1
|
Chen L, Tang W, Liu J, Zhu M, Mu W, Tang X, Liu T, Zhu Z, Weng L, Cheng Y, Zhang Y, Chen X. On-demand reprogramming of immunosuppressive microenvironment in tumor tissue via multi-regulation of carcinogenic microRNAs and RNAs dependent photothermal-immunotherapy using engineered gold nanoparticles for malignant tumor treatment. Biomaterials 2025; 315:122956. [PMID: 39549441 DOI: 10.1016/j.biomaterials.2024.122956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
The frequent immune escape of tumor cells and fluctuating therapeutic efficiency vary with each individual are two critical issues for immunotherapy against malignant tumor. Herein, we fabricated an intelligent core-shell nanoparticle (SNAs@CCMR) to significantly inhibit the PD-1/PD-L1 mediated immune escape by on-demand regulation of various oncogenic microRNAs and perform RNAs dependent photothermal-immunotherapy to achieve precise and efficient treatment meeting the individual requirements of specific patients by in situ generation of customized tumor-associated antigens. The SNAs@CCMR consisted of antisense oligonucleotides grafted gold nanoparticles (SNAs) as core and TLR7 agonist imiquimod (R837) functionalized cancer cell membrane (CCM) as shell, in which the acid-labile Schiff base bond was used to connect the R837 and CCM. During therapy, the acid environment of tumor tissue cleaved the Schiff base to generate free R837 and SNAs@CCM. The SNAs@CCM further entered tumor cells via CCM mediated internalization, and then specifically hybridized with over-expressed miR-130a and miR-21, resulting in effective inhibition of the migration and PD-L1 expression of tumor cells to avoid their immune escape. Meanwhile, the RNAs capture also caused significant aggregation of SNAs, which immediately generated photothermal agents within tumor cells to perform highly selective photothermal therapy under NIR irradiation. These chain processes not only damaged the primary tumor, but also produced plenty of tumor-associated antigens, which matured the surrounding dendritic cells (DCs) and activated anti-tumor T cells along with the released R837, resulting in the enhanced immunotherapy with suppressive immune escape. Both in vivo and in vitro experiments demonstrated that our nanoparticles were able to inhibit primary tumor and its metastasis via multi-regulation of carcinogenic microRNAs and RNAs dependent photothermal-immune activations, which provided a promising strategy to reprogram the immunosuppressive microenvironment in tumor tissue for better malignant tumor therapy.
Collapse
Affiliation(s)
- Li Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenyun Mu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Cheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
2
|
Linares-Rodríguez M, Blancas I, Rodríguez-Serrano F. The Predictive Value of Blood-Derived Exosomal miRNAs as Biomarkers in Breast Cancer: A Systematic Review. Clin Breast Cancer 2025; 25:e48-e55.e15. [PMID: 39054208 DOI: 10.1016/j.clbc.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024]
Abstract
Breast cancer (BC) remains a widespread disease worldwide, despite advances in its detection and treatment. microRNAs (miRNAs) play a significant role in cancer, and their presence within exosomes may confer several advantages in terms of tumor initiation, propagation, immune evasion, and drug resistance compared to freely circulating miRNAs in the blood. The objective of this study was to conduct a systematic review to analyze the role of exosomal miRNAs present in serum or plasma as biomarkers in BC. Bibliographic sources were collected from various databases with no starting date limit until March 2023. The search terms used were related to "breast cancer," "microRNAs," and "exosomes." Following the search, inclusion and exclusion criteria were applied, resulting in a total of 46 articles. Data were extracted from the selected studies and summarized to indicate the miRNAs, type of dysregulation, sample source, number of patients and controls, and clinical relevance of the miRNAs. We carried out an enrichment study of the microRNAs that appeared in at least 3 studies, those that were suitable for selection were miR-16, miR-21 and miR-155. Exosomal miRNAs isolated from blood samples of patients diagnosed with BC could be valuable in the clinical setting. They could provide information about early diagnosis, disease progression, recurrence, treatment response, and metastases. It is crucial to reach a consensus on the specific exosomal miRNAs to detect and the most appropriate type of sample for comprehensive utilization of miRNAs as biomarkers for BC.
Collapse
Affiliation(s)
- Marina Linares-Rodríguez
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain
| | - Isabel Blancas
- Department of Medicine, School of Medicine, University of Granada, Granada, Spain; Department of Medical Oncology, San Cecilio University Hospital, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Fernando Rodríguez-Serrano
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Department of Human Anatomy and Embryology, University of Granada, Granada, Spain.
| |
Collapse
|
3
|
Qin Z, Liu W, Qin Z, Zhang H, Huang X. Host combats porcine reproductive and respiratory syndrome virus infection at non-coding RNAs level. Virulence 2024; 15:2416551. [PMID: 39403796 PMCID: PMC11492689 DOI: 10.1080/21505594.2024.2416551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a significant threat to the global swine industry. The emergence of new, highly virulent strains has precipitated recurrent outbreaks worldwide, underscoring the ongoing battle between host and virus. Thus, there is an imperative to formulate a more comprehensive and effective disease control strategy. Studies have shown that host non-coding RNA (ncRNA) is an important regulator of host - virus interactions in PRRSV infection. Hence, a thorough comprehension of the roles played by ncRNAs in PRRSV infection can augment our understanding of the pathogenic mechanisms underlying PRRSV infection. This review focuses on elucidating contemporary insights into the roles of host microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in PRRSV infection, providing both theoretical foundations and fresh perspectives for ongoing research into the mechanisms driving PRRSV infection and its pathogenesis.
Collapse
Affiliation(s)
- Zhi Qin
- College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao, P.R. China
| | - Weiye Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Hongliang Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| | - Xuewei Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, P.R. China
| |
Collapse
|
4
|
Shintani T, Shun YT, Toyozumi Y, Ikemura K, Shiroyama T, Nagatomo I, Jingushi K, Takeda Y, Kumanogoh A, Okuda M. MicroRNA-130a-3p regulates osimertinib resistance by targeting runt-related transcription factor 3 in lung adenocarcinoma. Sci Rep 2024; 14:24429. [PMID: 39424918 PMCID: PMC11489462 DOI: 10.1038/s41598-024-76196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Overcoming resistance to epidermal growth factor receptor tyrosine kinase inhibitors, including osimertinib, is urgent to improve lung cancer treatment outcomes. Extracellular vesicle (EV)-derived microRNAs (EV-miRNAs) play important roles in drug resistance and serve as promising biomarkers. In this study, we aimed to identify EV-miRNAs associated with osimertinib resistance and investigate their clinical relevance. The release of excess EVs was confirmed in the osimertinib-resistant lung adenocarcinoma cell line PC9OR. The exposure of PC9OR-derived EVs and EV-miRNAs to PC9 cells increased cell viability after osimertinib treatment. Microarray analysis revealed that miR-130a-3p was upregulated in EVs derived from PC9OR cells and another osimertinib-resistant cell line (H1975OR). Transfection with miR-130a-3p attenuated osimertinib-induced cytotoxicity and apoptosis in both PC9 and H1975 cells, whereas osimertinib resistance in PC9OR cells was reversed after miR-130a-3p inhibition. Bioinformatics analysis revealed that runt-related transcription factor 3 is a target gene of miR-130a-3p, and it induced osimertinib resistance in PC9 cells. Patients with lower baseline serum miR-130a-3p concentrations had longer progression-free survival. miR-130a-3p is a potential therapeutic target and a predictive biomarker of osimertinib resistance in adenocarcinomas.
