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Agriculture has long employed phylogenetic rules whereby farmers are encouraged to rotate taxonomically unrelated plants in shared soil. Although this forms a central tenet of sustainable agriculture, strangely, this on-farm "rule of thumb" has never been rigorously tested in a scientific framework. To experimentally evaluate the relationship between phylogenetic distance and crop performance, we used a plant-soil feedback approach whereby 35 crops and weeds varying in their relatedness to tomato (Solanum lycopersicum) were tested in a two-year field experiment. We used community profiling of the bacteria and fungi to determine the extent to which soil microbes contribute to phenotypic differences in crop growth. Overall, tomato yield was ca. 15% lower in soil previously cultivated with tomato; yet, past the species level there was no effect of phylogenetic distance on crop performance. Soil microbial communities, on the other hand, were compositionally more similar between close plant relatives. Random forest regression predicted log10 phylogenetic distance to tomato with moderate accuracy (R 2 = .52), primarily driven by bacteria in the genus Sphingobium. These data indicate that, beyond avoiding conspecifics, evolutionary history contributes little to understanding plant-soil feedbacks in agricultural fields; however, microbial legacies can be predicted by species identity and relatedness.
Collapse
Affiliation(s)
- Ian Kaplan
- Department of EntomologyPurdue UniversityWest LafayetteINUSA
| | - Nicholas A. Bokulich
- Center for Applied Microbiome ScienceThe Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffAZUSA
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffAZUSA
| | - J. Gregory Caporaso
- Center for Applied Microbiome ScienceThe Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffAZUSA
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffAZUSA
| | | | - Wadih Ghanem
- Department of EntomologyPurdue UniversityWest LafayetteINUSA
| | | |
Collapse
|
24
|
Saad MM, Eida AA, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3878-3901. [PMID: 32157287 PMCID: PMC7450670 DOI: 10.1093/jxb/eraa111] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
Plants are now recognized as metaorganisms which are composed of a host plant associated with a multitude of microbes that provide the host plant with a variety of essential functions to adapt to the local environment. Recent research showed the remarkable importance and range of microbial partners for enhancing the growth and health of plants. However, plant-microbe holobionts are influenced by many different factors, generating complex interactive systems. In this review, we summarize insights from this emerging field, highlighting the factors that contribute to the recruitment, selection, enrichment, and dynamic interactions of plant-associated microbiota. We then propose a roadmap for synthetic community application with the aim of establishing sustainable agricultural systems that use microbial communities to enhance the productivity and health of plants independently of chemical fertilizers and pesticides. Considering global warming and climate change, we suggest that desert plants can serve as a suitable pool of potentially beneficial microbes to maintain plant growth under abiotic stress conditions. Finally, we propose a framework for advancing the application of microbial inoculants in agriculture.
Collapse
Affiliation(s)
- Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette Cedex, France
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Revealing the Variation and Stability of Bacterial Communities in Tomato Rhizosphere Microbiota. Microorganisms 2020; 8:microorganisms8020170. [PMID: 31991727 PMCID: PMC7074737 DOI: 10.3390/microorganisms8020170] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Microorganisms that colonize the plant rhizosphere can contribute to plant health, growth and productivity. Although the importance of the rhizosphere microbiome is known, we know little about the underlying mechanisms that drive microbiome assembly and composition. In this study, the variation, assembly and composition of rhizobacterial communities in 11 tomato cultivars, combined with one cultivar in seven different sources of soil and growing substrate, were systematically investigated. The tomato rhizosphere microbiota was dominated by bacteria from the phyla Proteobacteria, Bacteroidetes, and Acidobacteria, mainly comprising Rhizobiales, Xanthomonadales, Burkholderiales, Nitrosomonadales, Myxococcales, Sphingobacteriales, Cytophagales and Acidobacteria subgroups. The bacterial community in the rhizosphere microbiota of the samples in the cultivar experiment mostly overlapped with that of tomato cultivar MG, which was grown in five natural field soils, DM, JX, HQ, QS and XC. The results supported the hypothesis that tomato harbors largely conserved communities and compositions of rhizosphere microbiota that remains consistent in different cultivars of tomato and even in tomato cultivar grown in five natural field soils. However, significant differences in OTU richness (p < 0.0001) and bacterial diversity (p = 0.0014 < 0.01) were observed among the 7 different sources of soil and growing substrate. Two artificial commercial nutrient soils, HF and CF, resulted in a distinct tomato rhizosphere microbiota in terms of assembly and core community compared with that observed in natural field soils. PERMANOVA of beta diversity based on the combined data from the cultivar and soil experiments demonstrated that soil (growing substrate) and plant genotype (cultivar) had significant impacts on the rhizosphere microbial communities of tomato plants (soil, F = 22.29, R2 = 0.7399, p < 0.001; cultivar, F = 2.04, R2 = 0.3223, p = 0.008). Of these two factors, soil explained a larger proportion of the compositional variance in the tomato rhizosphere microbiota. The results demonstrated that the assembly process of rhizosphere bacterial communities was collectively influenced by soil, including the available bacterial sources and biochemical properties of the rhizosphere soils, and plant genotype.