Collapse
Affiliation(s)
- Takuya Shintani
- Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yu-Ting Shun
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Toyozumi
- Department of Hospital Pharmacy, School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Ikemura
- Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Okuda
- Department of Pharmacy, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Kang KW, Gim JA, Hong S, Kim HK, Choi Y, Park JH, Park Y. Use of extracellular vesicle microRNA profiles in patients with acute myeloid leukemia for the identification of novel biomarkers. PLoS One 2024; 19:e0306962. [PMID: 39178208 PMCID: PMC11343415 DOI: 10.1371/journal.pone.0306962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/25/2024] [Indexed: 08/25/2024] Open
Abstract
OBJECTIVES This study aimed to establish clinically significant microRNA (miRNA) sets using extracellular vesicles (EVs) from bone marrow (BM) aspirates of patients with acute myelogenous leukemia (AML), and to identify the genes that interact with these EV-derived miRNAs in AML. MATERIALS AND METHODS BM aspirates were collected from 32 patients with AML at the time of AML diagnosis. EVs were isolated using size-exclusion chromatography. A total of 965 EV-derived miRNAs were identified in all the samples. RESULTS We analyzed the expression levels of these EV-derived miRNAs of the favorable (n = 10) and non-favorable (n = 22) risk groups; we identified 32 differentially expressed EV-derived miRNAs in the non-favorable risk group. The correlation of these miRNAs with risk stratification and patient survival was analyzed using the information of patients with AML from The Cancer Genome Atlas (TCGA) database. Of the miRNAs with downregulated expression in the non-favorable risk group, hsa-miR-181b and hsa-miR-143 were correlated with non-favorable risk and short overall survival. Regarding the miRNAs with upregulated expression in the non-favorable risk group, hsa-miR-188 and hsa-miR-501 were correlated with non-favorable risk and could predict poor survival. Through EV-derived miRNAs-mRNA network analysis using TCGA database, we identified 21 mRNAs that could be potential poor prognosis biomarkers. CONCLUSIONS Overall, our findings revealed that EV-derived miRNAs can serve as biomarkers for risk stratification and prognosis in AML. In addition, these EV-derived miRNA-based bioinformatic analyses could help efficiently identify mRNAs with biomarker potential, similar to the previous cell-based approach.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/diagnosis
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/genetics
- Female
- Male
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Adult
- Aged
- Gene Expression Profiling
- Prognosis
Collapse
Affiliation(s)
- Ka-Won Kang
- Department of Internal Medicine, Division of Hematology-Oncology, Korea University College of Medicine, Seoul, South Korea
| | - Jeong-An Gim
- Department of Medical Science, Soonchunhyang University, Asan-si, South Korea
| | - Sunghoi Hong
- School of Biosystem and Biomedical Science, Korea University, Seoul, South Korea
| | - Hyun Koo Kim
- Department of Thoracic and Cardiovascular Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul, South Korea
| | - Ji-ho Park
- Department of Bio and Brain Bioengineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yong Park
- Department of Internal Medicine, Division of Hematology-Oncology, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Li X, Wu Y, Yang X, Gao R, Lu Q, Lv X, Chen Z. The cooperative regulatory effect of the miRNA-130 family on milk fat metabolism in dairy cows. Anim Biosci 2024; 37:1289-1302. [PMID: 38665085 PMCID: PMC11222843 DOI: 10.5713/ab.23.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 03/02/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE There is a strong relationship between the content of beneficial fatty acids in milk and milk fat metabolic activity in the mammary gland. To improve milk quality, it is therefore necessary to study fatty acid metabolism in bovine mammary gland tissue. In adipose tissue, peroxisome proliferator-activated receptor gamma (PPARG), the core transcription factor, regulates the fatty acid metabolism gene network and determines fatty acid deposition. However, its regulatory effects on mammary gland fatty acid metabolism during lactation have rarely been reported. METHODS Transcriptome sequencing was performed during the prelactation period and the peak lactation period to examine mRNA expression. The significant upregulation of PPARG drew our attention and led us to conduct further research. RESULTS According to bioinformatics prediction, dual-luciferase reporter system detection, real-time quantitative reverse transcription polymerase chain reaction and Western blotting, miR-130a and miR-130b could directly target PPARG and inhibit its expression. Furthermore, triglyceride and oil red O staining proved that miR-130a and miR-130b inhibited milk fat metabolism in bovine mammary epithelial cells (BMECs), while PPARG promoted this metabolism. In addition, we also found that the coexpression of miR-130a and miR-130b significantly enhanced their ability to regulate milk fat metabolism. CONCLUSION In conclusion, our findings indicated that miR-130a and miR-130b could target and repress PPARG and that they also have a functional superposition effect. miR-130a and miR-130b seem to synergistically regulate lipid catabolism via the control of PPARG in BMECs. In the long-term, these findings might be helpful in developing practical means to improve high-quality milk.
Collapse
Affiliation(s)
- Xiaofen Li
- School of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300,
China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Xiaozhi Yang
- School of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300,
China
| | - Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Qinyue Lu
- Laboratory of Animal Developmental Biology, Department of Animal Science, Chungbuk National University, Cheongju 28644,
Korea
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009,
China
- International Joint Research Laboratory, Universities of Jiangsu Province of China, Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009,
China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| |
Collapse
|
7
|
Abdel-Hamid NR, Mohammed EA, Toraih EA, Kamel MM, Abdelhafiz AS, Badr FM. Circulating ESR1, long non-coding RNA HOTAIR and microRNA-130a gene expression as biomarkers for breast cancer stage and metastasis. Sci Rep 2023; 13:22654. [PMID: 38114755 PMCID: PMC10730703 DOI: 10.1038/s41598-023-50007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Breast cancer, the most prevalent cancer among women, has posed a significant challenge in identifying biomarkers for early diagnosis and prognosis. This study aimed to elucidate the gene expression profile of Estrogen Receptor-1 (ESR-1), long non-coding RNA HOTAIR, and microRNA-130a in the serum of Egyptian breast cancer patients, evaluating the potential of HOTAIR and miR-130a as biomarkers for predicting pathological parameters in BC. The study involved 45 patients with primary BC, with serum samples collected preoperatively and postoperatively twice. The expression levels of ESR-1, HOTAIR, and miR-130a were quantified using real-time PCR and analyzed for correlations with each other and with the clinical and pathological parameters of the patients. Serum HOTAIR levels exhibited a strong positive association with metastasis and demonstrated a significant increase after 6 months in all patients with locally advanced and stage IV BC. Conversely, tumors with advanced stages and metastatic lesions showed significantly lower expression levels of miR-130a. Notably, a significant positive correlation was observed between preoperative ESR-1 expression and both HOTAIR and miR-130a levels. Serum HOTAIR and miR-130a levels have emerged as promising non-invasive biomarkers with the potential to predict the pathological features of BC patients. HOTAIR, an oncogenic long non-coding RNA (lncRNA), and miR-130a, a tumor suppressor miRNA, play crucial roles in tumor progression. Further investigations are warranted to elucidate the intricate interplay between HOTAIR and miR-130a and to fully comprehend the contribution of HOTAIR to BC recurrence and its potential utility in early relapse prediction.
Collapse
Affiliation(s)
- Noura R Abdel-Hamid
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Mohammed
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Mahmoud M Kamel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Kasr Al-Aini Street, From El-Khalig Square, Cairo, 11796, Egypt
- Baheya Centre for Early Detection and Treatment of Breast Cancer, Giza, Egypt
| | - Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Kasr Al-Aini Street, From El-Khalig Square, Cairo, 11796, Egypt.
| | - Fouad M Badr
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Tang S, Kong P, Li Q, Tang X. Circ_0071589 contributes to growth, angiogenesis, and metastasis of colorectal cancer through regulating miR-296-5p/EN2 axis. J Biochem Mol Toxicol 2023; 37:e23509. [PMID: 37670439 DOI: 10.1002/jbt.23509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/01/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
To explore the function and regulation mechanism of circ_0071589 in colorectal cancer (CRC). The expression levels of circ_0071589, microRNA-296-5p (miR-296-5p), and Engrailed-2 (EN2) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was performed to check the protein levels of EN2 and apoptosis-related proteins. Cell colony formation and 5-Ethynyl-29-deoxyuridine (EdU) assay were used to exhibit cell proliferation. Cell apoptosis was shown by flow cytometry. Tube formation assay manifested the angiogenesis ability of CRC cells. Transwell assay demonstrated cell migration and invasion. The interaction between miR-296-5p and circ_0071589 or EN2 was identified by dual-luciferase reporter assay. The effect of circ_0071589 on tumor formation was demonstrated by in vivo tumor formation experiments. Immunohistochemical (IHC) assay was used to detect the positive cell rate of Ki67 in tumor tissue. Circ_0071589 was upregulated in CRC tissue and cells. Circ_0071589 knockdown repressed CRC cells proliferation, angiogenesis, migration, invasion, and promoted cell apoptosis. MiR-296-5p was downregulated in CRC tissue and cells. And miR-296-5p inhibitor could reverse the malignant phenotypes and angiogenesis inhibition of CRC cells caused by circ_0071589 knockdown. Additionally, miR-296-5p decreased CRC cell colony formation, EdU-positive cells, angiogenesis, and increased cell apoptosis through reducing the expression level of EN2. Finally, circ_0071589 silencing inhibited tumor formation in vivo. Circ_0071589 upregulated EN2 expression through sponging miR-296-5p, thereby promoting the malignant phenotype and angiogenesis of CRC cells, which provided a new target for the treatment of CRC.
Collapse
Affiliation(s)
- Shiyu Tang
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Pengfei Kong
- Department Of Anorectal, Intergrated Western And Chinese Colorectal And Anal Surgery, Affiliated Hospital Of North Sichuan Medical College, Sichuan, China
| | - Qian Li
- North Sichuan Medical College, Sicchuan, China
| | - Xuegui Tang
- Department Of Anorectal, Intergrated Western And Chinese Colorectal And Anal Surgery, Affiliated Hospital Of North Sichuan Medical College, Sichuan, China
| |
Collapse
|
9
|
Babadag S, Çelebi-Saltik B. A cellular regulator of the niche: telocyte. Tissue Barriers 2023; 11:2131955. [PMID: 36218299 PMCID: PMC10606812 DOI: 10.1080/21688370.2022.2131955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022] Open
Abstract
Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems. During this interaction, along with organelles, mRNA, microRNA, long non-coding RNA, and genomic DNA are transferred. This review article not only specifies the properties of TCs and their roles in the tissue organ microenvironment but also gives information about the factors that play a role in the transport of epigenetic information by TCs.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| |
Collapse
|
10
|
Fonseca ÁYG, González-Giraldo Y, Santos JG, Aristizábal-Pachón AF. The hsa-miR-516a-5p and hsa-miR-516b-5p microRNAs reduce the migration and invasion on T98G glioblastoma cell line. Cancer Genet 2023; 270-271:12-21. [PMID: 36410106 DOI: 10.1016/j.cancergen.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/17/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
microRNAs (miRNAs) are involved in numerous functions and processes in the brain and other organs through the regulation of gene and protein expression. miRNA dysregulation is associated with the development of several diseases, including the brain and Central Nervous System cancer (CNS). The hsa-miR-516a-5p and hsa-miR-516b-5p are involved in proliferation, migration, and invasion in different tumor models, but their antitumor effect has not been evaluated in cancer of CNS. Therefore, we aimed to assess the effect of the miRNAs hsa-miR-516a-5p and miRNA hsa-miR-516b-5p on the Glioblastoma cell line (T98G). We used synthetic miRNA mimics to induce the overexpression of both miRNAs in the cell line, which was corroborated by RT-qPCR. Next, we evaluated the effect on proliferation, migration, and invasion using the CyQuant direct kit, ThinCert ™ inserts and invasion BioCoat ™ Matrigel® Invasion Chambers. We found upregulation of these miRNAs induced significant changes on the migration and invasion processes of T98G cells, but not affected the proliferation rate. These results suggest that both microRNAs could be playing an important role in the control of tumor progression towards metastasis. The bioinformatics analysis showed that target genes for these miRNAs are involved in different biological processes such as in cell adhesion molecule binding and cell junction disassembly, which are important for cancer progression. Further studies and experimental validation are needed to identify the genes regulated by microRNAs.
Collapse
Affiliation(s)
- Ángela Y García Fonseca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Jannet Gonzalez Santos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia
| | - Andrés F Aristizábal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia.
| |
Collapse
|
11
|
Liu H, Wei Z, Shi K, Zhang Y, Li J. miRNA-130a-3p/CPEB4 Axis Modulates Glioblastoma Growth and Progression. Technol Cancer Res Treat 2023; 22:15330338231218218. [PMID: 38130149 DOI: 10.1177/15330338231218218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Glioblastoma is the most frequent form of malignant brain tumor. Cytoplasmic polyadenylation element binding protein 4 (CPEB4) is overexpressed and involved in the tumorigenesis and metastasis of glioblastoma. miR-130a-3p has been revealed to be aberrantly expressed in tumors and has aroused wide attention. In present study, we would like to investigate the effect and potential mechanism of miR-130a-3p on the proliferation and migration in glioblastoma. The relative expression levels of miR-130a-3p and CPEB4 in glioblastoma cell lines were detected by real-time quantitative polymerase chain reaction. Cell viability and migration were detected by methylthiazolyl tetrazolium assay and transwell assay, and cell cycle analysis was detected by flow cytometry. The expression of CPEB4 protein and epithelial-mesenchymal transition associated markers were detected by western blot. Bioinformatics and luciferase activity analysis were used to verify the targeting relationship between miR-130a-3p and CPEB4. We observed that the expression of CPEB4 was upregulated while that of miR-130a-3p was downregulated in glioblastoma cell lines. CPEB4 was validated as a target of miR-130a-3p by luciferase activity assay. Increased levels of miR-130a-3p inhibited the proliferation and migration of the glioblastoma cells and the overexpression of miR-130a-3p inhibited epithelial-mesenchymal transition. However, CPEB4 overexpression resisted the inhibitory effects of miR-130a-3p. Our study elucidates CPEB4 is upregulated because of the downregulated miR-130a-3p in glioblastoma, which enhances the glioblastoma growth and migration, suggesting a potential therapeutic target for the disease.
Collapse
Affiliation(s)
- Hongchao Liu
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Zhihao Wei
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Kangke Shi
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Yu Zhang
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| | - Jiaqiong Li
- Department of Pathology, The Yiluo Hospital of Luoyang, The Teaching Hospital of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
12
|
Integrating Expression Data-Based Deep Neural Network Models with Biological Networks to Identify Regulatory Modules for Lung Adenocarcinoma. BIOLOGY 2022; 11:biology11091291. [PMID: 36138770 PMCID: PMC9495551 DOI: 10.3390/biology11091291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022]
Abstract
Simple Summary The growing evidence suggested that competing endogenous RNAs (ceRNAs) have significant associations with tumor occurrence and progression, yet the regulatory mechanism of them in lung adenocarcinoma remains unclear. Identification of the regulatory modules for lung adenocarcinoma is a critical and fundamental step towards understanding the regulatory mechanisms during carcinogenesis. Deep neural network (DNN) models have become a powerful tool to intelligently recognize the sophisticated relationships of ceRNAs appropriately. In this paper, multiple deep neural network models were constructed using the expression data to identify regulatory modules for lung adenocarcinoma in biological networks. Three identified regulatory modules association with lung adenocarcinoma were validated from three aspects, i.e., literature review, functional enrichment analysis, and an independent dataset. The regulatory relationships between RNAs were validated in various datasets, including CPTAC, TCGA and an expression profile from the GEO database. Our study will contribute to improving the understanding of regulatory mechanisms in the carcinogenesis of lung adenocarcinoma and provide schemes for identifying novel regulatory modules of other cancers. Abstract Lung adenocarcinoma is the most common type of primary lung cancer, but the regulatory mechanisms during carcinogenesis remain unclear. The identification of regulatory modules for lung adenocarcinoma has become one of the hotspots of bioinformatics. In this paper, multiple deep neural network (DNN) models were constructed using the expression data to identify regulatory modules for lung adenocarcinoma in biological networks. First, the mRNAs, lncRNAs and miRNAs with significant differences in the expression levels between tumor and non-tumor tissues were obtained. MRNA DNN models were established and optimized to mine candidate mRNAs that significantly contributed to the DNN models and were in the center of an interaction network. Another DNN model was then constructed and potential ceRNAs were screened out based on the contribution of each RNA to the model. Finally, three modules comprised of miRNAs and their regulated mRNAs and lncRNAs with the same regulation direction were identified as regulatory modules that regulated the initiation of lung adenocarcinoma through ceRNAs relationships. They were validated by literature and functional enrichment analysis. The effectiveness of these regulatory modules was evaluated in an independent lung adenocarcinoma dataset. Regulatory modules for lung adenocarcinoma identified in this study provided a reference for regulatory mechanisms during carcinogenesis.
Collapse
|
13
|
Investigating melanogenesis-related microRNAs as disease biomarkers in vitiligo. Sci Rep 2022; 12:13526. [PMID: 35941163 PMCID: PMC9360006 DOI: 10.1038/s41598-022-17770-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Vitiligo is considered a disabling disease that affects physical, social, psychological, and occupational aspects of an individual's quality of life. The search for non-invasive and reliable biomarkers for vitiligo's early diagnosis, prognosis, and treatment prediction is under intensive investigation. There is currently an emerging interest in employing miRNAs as biomarkers to predict vitiligo diagnosis and prognosis, inspired by the well-preserved nature of miRNAs in serum or plasma. In the current study, we assessed a panel of 20 melanogenesis pathway-related microRNAs (miRNAs) using quantitative real-time PCR technique in 85 non-segmental vitiligo (NSV) patients compared to 85 normal controls followed by function and pathway enrichment analysis for the miRNAs with significant results. Twelve out of the 20 circulating miRNAs showed significantly higher expression levels in vitiligo patients relative to controls where miR-423 show the highest expression level followed by miR-182, miR-106a, miR-23b, miR-9, miR-124, miR-130a, miR-203a, miR-181, miR-152, and miR-320a. While six miRNAs (miR-224, miR-148a, miR-137, and miR-7, miR-148b, miR-145, miR-374b, and miR-196b) didn’t show significant expression level. The analysis of the receiver operating curve indicated that miR-423, miR-106a, and miR-182 were outstanding biomarkers with the highest areas under the curve in vitiligo. This study is the first Egyptian study to investigate a panel of miRNAs expression profile in the plasma of patients with NSV. Our results suggest that specific circulating miRNAs signature might be implicated in vitiligo pathogenesis and could potentially be used as biomarkers in vitiligo.