Collapse
|
26
|
Zuluaga MYA, Lima Milani KM, Azeredo Gonçalves LS, Martinez de Oliveira AL. Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PLoS One 2020; 15:e0227422. [PMID: 31923250 PMCID: PMC6953851 DOI: 10.1371/journal.pone.0227422] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Studies of the interactions between plants and their microbiome have been conducted worldwide in the search for growth-promoting representative strains for use as biological inputs for agriculture, aiming to achieve more sustainable agriculture practices. With a focus on the isolation of plant growth-promoting (PGP) bacteria with ability to alleviate N stress, representative strains that were found at population densities greater than 104 cells g-1 and that could grow in N-free semisolid media were isolated from soils under different management conditions and from the roots of tomato (Solanum lycopersicum) and lulo (Solanum quitoense) plants that were grown in those soils. A total of 101 bacterial strains were obtained, after which they were phylogenetically categorized and characterized for their basic PGP mechanisms. All strains belonged to the Proteobacteria phylum in the classes Alphaproteobacteria (61% of isolates), Betaproteobacteria (19% of isolates) and Gammaproteobacteria (20% of isolates), with distribution encompassing nine genera, with the predominant genus being Rhizobium (58.4% of isolates). Strains isolated from conventional horticulture (CH) soil composed three bacterial genera, suggesting a lower diversity for the diazotrophs/N scavenger bacterial community than that observed for soils under organic management (ORG) or secondary forest coverture (SF). Conversely, diazotrophs/N scavenger strains from tomato plants grown in CH soil comprised a higher number of bacterial genera than did strains isolated from tomato plants grown in ORG or SF soils. Furthermore, strains isolated from tomato were phylogenetically more diverse than those from lulo. BOX-PCR fingerprinting of all strains revealed a high genetic diversity for several clonal representatives (four Rhizobium species and one Pseudomonas species). Considering the potential PGP mechanisms, 49 strains (48.5% of the total) produced IAA (2.96–193.97 μg IAA mg protein-1), 72 strains (71.3%) solubilized FePO4 (0.40–56.00 mg l-1), 44 strains (43.5%) solubilized AlPO4 (0.62–17.05 mg l-1), and 44 strains produced siderophores (1.06–3.23). Further, 91 isolates (90.1% of total) showed at least one PGP trait, and 68 isolates (67.3%) showed multiple PGP traits. Greenhouse trials using the bacterial collection to inoculate tomato or lulo plants revealed increases in plant biomass (roots, shoots or both plant tissues) elicited by 65 strains (54.5% of the bacterial collection), of which 36 were obtained from the tomato rhizosphere, 15 were obtained from the lulo rhizosphere, and 14 originated from samples of soil that lacked plants. In addition, 18 strains showed positive inoculation effects on both Solanum species, of which 12 were classified as Rhizobium spp. by partial 16S rRNA gene sequencing. Overall, the strategy adopted allowed us to identify the variability in the composition of culturable diazotroph/N-scavenger representatives from soils under different management conditions by using two Solanum species as trap plants. The present results suggest the ability of tomato and lulo plants to enrich their belowground microbiomes with rhizobia representatives and the potential of selected rhizobial strains to promote the growth of Solanum crops under limiting N supply.