Collapse
|
14
|
Overexpression of microRNA-130a represses uveal melanoma cell migration and invasion through inactivation of the Wnt/β-catenin signaling pathway by downregulating USP6. Cancer Gene Ther 2022; 29:930-939. [PMID: 34522027 DOI: 10.1038/s41417-021-00377-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022]
Abstract
Uveal melanoma (UM) is a neoplasm arising from melanocytes of the ciliary body, choroid, and iris of the eye, which is the most common primary malignant intraocular tumor. microRNA-130a (miR-130a) has been confirmed to be underexpressed in many types of cancers. Here we aimed to investigate the mechanism whereby miR-130a affects the Wnt/β-catenin signaling pathway by targeting ubiquitin-specific protease 6 (USP6) in UM. Ocular specimens of 62 patients with UM and 42 participants subjected to enucleation due to trauma were collected. In the normal uveal tissues and those from metastatic and non-metastatic UM, we evaluated miR-130a expression by RT-qPCR and then measured mRNA and protein expression of recombinant human mothers against decapentaplegic homolog 4 (SMAD4), USP6, related factors of the Wnt/β-catenin signaling pathway, and epidermal growth factor receptor (EGFR) by RT-qPCR and western blot analysis. Subsequently, the interaction between miR-130a and USP6 was identified by bioinformatics analysis and dual-luciferase reporter gene assay. Next, UM cell migration and invasion abilities, as well as tumor growth in nude mice, were measured through gain- and loss-of-function studies of miR-130a and USP6. miR-130a expression was downregulated in uveal tissues from patients with UM, especially in metastatic uveal tissues. The overall survival of UM patients with low miR-130a expression was shorter than those with high miR-130a expression. USP6 was a target of miR-130a and the overexpression of miR-130a or inhibition of USP6 in UM MUM-2B and MUM-2C cell lines inhibited the expression of Wnt, β-catenin, and EGFR, and activated SMAD4 expression, while reducing UM cell migration and invasion abilities in vitro. The above changes could be reversed by overexpressing USP6 in vitro, whereas overexpressed miR-130a could inhibit the tumor growth in nude mice. Taken together, overexpressed miR-130a inhibited USP6 expression to repress UM cell migration and invasion abilities through inactivating the Wnt/β-catenin signaling pathway, which could be a potential candidate for treatment of UM.
Collapse
|
15
|
Li J, Shen Z, Chen W, Feng Z, Fang L, Zhao J, Liu C, Du J, Cheng Y. Screening of miRNAs in White Blood Cell as a Radiation Biomarkers for Rapid Assessment of Acute Radiation Injury. Dose Response 2022; 20:15593258221123679. [PMID: 36132708 PMCID: PMC9483971 DOI: 10.1177/15593258221123679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Accidental radiation exposure is a threat to human health that necessitates
effective clinical diagnosis. Suitable biomarkers are urgently needed for early
assessment of exposure dose. Existing technologies being used to assess the
extent of radiation have notable limitations. As a radiation biomarker, miRNA
has the advantages of simple detection and high throughput. In this study, we
screened for miRNAs with dose and time dependent responses in peripheral blood
leukocytes via miRNA sequencing in establishing the animal model of acute
radiation injury. Four radiation-sensitive and stably expressed miRNAs were
selected out in the 24 h group of leukocyte miRNAs: mmu-miR-130b-5p,
mmu-miR-148b-5p, mmu-miR-184-3p, mmu-miR-26a-2-3p, and five were screened in the
48 h group of leukocyte miRNAs: mmu-miR-130b-5p, mmu-miR-423-5p, mmu-miR-676-3p,
mmu-miR-150-5p, mmu-miR-342-3p.The correlation curves between their expression
and irradiation dose were plotted. Then, the results were validated by RT-qPCR
in mouse peripheral blood. As a result, mmu-miR-150-5p and mmu-miR-342-3p showed
the highest correlation at 48h after irradiation, and mmu-miR-130b-5p showed
good correlation at both 24 h and 48 h after irradiation. In a conclusion, the
miRNAs that are sensitive to ionizing radiation with dose dependent effects were
selected out, which have the potential of forming a rapid assessment scheme for
acute radiation injury.
Collapse
Affiliation(s)
- Jiaxun Li
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Zhefan Shen
- College of Basic Medicine, Naval Medical University, Shanghai, China
| | - Wei Chen
- Naval Medical Center, Naval Medical University, Shanghai, China
| | | | - Lan Fang
- Naval Medical University, Shanghai, China
| | | | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Plasma-derived extracellular vesicles transfer microRNA-130a-3p to alleviate myocardial ischemia/reperfusion injury by targeting ATG16L1. Cell Tissue Res 2022; 389:99-114. [PMID: 35503135 DOI: 10.1007/s00441-022-03605-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Extracellular vesicles (EVs) are implicated in myocardial ischemia/reperfusion (I/R) injury as modulators by shuttling diverse cargoes, including microRNAs (miRNAs). The current study was initiated to unravel the potential involvement of plasma-derived EVs carrying miR-130a-3p on myocardial I/R injury. Rats were induced with moderate endoplasmic reticulum stress, followed by isolation of plasma-derived EVs. Then, an I/R rat model and hypoxia/reoxygenation (H/R) cardiomyoblast model were established to simulate a myocardial I/R injury environment where miR-130a-3p was found to be abundantly expressed. miR-130a-3p was confirmed to target and negatively regulate autophagy-related 16-like 1 (ATG16L1) in cardiomyoblasts. Based on a co-culture system, miR-130a-3p delivered by EVs derived from plasma protected H/R-exposed cardiomyoblasts against H/R-induced excessive cardiomyoblast autophagy, inflammation, and damage, improving cardiac dysfunction as well as myocardial I/R-induced cardiac dysfunction and tissue injury. The mechanism underlying the functional role of EVs-loaded miR-130a-3p was found to be dependent on its targeting relation with ATG16L1. The protective action of EV-carried miR-130a-3p was further re-produced in a rat model serving as in vivo validation as evidenced by improved cardiac function, tissue injury, myocardial fibrosis, and myocardial infarction. Collectively, miR-130a-3p shuttled by plasma-derived EVs was demonstrated to alleviate excessive cardiomyoblast autophagy and improve myocardial I/R injury.
Collapse
|
17
|
Message in a Bottle: Endothelial Cell Regulation by Extracellular Vesicles. Cancers (Basel) 2022; 14:cancers14081969. [PMID: 35454874 PMCID: PMC9026533 DOI: 10.3390/cancers14081969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Elucidating the role of extracellular vesicles (EVs) in the communication mechanisms between cancer and endothelial cells (ECs) within the tumor microenvironment is an exciting challenge. At the same time, due to their ability to convey bioactive molecules, EVs may be potentially relevant from a therapeutic perspective for diverse vascular pathologies. Abstract Intercellular communication is a key biological mechanism that is fundamental to maintain tissue homeostasis. Extracellular vesicles (EVs) have emerged as critical regulators of cell–cell communication in both physiological and pathological conditions, due to their ability to shuttle a variety of cell constituents, such as DNA, RNA, lipids, active metabolites, cytosolic, and cell surface proteins. In particular, endothelial cells (ECs) are prominently regulated by EVs released by neighboring cell types. The discovery that cancer cell-derived EVs can control the functions of ECs has prompted the investigation of their roles in tumor angiogenesis and cancer progression. In particular, here, we discuss evidence that supports the roles of exosomes in EC regulation within the tumor microenvironment and in vascular dysfunction leading to atherosclerosis. Moreover, we survey the molecular mechanisms and exosomal cargoes that have been implicated in explanations of these regulatory effects.
Collapse
|
18
|
Bernardes JGB, Fernandes MR, Rodrigues JCG, Vinagre LWMS, Pastana LF, Dobbin EAF, Medeiros JAG, Dias Junior LB, Bernardes GM, Bernardes IMM, Santos NPCD, Demachki S, Burbano RMR. Association of Androgenic Regulation and MicroRNAs in Acinar Adenocarcinoma of Prostate. Genes (Basel) 2022; 13:genes13040622. [PMID: 35456428 PMCID: PMC9030213 DOI: 10.3390/genes13040622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Prostate cancer represents 3.8% of cancer deaths worldwide. For most prostate cancer cells to grow, androgens need to bind to a cellular protein called the androgen receptor (AR). This study aims to demonstrate the expression of five microRNAs (miRs) and its influence on the AR formation in patients from the northern region of Brazil. Material and Methods: Eighty-four tissue samples were investigated, including nodular prostatic hyperplasia (NPH) and acinar prostatic adenocarcinoma (CaP). Five miRs (27a-3p, 124, 130a, 488-3p, and 506) were quantified using the TaqMan® Real Time PCR method and AR was measured using Western blotting. Results: Levels of miRs 124, 130a, 488-3p, and 506 were higher in NPH samples. Conversely, in the CaP cases, higher levels of miR 27a-3p and AR were observed. Conclusion: In the future, these microRNAs may be tested as markers of CaP at the serum level. The relative expression of AR was 20% higher in patients with prostate cancer, which suggests its potential as a biomarker for prostate malignancy.