Collapse
Affiliation(s)
| | - Karina Maria Lima Milani
- Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | | |
Collapse
|
27
|
Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS One 2019; 14:e0223847. [PMID: 31703074 PMCID: PMC6839845 DOI: 10.1371/journal.pone.0223847] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/30/2019] [Indexed: 11/19/2022] Open
Abstract
Plants harbor diverse bacterial communities, which play crucial roles in plant health and growth, in their rhizosphere, phyllosphere and endosphere. Tomato is an important model for studying plant-microbe interactions, but comparison of its associated bacterial community is still lacking. In this study, using Illumina sequencing of 16S rRNA amplicons, we characterized and compared the bacterial size and community from rootzone soil as well as the rhizosphere, phyllosphere and endosphere of roots, stems, leaves, fruits and seeds of tomato plants that were grown in greenhouse conditions. Habitat (soil, phyllospheric, and endophytic) structured the community. The bacterial communities from the soil-type samples (rootzone soil and rhizosphere) showed the highest richness and diversity. The lowest bacterial diversity occurred in the phyllospheric samples, while the lowest richness occurred in the endosphere. Among the endophytic samples, both bacterial diversity and richness varied in different tissues, with the highest values in roots. The most abundant phyla in the tomato-associated community was Proteobacteria, with the exception of the seeds and jelly, where both Proteobacteria and Firmicutes were dominant. At the genus level, the sequences of Pseudomonas and Acinetobacter were prevalent in the rhizosphere, and in the phyllosphere, more than 97% of the sequences were assigned to Acinetobacter. For the endophytes, Acinetobacter, Enterobacter, and Pseudomonas were the abundant genera in the roots, stems and leaves. In the fruits, the bacterial endophytes varied in different compartments, with Enterobacter being enriched in the pericarp and seeds, Acinetobacter in the placenta, and Weissella in the jelly. The present data provide a comprehensive description of the tomato-associated bacterial community and will be useful for better understanding plant-microbe interactions and selecting suitable bacterial taxa for tomato production.
Collapse
|
28
|
Liu YX, Qin Y, Bai Y. Reductionist synthetic community approaches in root microbiome research. Curr Opin Microbiol 2019; 49:97-102. [DOI: 10.1016/j.mib.2019.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023]
|
29
|
Fogler K, Guron GKP, Wind LL, Keenum IM, Hession WC, Krometis LA, Strawn LK, Pruden A, Ponder MA. Microbiota and Antibiotic Resistome of Lettuce Leaves and Radishes Grown in Soils Receiving Manure-Based Amendments Derived From Antibiotic-Treated Cows. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Assessment of the non-lactic acid bacteria microbiota in fresh cucumbers and commercially fermented cucumber pickles brined with 6% NaCl. Food Microbiol 2019; 77:10-20. [DOI: 10.1016/j.fm.2018.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 11/18/2022]
|
31
|
Escobar Rodríguez C, Mitter B, Antonielli L, Trognitz F, Compant S, Sessitsch A. Roots and Panicles of the C4 Model Grasses Setaria viridis (L). and S. pumila Host Distinct Bacterial Assemblages With Core Taxa Conserved Across Host Genotypes and Sampling Sites. Front Microbiol 2018; 9:2708. [PMID: 30483233 PMCID: PMC6240606 DOI: 10.3389/fmicb.2018.02708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/23/2018] [Indexed: 01/22/2023] Open
Abstract