Collapse
Affiliation(s)
- Julio Guilherme Balieiro Bernardes
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66050-160, Brazil; (J.G.B.B.); (L.B.D.J.); (I.M.M.B.)
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Marianne Rodrigues Fernandes
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
- Hospital Ophir Loyola, Belém 66063-240, Brazil
- Correspondence:
| | - Juliana Carla Gomes Rodrigues
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Lui Wallacy Morikawa Souza Vinagre
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Lucas Favacho Pastana
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Elizabeth Ayres Fragoso Dobbin
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Jéssyca Amanda Gomes Medeiros
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Leonidas Braga Dias Junior
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém 66050-160, Brazil; (J.G.B.B.); (L.B.D.J.); (I.M.M.B.)
| | | | | | - Ney Pereira Carneiro Dos Santos
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Samia Demachki
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
| | - Rommel Mario Rodriguez Burbano
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66073-005, Brazil; (J.C.G.R.); (L.W.M.S.V.); (L.F.P.); (E.A.F.D.); (J.A.G.M.); (N.P.C.D.S.); (S.D.); (R.M.R.B.)
- Hospital Ophir Loyola, Belém 66063-240, Brazil
| |
Collapse
|
19
|
Feng Y, Bao Y, Ding J, Li H, Liu W, Wang X, Guan H, Chen Z. MicroRNA-130a attenuates cardiac fibrosis after myocardial infarction through TGF-β/Smad signaling by directly targeting TGF-β receptor 1. Bioengineered 2022; 13:5779-5791. [PMID: 35188441 PMCID: PMC8973730 DOI: 10.1080/21655979.2022.2033380] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cardiac fibrosis is a common pathophysiological change associated with myocardial infarction (MI), and while there is evidence that miR-130a plays an important role in a variety of fibrotic diseases, its role in the cardiac fibrosis during MI is unclear. Our study aimed to assess miR-130a’s ability to modulate cardiac fibrosis post-MI and uncover its potential molecular mechanisms. miR-130a was significantly downregulated in infarcted myocardium and hypoxic cardiac fibroblasts (CFs), whereas TGF-β, α-SMA, collagen 1 (Col-1), and TGF-β receptor 1 (TGFBR1) were upregulated. We transfected mice with AAV-9 carrying miR-130a and found that miR-130a overexpression statistically improved cardiac function and reduced the area of cardiac fibrosis in mice post-MI. Eukaryotic transcriptome sequencing and dual-luciferase reporter assay results verified that Tgfbr1 was a target gene of miR-130a. miR-130a inhibition heightened Col-1, α-SMA, and TGFBR1 expressions and Smad3 phosphorylation levels in CFs; however, these increments were suppressed by the overexpression of miR-130a. Meanwhile, co-transfection with TGFBR1 weakened miR-130a’s ability to inhibit α-SMA and Col-1 expression. These findings suggest that miR-130a exerts antifibrotic properties by directly targeting TGFBR1 to regulate TGF-β/Smad signaling and inhibit the conversion of CFs to myofibroblasts. Thus, miR-130a is a promising therapeutic target for alleviating cardiac fibrosis.
Collapse
Affiliation(s)
- Yu Feng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yintu Bao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxing Ding
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huili Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuehua Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongquan Guan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijian Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
21
|
Jia L, Lei B, Gao H, Jia L, Luo D, Han J, Jia B. miR-130b suppresses the invasion and migration of prostate cancer via inhibiting DLL1 and regulating the PI3K/Akt pathways. Exp Ther Med 2022; 23:98. [PMID: 34976140 PMCID: PMC8674980 DOI: 10.3892/etm.2021.11021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer occurs in the prostatic epithelium and poses a threat to the health of middle-aged and older males. The objective of the present study was to explore the roles of microRNA (miRNA/miR)-130b in prostate cancer and potential molecular mechanisms in order to control the migration and invasion of prostate cancer. For this purpose, reverse transcription-PCR was performed to evaluate the mRNA levels of DLL1, phosphoinositide-3 kinase (PI3K), protein kinase B (Akt) and matrix metalloproteinase (MMP)9, and western blot analysis was carried out to detect the protein expression levels of DLL1, phosphorylated (p)-PI3K, p-Akt and MMP9. A Transwell assay was conducted to examine the invasion rate of prostate cancer cells. Furthermore, a scratch wound assay was performed to examine the migration rate of prostate cancer cells. A luciferase assay was performed to examine the interaction between miRNA and its target mRNA. The results revealed that miR-130b had abnormal (low) expression in tumor tissues compared with that in the adjacent normal tissue. An miR-130b mimic suppressed the expression of DLL1. The expression of p-PI3K, p-Akt and MMP9 in prostate cancer cells transfected with the miR-130b mimic was decreased in comparison to the negative control and control groups. Furthermore, migration and invasion were significantly suppressed in the miR-130b mimic group. In conclusion, a novel pathway interlinking miR-130b and MMP9, p-Akt and p-PI3K, which regulates the migration and invasion of prostate cancer cells, was identified. These findings provide an intriguing biomarker and treatment strategy for patients with prostate cancer.
Collapse
Affiliation(s)
- Li Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Bin Lei
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Huaijun Gao
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Lin Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Dan Luo
- Department of General Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| | - Jianjun Han
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan 621000, P.R. China
| | - Bingxin Jia
- Department of Urology Surgery, Yulin Traditional Chinese Medicine Hospital, Yulin, Shaanxi 719000, P.R. China
| |
Collapse
|
22
|
Peng G, Liu Y, Yang C, Shen C. MicroRNA-25 promotes cell proliferation, migration and invasion in glioma by directly targeting cell adhesion molecule 2. Exp Ther Med 2021; 23:16. [PMID: 34815768 PMCID: PMC8593921 DOI: 10.3892/etm.2021.10938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Numerous microRNAs (miRNAs/miRs) have been demonstrated to serve oncogenic or suppressive roles in glioma. Exploration of the underlying molecular mechanism of miRNAs in the development and progression of glioma is beneficial for the identification of novel therapeutic targets. In the present study, the function of miR-25 in glioma progression, as well as its underlying mechanism, were investigated. It was determined that miR-25 was significantly upregulated in glioma tissues and cell lines compared with normal brain tissues and cells, respectively. Furthermore, high expression levels of miR-25 were associated with an advanced clinical stage. The knockdown of miR-25 expression significantly reduced glioma cell proliferation, migration and invasion. Cell adhesion molecule 2 (CADM2) was identified as a direct target of miR-25 in glioma cells. Moreover, CADM2 expression level was significantly downregulated and inversely correlated with miR-25 expression level in glioma tissues, indicating that the expression of CADM2 was negatively regulated by miR-25. The inhibition of CADM2 expression counteracted the effects on glioma cell proliferation, migration and invasion caused by miR-25 downregulation. Furthermore, CADM2 knockdown considerably promoted the proliferation and migration of glioma cells. In summary, the present study demonstrated that miR-25 was significantly upregulated in glioma and that it promoted glioma cell proliferation, migration and invasion, at least partially, by directly targeting CADM2. These findings expanded the understanding of the molecular mechanism that underlies glioma progression.
Collapse
Affiliation(s)
- Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chenxing Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
23
|
Dexamethasone Suppresses Palatal Cell Proliferation through miR-130a-3p. Int J Mol Sci 2021; 22:ijms222212453. [PMID: 34830336 PMCID: PMC8621257 DOI: 10.3390/ijms222212453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Cleft lip with or without cleft palate (CL/P) is one of the most common congenital birth defects. This study aims to identify novel pathogenic microRNAs associated with cleft palate (CP). Through data analyses of miRNA-sequencing for developing palatal shelves of C57BL/6J mice, we found that miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p were significantly upregulated, and that miR-19a-3p, miR-130a-3p, miR-301a-3p, and miR-486b-5p were significantly downregulated, at embryonic day E14.5 compared to E13.5. Among them, overexpression of the miR-449 family (miR-449a-3p, miR-449a-5p, miR-449b, miR-449c-3p, and miR-449c-5p) and miR-486b-5p resulted in reduced cell proliferation in primary mouse embryonic palatal mesenchymal (MEPM) cells and mouse cranial neural crest cell line O9-1. On the other hand, inhibitors of miR-130a-3p and miR-301a-3p significantly reduced cell proliferation in MEPM and O9-1 cells. Notably, we found that treatment with dexamethasone, a glucocorticoid known to induce CP in mice, suppressed miR-130a-3p expression in both MEPM and O9-1 cells. Moreover, a miR-130a-3p mimic could ameliorate the cell proliferation defect induced by dexamethasone through normalization of Slc24a2 expression. Taken together, our results suggest that miR-130-3p plays a crucial role in dexamethasone-induced CP in mice.
Collapse
|
24
|
Lu X, Tu H, Tang D, Huang X, Sun F. miR-130a-3p Enhances the Chemosensitivity of Y79 Retinoblastoma Cells to Vincristine by Targeting PAX6 Expression. Curr Eye Res 2021; 47:418-425. [PMID: 34547965 DOI: 10.1080/02713683.2021.1984537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Chemoresistance remains the primary obstacle threatening the prognosis of retinoblastoma (RB). microRNAs (miRNAs) are acknowledged as critical regulators of drug resistance. This study explored the molecular mechanism of miR-130a-3p affecting the chemosensitivity of RB to vincristine (VCR). METHODS miR-130a-3p expression of human retinal astrocytes and RB cell lines (Y79, WERI-Rb-1, SO-Rb50, and SO-Rb70) was detected using RT-qPCR. VCR-resistant RB cell line Y79/VCR was induced. miR-130a-3p expression of Y79/VCR cell line and its corresponding parental cell line was detected. Y79/VCR cells were subjected to miR-130a-3p overexpression treatment. The cell proliferation was measured using MTT assay, and the IC50 value and drug resistance index were examined using CCK-8 assay. The targeting relationship between miR-130a-3p and PAX6 was predicted through bioinformatics analysis and verified using dual-luciferase assay. Functional rescue experiments were conducted to confirm the role of PAX6 in chemosensitivity of RB cells. The effect of miR-130a-3p on tumorigenesis and VCR sensitivity was observed in vivo. RESULTS miR-130a-3p was downregulated in VCR-resistant RB cells. Overexpression of miR-130a-3p repressed the proliferation of Y79/VCR cells and enhanced chemosensitivity. miR-130a-3p targeted PAX6 expression. Overexpression of PAX6 reversed the effect of miR-130a-3p on chemosensitivity of Y79/VCR cells. Overexpression of miR-130a-3p suppressed tumor growth and reduced VCR resistance in vivo. CONCLUSIONS miR-130a-3p enhanced the chemosensitivity of Y79 RB cells to VCR by targeting PAX6 expression.
Collapse
Affiliation(s)
- Xiulan Lu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Huifang Tu
- Eyelid and Ocular Disease Department, Wuhan Aier Eye Hospital of Wuhan University, Wuhan, China
| | - Dongrun Tang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaoming Huang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Fengyuan Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
25
|
Downregulation of Tim-1 inhibits the proliferation, migration and invasion of glioblastoma cells via the miR-133a/TGFBR1 axis and the restriction of Wnt/β-catenin pathway. Cancer Cell Int 2021; 21:347. [PMID: 34225723 PMCID: PMC8256541 DOI: 10.1186/s12935-021-02036-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
Background Glioblastoma remains one of the most lethal brain cancers. T-cell immunoglobulin and mucin domain 1 (Tim-1) is associated with various immune diseases. The molecular mechanism of Tim-1 in regulating glioblastoma cell proliferation, invasion, and migration is still unknown. Moreover, it has shown that miR-133a plays an important role in glioblastoma. However, little is known about the interaction between Tim-1 and miR-133a in glioblastoma. Methods Tim-1 expression in glioblastoma and normal brain tissues was detected by qPCR, Western Blot and IHC. After Tim-1 knockdown in U251 and U87 cells, genes showing significantly differential expression, along with the significant differential miRNAs were analyzed using RNA-seq analysis. The binding sites were verified using dual-luciferase reporter gene assay. U251 and U87 cells were allocated into the small harpin-negative control (sh-NC), sh-Tim-1, sh-Tim-1 + inhibitor NC, and sh-Tim-1 + miR-133a inhibitor group. Cell proliferation, migration, and invasion were determined by CCK-8, flow cytometry, wound-healing and Transwell assays, respectively. Next, U251 and U87 cells were allocated into the mimic NC, miR-133a mimic, miR-133a mimic + pcDNA3.1, and miR-133a mimic + pcDNA3.1-TGFBR1 groups, followed by the detection of cell proliferation, migration, and invasion. Western blot was used to identify the expression of vital kinases in the Wnt/β-catenin pathway. Results Tim-1 was highly expressed in glioblastoma tissues compared with that in normal brain tissues. RNA-seq analysis showed that Tim-1 knockdown could lead to the downregulation of TGFBR1 and the upregulation of miR-133a. The binding sites between TGFBR1 and miR-133a were confirmed. Tim-1 knockdown impaired the invasion, migration, proliferation of U251 and U87 cells, which could be reversed by miR-133a downregulation. miR-133a upregulation inhibited the proliferation, invasion, and migration of U251 and U87 cells, which could be reversed by TGFBR1 upregulation. Tim-1 knockdown and miR-133a upregulation could inhibit the activation of the Wnt/β-catenin pathway, while the elevation of TGFBR1 showed opposite effects. Conclusion Tim-1 knockdown inhibited glioblastoma cell proliferation, invasion, and migration through the miR-133a/TGFBR1 axis and restrained the activation of the Wnt/β-catenin pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02036-1.
Collapse
|
26
|
Deng B, Tang X, Wang Y. Role of microRNA-129 in cancer and non-cancerous diseases (Review). Exp Ther Med 2021; 22:918. [PMID: 34335879 PMCID: PMC8290460 DOI: 10.3892/etm.2021.10350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
An increasing number of studies indicate that microRNAs (miRNAs/miRs) are involved in diverse biological signaling pathways and play important roles in the progression of various diseases, including both oncological and non-oncological diseases. These small non-coding RNAs can block translation, resulting in a low expression level of target genes. miR-129 is an miRNA that has been the focus of considerable research in recent years. A growing body of evidence shows that the miR-129 family not only functions in cancer, including osteosarcoma, nasopharyngeal carcinoma, and ovarian, prostate, lung, breast and colon cancer, but also in non-cancerous diseases, including heart failure (HF), epilepsy, Alzheimer's disease (AD), obesity, diabetes and intervertebral disc degeneration (IVDD). It is therefore necessary to summarize current research progress on the role of miR-129 in different diseases. The present review includes an updated summary of the mechanisms of the miR-129 family in oncological and non-oncological diseases. To the best of our knowledge, this is the first review focusing on the role of miR-129 in non-cancerous diseases such as obesity, HF, epilepsy, diabetes, IVDD and AD.
Collapse
Affiliation(s)
- Bingpeng Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xuan Tang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
27
|
Chernov AN, Alaverdian DA, Galimova ES, Renieri A, Frullanti E, Meloni I, Shamova OV. The phenomenon of multidrug resistance in glioblastomas. Hematol Oncol Stem Cell Ther 2021; 15:1-7. [PMID: 34216549 DOI: 10.1016/j.hemonc.2021.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/30/2021] [Indexed: 12/21/2022] Open
Abstract
The most common and aggressive brain tumor in the adult population is glioblastoma (GBM). The lifespan of patients does not exceed 22 months. One of the reasons for the low effectiveness of GBM treatment is its radioresistance and chemoresistance. In the current review, we discuss the phenomenon of multidrug resistance of GBM in the context of the expression of ABC family transporter proteins and the mechanisms of proliferation, angiogenesis, and recurrence. We focused on the search of molecular targets among growth factors, receptors, signal transduction proteins, microRNAs, transcription factors, proto-oncogenes, tumor suppressor genes, and their single-nucleotide polymorphisms.