Virtually all studied plant tissues are internally inhabited by endophytes. Due to their relevance for plant growth and health, bacterial microbiota of crop plants have been broadly studied. In plant microbiome research the root is the most frequently addressed environment, whereas the ecology of microbiota associated with reproductive organs still demands investigation. In this work, we chose the model grasses Setaria viridis and Setaria pumila to better understand the drivers shaping bacterial communities associated with panicles (representing a reproductive organ) as compared to those associated with roots. We collected wild individuals of both grass species from 20 different locations across Austria and investigated the bacterial assemblages within roots and ripe grain-harboring panicles by 16S rRNA gene-based Illumina sequencing. Furthermore, plant samples were subjected to genotyping by genetic diversity-focused Genotyping by Sequencing. Overall, roots hosted more diverse microbiota than panicles. Both the plant organ and sampling site significantly shaped the root and panicle-associated microbiota, whereas the host genotype only affected root communities. In terms of community structure, root-specific assemblages were highly diverse and consisted of conserved bacterial taxa. In contrast, panicle-specific communities were governed by Gammaproteobacteria, were less diverse and highly origin-dependent. Among OTUs found in both plant tissues, relative abundances of Gammaproteobacteria were higher in panicles, whereas Rhizobiales dominated root communities. We further identified core and non-core taxa within samples of both Setaria species. Non-core taxa included members of the Saccharibacteria and Legionelalles, while core communities encompassed eleven OTUs of seven bacterial orders, together with a set of ten panicle-enriched OTUs. These communities were widespread across root and panicle samples from all locations, hinting toward an evolved form of mutualism through potential vertical transmission of these taxa within Setaria species.
Collapse
Affiliation(s)
- Carolina Escobar Rodríguez
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Birgit Mitter
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Livio Antonielli
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Friederike Trognitz
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Stéphane Compant
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Angela Sessitsch
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| |
Collapse
|
32
|
Krishnamoorthy R, Kwon SW, Kumutha K, Senthilkumar M, Ahmed S, Sa T, Anandham R. Diversity of culturable methylotrophic bacteria in different genotypes of groundnut and their potential for plant growth promotion. 3 Biotech 2018; 8:275. [PMID: 29868313 PMCID: PMC5971017 DOI: 10.1007/s13205-018-1291-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/17/2018] [Indexed: 11/25/2022] Open
Abstract
This study aimed at documenting the culturable methylotrophic bacterial diversity across different groundnut genotypes and evaluating their effect on the growth of groundnut. 80 methylotrophic bacterial isolates were obtained from the phyllosphere of 15 groundnut genotypes collected from Tamil Nadu, India. The bacterial isolates were identified through sequencing of the 16S rDNA and were tested for their plant growth-promoting properties. Groundnut seeds were inoculated with methylotrophic bacteria and their effect on growth was evaluated via in vitro and pot experiments. Molecular identification revealed that the isolates belonged to 30 different species. A higher diversity of methylotrophic bacteria at genus and species level was found in groundnut genotype TMV2. Shannon diversity index was the highest in genotype TMV7, followed by VRI2 and TMV2. Similarly, geographical location also influenced the diversity of methylotrophic bacteria. In vitro seed germination assay revealed that methylotrophic isolates enhanced root growth and improved formation of root hair. The radicle length of treated seeds ranged from 2.7 to 8.4 cm. A higher shoot length was observed in the plants from seeds treated with Methylobacterium radiotolerans VRI8-A4 (27.3 cm), followed by Pseudomonas psychrotolerans TMV13-A1 (26.3 cm) and Bacillus aryabhattai K-CO3-3 (23 cm). The findings of this study strongly suggest that beneficial methylotrophic bacteria associated with the phyllosphere of groundnut play a major role in regulating plant growth.