Collapse
Affiliation(s)
- Alexandr N Chernov
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, Saint-Petersburg, Russia.
| | - Diana A Alaverdian
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elvira S Galimova
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Alessandra Renieri
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ilaria Meloni
- MedicalGenetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy; MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga V Shamova
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, Saint-Petersburg, Russia
| |
Collapse
|
28
|
Hu F, Liu J, Liu H, Li F, Wan M, Zhang M, Jiang Y, Rao M. Role of Exosomal Non-coding RNAs in Gastric Cancer: Biological Functions and Potential Clinical Applications. Front Oncol 2021; 11:700168. [PMID: 34195097 PMCID: PMC8238120 DOI: 10.3389/fonc.2021.700168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer (GC) is one of the most common fatal cancers worldwide. The communication between GC and other cells in the GC microenvironment directly affects GC progression. Recently, exosomes have been revealed as new players in intercellular communication. They play an important role in human health and diseases, including cancer, owing to their ability to carry various bioactive molecules, including non-coding RNAs (ncRNAs). NcRNAs, including micro RNAs, long non-coding RNAs, and circular RNAs, play a significant role in various pathophysiological processes, especially cancer. Increasing evidence has shown that exosomal ncRNAs are involved in the regulation of tumor proliferation, invasion, metastasis, angiogenesis, immune regulation, and treatment resistance in GC. In addition, exosomal ncRNAs have promising potential as diagnostic and prognostic markers for GC. Considering the biocompatibility of exosomes, they can also be used as biological carriers for targeted therapy. This review summarizes the current research progress on exosomal ncRNAs in gastric cancer, focusing on their biological role in GC and their potential as new biomarkers for GC and therapeutics. Our review provides insight into the mechanisms involved in GC progression, which may provide a new point cut for the discovery of new diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Feng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jixuan Liu
- Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Huibo Liu
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Fan Li
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Minjie Wan
- Department of Central Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Manli Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Min Rao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Prahm KP, Høgdall CK, Karlsen MA, Christensen IJ, Novotny GW, Høgdall E. MicroRNA characteristics in epithelial ovarian cancer. PLoS One 2021; 16:e0252401. [PMID: 34086724 PMCID: PMC8177468 DOI: 10.1371/journal.pone.0252401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 05/14/2021] [Indexed: 01/23/2023] Open
Abstract
The purpose of the current study was to clarify differences in microRNA expression according to clinicopathological characteristics, and to investigate if miRNA profiles could predict cytoreductive outcome in patients with FIGO stage IIIC and IV ovarian cancer. Patients enrolled in the Pelvic Mass study between 2004 and 2010, diagnosed and surgically treated for epithelial ovarian cancer, were used for investigation. MicroRNA was profiled from tumour tissue with global microRNA microarray analysis. Differences in miRNA expression profiles were analysed according to histologic subtype, FIGO stage, tumour grade, type I or II tumours and result of primary cytoreductive surgery. One microRNA, miR-130a, which was found to be associated with serous histology and advanced FIGO stage, was also validated using data from external cohorts. Another seven microRNAs (miR-34a, miR-455-3p, miR-595, miR-1301, miR-146-5p, 193a-5p, miR-939) were found to be significantly associated with the clinicopathological characteristics (p ≤ 0.001), in our data, but mere not similarly significant when tested against external cohorts. Further validation in comparable cohorts, with microRNA profiled using newest and similar methods are warranted.
Collapse
Affiliation(s)
- Kira Philipsen Prahm
- Department of Pathology, Molecular unit, Danish Cancer Biobank, Herlev University Hospital, Herlev, Denmark
- Department of Gynecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| | - Claus Kim Høgdall
- Department of Gynecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mona Aarenstrup Karlsen
- Department of Pathology, Molecular unit, Danish Cancer Biobank, Herlev University Hospital, Herlev, Denmark
- Department of Gynecology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ib Jarle Christensen
- Department of Pathology, Molecular unit, Danish Cancer Biobank, Herlev University Hospital, Herlev, Denmark
| | - Guy Wayne Novotny
- Department of Pathology, Molecular unit, Danish Cancer Biobank, Herlev University Hospital, Herlev, Denmark
| | - Estrid Høgdall
- Department of Pathology, Molecular unit, Danish Cancer Biobank, Herlev University Hospital, Herlev, Denmark
| |
Collapse
|
30
|
Chen R, Yang M, Huang W, Wang B. Cascades between miRNAs, lncRNAs and the NF-κB signaling pathway in gastric cancer (Review). Exp Ther Med 2021; 22:769. [PMID: 34055068 PMCID: PMC8145527 DOI: 10.3892/etm.2021.10201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a common digestive tract malignancy that is mainly treated with surgery combined with perioperative adjuvant chemoradiotherapy and biological targeted therapy. However, the diagnosis rate of early gastric cancer is low and both postoperative recurrence and distant metastasis are thorny problems. Therefore, it is essential to study the pathogenesis of gastric cancer and search for more effective means of treatment. The nuclear factor-κB (NF-κB) signaling pathway has an important role in the occurrence and development of gastric cancer and recent studies have revealed that microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are able to regulate this pathway through a variety of mechanisms. Understanding these interrelated molecular mechanisms is helpful in guiding improvements in gastric cancer treatment. In the present review, the functional associations between miRNAs, lncRNAs and the NF-κB signaling pathway in the occurrence, development and prognosis of gastric cancer were discussed. It was concluded that miRNAs and lncRNAs have complex relations with the NF-κB signaling pathway in gastric cancer. miRNAs/target genes/NF-κB/target proteins, signaling molecules/NF-κB/miRNAs/target genes, lncRNAs/miRNAs/NF-κB/genes or mRNAs, lncRNAs/target genes/NF-Κb/target proteins, and lncRNAs/NF-κB/target proteins cascades are all important factors in the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Risheng Chen
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mingxiu Yang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiguo Huang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Baiyun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
31
|
Xie B, Li L, Zhang Z, Zhao L, Cheng J, Zhou C, Cheng J, Yan J, Chen J, Yi J, Wang B, Jin S, Wei H. MicroRNA-1246 by Targeting AXIN2 and GSK-3β Overcomes Drug Resistance and Induces Apoptosis in Chemo-resistant Leukemia Cells. J Cancer 2021; 12:4196-4208. [PMID: 34093820 PMCID: PMC8176421 DOI: 10.7150/jca.58522] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background and objective: Chemotherapy plays an important role in the treatment of leukemia. Multidrug resistance (MDR) induced by chemotherapy always leads to treatment failure and disease recurrence. MicroRNAs (miRNAs) have been verified as crucial components in carcinogenesis, including chemo-resistance of tumor cells, which has not been fully understood. In this study, we aimed to identify the potential candidate miRNA, miR-1246, and reveal its regulatory role in chemo-resistance of leukemia cells. Methods: Candidate miRNAs were selected by microarray analysis, screened by bioinformatics tools and verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Chemo-resistant phenotypes, including cell viability, apoptosis, adriamycin (ADM) efflux and in vivo oncogenicity of leukemia cells following transfected with miR-1246 mimics or inhibitor were checked with or without ADM treatment to make clear the relationship between miR-1246 and chemo-resistance. RT-qPCR, western blot and dual luciferase reporter assay were performed to measure the expression of related genes and address the potential regulatory mechanism of miR-1246 in chemo-resistance. Results: The expression of miR-1246 was significantly higher in chemo-resistant leukemia K562/ADM cells, HL-60/RS cells and recurrent primary leukemia cells. Loss of miR-1246 inhibited proliferation, induced apoptosis, altered cell cycle distribution, inhibited ADM efflux in chemo-resistant leukemia cells, while overexpression of miR-1246 showed the opposite role in chemo-sensitive leukemia cells. Both bioinformatics prediction and luciferase assay indicated that AXIN2 and glycogen synthase kinase 3 beta (GSK-3β) were the direct targets of miR-1246 in leukemia cells. Inhibition of miR-1246 could up-regulate AXIN2 and GSK-3β and inactivate Wnt/β-catenin pathway, accompanied with inhibiting the expression of β-catenin and further influencing the expression of P-glycoprotein (P-gp) in the chemo-resistant leukemia cells. Conclusions: Chemo-resistant ability of MDR leukemia cells is attenuated by loss of miR-1246 via negatively regulating AXIN2 and GSK-3β to inactivate Wnt/β-catenin pathway and suppress P-gp expression, these mean that targeting miR-1246-AXIN2/GSK-3β-Wnt/β-catenin axis may be beneficial to overcome the chemo-resistance in relapse and refractory leukemia patients.