Collapse
Affiliation(s)
- R. Krishnamoorthy
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625 104 India
| | - Soon-Wo Kwon
- Korean Agricultural Culture Collection, National Academy of Agricultural Science, Rural Development Administration, Jeonju, 565 851 Republic of Korea
| | - K. Kumutha
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625 104 India
| | - M. Senthilkumar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu India
| | - S. Ahmed
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk Republic of Korea
| | - R. Anandham
- Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu 625 104 India
| |
Collapse
|
33
|
Jia S, Liu X, Huang Z, Li Y, Zhang L, Luo Y. Effects of chitosan oligosaccharides on microbiota composition of silver carp (Hypophthalmichthys molitrix) determined by culture-dependent and independent methods during chilled storage. Int J Food Microbiol 2018; 268:81-91. [PMID: 29413003 DOI: 10.1016/j.ijfoodmicro.2018.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/15/2017] [Accepted: 01/09/2018] [Indexed: 12/28/2022]
Abstract
This study evaluated the effects of chitosan oligosaccharides (COS) on the changes in quality and microbiota of silver carp fillets stored at 4 °C. During storage, 1% (w/v) COS treated samples maintained good quality, as evidenced by retarding sensory deterioration, inhibiting microbial growth, attenuating the production of total volatile basic nitrogen, putrescine, cadaverine and hypoxanthine, and delaying degradation of inosine monophosphate and hypoxanthine ribonucleotide. Meanwhile, variability in the predominant microbiota in different samples was investigated by culture-dependent and -independent methods. Based on sensory analysis, shelf-life of silver carp fillets was 4 days for the control and 6 days for COS treated samples. Meanwhile, Pseudomonas, followed by Aeromonas, Acinetobacter, and Shewanella were dominated in the control samples at day 4 and contributed to fish spoilage at day 6. However, COS inhibited the growth of Pseudomonas, Aeromonas, and Shewanella significantly. Consequently, Acinetobacter followed by Pseudomonas became the predominant microbiota in COS treated samples at day 6. With the growth of Pseudomonas, COS treated samples were spoiled at day 8. Therefore, COS improved the quality of fillets and prolonged the shelf life of silver carp fillets by 2 days during chilled storage, which was mainly due to their modulating effects on microbiota.
Collapse
Affiliation(s)
- Shiliang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhan Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longteng Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Higher Institution Engineering Research Center of Animal Product, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
34
|
Kim JM, Lee SA, Cho H, Kim SJ, Joa JH, Kwon SW, Weon HY. Parapedobacter lycopersici sp. nov., isolated from the rhizosphere soil of tomato plants (Solanum lycopersicum L.). Int J Syst Evol Microbiol 2017; 67:3728-3732. [PMID: 28895519 DOI: 10.1099/ijsem.0.002162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative bacterial strain, designated T16R-256T, was isolated from the rhizosphere soil of tomato plants grown in a greenhouse in Yecheon-gun, Gyeongsangbuk-do, Republic of Korea and characterized using polyphasic taxonomy. Cells were aerobic, non-flagellated and rod-shaped. Colonies were light yellow, convex and round. The strain grew in the temperature range of 15-37 °C (optimally at 28-30 °C) and pH range of 7.0-9.0 (optimally at 7.0-8.0) and in 4 % NaCl (w/v). A comparison of 16S rRNA gene sequences showed that strain T16R-256T is a member of the genus Parapedobacter, exhibiting high sequence similarity with Parapedobacter pyrenivorans P-4T (94.2 %), Parapedobacter indicus RK1T (93.7 %), Parapedobacter koreensis Jip14T (93.7 %), Parapedobacter luteus 4M29T (93.6 %) and Parapedobacter soli DCY14T (93.4 %). The major polar lipids were phosphatidylethanolamine, sphingolipid, one aminophospholipid, two aminolipids and three unknown lipids. The major fatty acids (>10 % of the total fatty acids) were iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 0 2-OH/C16 : 1ω7c. Strain T16R-256T contained MK-7 as the predominant respiratory quinone and homospermidine as the major polyamine. The genomic DNA G+C content of the type strain was 55.5 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain T16R-256T should be designated as representative of a novel species of the genus Parapedobacter, for which the name Parapedobacter lycopersici sp. nov. is proposed. The type strain is T16R-256T (=KACC 18788T=JCM 31602T).
Collapse
Affiliation(s)
- Jeong Myeong Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Shin Ae Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Hayoung Cho
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Soo-Jin Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Jae-Ho Joa
- National Institute of Horticultural and Herbal Science (NIHHS), RDA, Jeju 63240, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences (NAS), Rural Development Administration (RDA), Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| |
Collapse
|