Collapse
Affiliation(s)
- Bei Xie
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Linjing Li
- The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000
| | - Zhewen Zhang
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Lei Zhao
- Shaanxi Meili Omni‑Honesty Animal Health Co., Ltd., Xi'an, Shaanxi, 710000
| | - Juan Cheng
- The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000
| | - Cunmin Zhou
- The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000
| | - Jie Cheng
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Jing Yan
- The Second Hospital of Lanzhou University, Lanzhou, Gansu, 730000
| | - Jing Chen
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Juan Yi
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Bei Wang
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Suya Jin
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| | - Hulai Wei
- Department of Medical Laboratory Animal Science, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000
| |
Collapse
|
32
|
Abstract
The vaginal microbiota plays an essential role in vaginal health. The vaginas of many reproductive-age women are dominated by one of the Lactobacillus species. However, the vaginas of a large number of women are characterized by the colonization of several other anaerobes. Notably, some women with the non-Lactobacillus-dominated vaginal microbiota develop bacterial vaginosis, which has been correlated with sexually transmitted infections and other adverse outcomes. However, interactions and mechanisms linking the vaginal microbiota to host response are still under investigation. There are studies suggesting a link between human microRNAs and gut microbiota, but limited analysis has been carried out on the interplay of microRNAs and vaginal microbiota. In this study, we performed a microRNA expression array profiling on 67 vaginal samples from young Swedish women. MicroRNAs were clustered into distinct groups according to vaginal microbiota composition. Interestingly, 182 microRNAs were significantly elevated in their expression in the non-Lactobacillus-dominated community, suggesting an antagonistic relationship between Lactobacillus and microRNAs. Of the elevated microRNAs, 10 microRNAs displayed excellent diagnostic potential, visualized by receiver operating characteristics analysis. We further validated our findings in 34 independent samples where expression of top microRNA candidates strongly separated the Lactobacillus-dominated community from the non-Lactobacillus-dominated community in the vaginal microbiota. Notably, the Lactobacillus crispatus-dominated community showed the most profound differential microRNA expression compared with the non-Lactobacillus-dominated community. In conclusion, we demonstrate a strong relationship between the vaginal microbiota and numerous genital microRNAs, which may facilitate a deeper mechanistic interplay in this biological niche. IMPORTANCE Vaginal microbiota is correlated with women’s health, where a non-Lactobacillus-dominated community predisposes women to a higher risk of disease, including human papillomavirus (HPV). However, the molecular relationship between the vaginal microbiota and host is largely unexplored. In this study, we investigated a link between the vaginal microbiota and host microRNAs in a group of young women. We uncovered an inverse correlation of the expression of microRNAs with the abundance of Lactobacillus species in the vaginal microbiota. Particularly, the expression of microRNA miR-23a-3p and miR-130a-3p, displaying significantly elevated levels in non-Lactobacillus-dominated communities, predicted the bacterial composition of the vaginal microbiota in an independent validation group. Since targeting of microRNAs is explored in the clinical setting, our results warrant investigation of whether microRNA modulation could be used for treating vaginosis recurrence and vaginosis-related diseases. Conversely, commensal bacteria could be used for treating diseases with microRNA aberrations.
Collapse
|
33
|
Javadian P, Washington C, Mukasa S, Benbrook DM. Histopathologic, Genetic and Molecular Characterization of Endometrial Cancer Racial Disparity. Cancers (Basel) 2021; 13:cancers13081900. [PMID: 33920951 PMCID: PMC8071317 DOI: 10.3390/cancers13081900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Black patients are diagnosed and die earlier of endometrial cancer in comparison with their White counterparts. Factors that have been implicated in this racial disparity, such as socioeconomic status, increased frequencies of more aggressive tumor histology, and comorbid conditions, do not account for all of the disparity. Molecular defects in the endometrial tumors likely also contribute to the more aggressive tumor biology and the patient disparities. In this study, we reviewed the published data of molecular characteristics of endometrial cancer in different races. The majority of the publications compare Black and White patients, and identify molecules and pathways that can be targeted with existing drugs. These findings encourage molecular profile studies comparing additional races and ethnicities, and development of race-specific treatments. Abstract In contrast to the decline in incidence and mortality of most other cancers, these rates are rising for endometrial cancer. Black women with endometrial cancer have earlier diagnosis, more aggressive histology, advanced stage and worse outcomes compared with their White counterparts. Socioeconomic status, a higher incidence of aggressive histology, and comorbid conditions are known factors leading to racial disparity in patients with endometrial cancer; nevertheless, they do not account for the entire racial disparity; which emphasizes the roles of molecular, histopathological and genetic factors. We performed a comprehensive review of all published scientific literature up to January 2021 reporting histopathologic, genetic and molecular factors associated with racial disparities in patients with endometrial cancer. The interactions and pathways of molecules reported to have significant differential expression in endometrial cancers from Black and White patients were identified with Ingenuity Pathway Analysis. The majority of studies compared Black and White patients; however, limited data are available for other racial and ethnic groups. Reported differences that could account for the worse survival of Black endometrial cancer patients include more aggressive histopathologies and molecular alterations, including upregulation of molecules driving cell cycle progression, and p53 and HER2/NEU signaling. Several of these molecules are targeted by existing pharmaceuticals. These findings encourage further study and the development of race-specific treatment strategies.
Collapse
Affiliation(s)
- Pouya Javadian
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Correspondence: (P.J.); (D.M.B.)
| | - Christina Washington
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Shylet Mukasa
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA;
| | - Doris Mangiaracina Benbrook
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Correspondence: (P.J.); (D.M.B.)
| |
Collapse
|
34
|
Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:17-43. [PMID: 34337348 PMCID: PMC8319838 DOI: 10.20517/cdr.2020.79] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has an exceedingly low median overall survival of only 15 months. Current standard-of-care for GBM consists of gross total surgical resection followed by radiation with concurrent and adjuvant chemotherapy. Temozolomide (TMZ) is the first-choice chemotherapeutic agent in GBM; however, the development of resistance to TMZ often becomes the limiting factor in effective treatment. While O6-methylguanine-DNA methyltransferase repair activity and uniquely resistant populations of glioma stem cells are the most well-known contributors to TMZ resistance, many other molecular mechanisms have come to light in recent years. Key emerging mechanisms include the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. This review aims to provide a comprehensive overview of the clinically relevant molecular mechanisms and their extensive interconnections to better inform efforts to combat TMZ resistance.
Collapse
Affiliation(s)
- Neha Singh
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Alexandra Miner
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Lauren Hennis
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Sandeep Mittal
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA.,Carilion Clinic - Neurosurgery, Roanoke, VA 24014, USA
| |
Collapse
|
35
|
Studies on the Regulatory Roles and Related Mechanisms of lncRNAs in the Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6657944. [PMID: 33791072 PMCID: PMC7984887 DOI: 10.1155/2021/6657944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/19/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
Long noncoding RNAs (lncRNAs) have attracted extensive attention due to their regulatory role in various cellular processes. Emerging studies have indicated that lncRNAs are expressed to varying degrees after the growth and development of the nervous system as well as injury and degeneration, thus affecting various physiological processes of the nervous system. In this review, we have compiled various reported lncRNAs related to the growth and development of central and peripheral nerves and pathophysiology (including advanced nerve centers, spinal cord, and peripheral nervous system) and explained how these lncRNAs play regulatory roles through their interactions with target-coding genes. We believe that a full understanding of the regulatory function of lncRNAs in the nervous system will contribute to understand the molecular mechanism of changes after nerve injury and will contribute to discover new diagnostic markers and therapeutic targets for nerve injury diseases.
Collapse
|
36
|
Feng Q, Ren Y, Hou A, Guo J, Mao Z, Liu S, Wang B, Bai Z, Hou X. MicroRNA-130a Increases and Predicts Cardiotoxicity during Adjuvant Chemotherapy in Human Epidermal Growth Factor Receptor-2-Positive Breast Cancer. J Breast Cancer 2021; 24:153-163. [PMID: 33818020 PMCID: PMC8090801 DOI: 10.4048/jbc.2021.24.e15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/25/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE This study aimed to investigate the changes in microRNA-130a (miR-130a) and its correlation with cardiotoxicity during epirubicin/cyclophosphamide followed by docetaxel plus trastuzumab (EC-D+T) adjuvant chemotherapy in human epidermal growth factor receptor-2-positive (HER2⁺) breast cancer patients. METHODS A total of 72 HER2⁺ breast cancer patients who underwent resection and were scheduled to receive EC-D+T adjuvant therapy were consecutively enrolled. The expression of miR-130a and cardiotoxicity (defined as any of the following situations: 1) absolute decline of left ventricular ejection fraction (LVEF) ≥ 10% and LVEF < 53%; 2) heart failure; 3) acute coronary artery syndromes; and 4) fatal arrhythmia) were assessed every 3 months throughout the 15-month EC-D+T treatment. RESULTS The accumulating cardiotoxicity rate was 12 (16.7%), of which the incidence of heart failure, acute coronary syndrome, life-threatening arrhythmias, ΔLVEF ≥ 10%, and LVEF < 53% was 0 (0.0%), 1 (1.4%), 0 (0.0%), and 12 (16.7%), respectively. Baseline miR-130a expression was negatively correlated with LVEF (%) and positively correlated with cardiac troponin I. The expression of miR-130a gradually increased in both cardiotoxicity and non-cardiotoxicity patients during EC-D+T treatment, while the increment of miR-130a was more obvious in cardiotoxicity patients compared with non-cardiotoxicity patients. Further logistic regression and receiver operating characteristic curve analysis indicated that miR-130a was an independent predictive factor for increased cardiotoxicity risk. CONCLUSION MiR-130a increases constantly and predicts high cardiotoxicity risk during EC-D+T adjuvant chemotherapy in HER2⁺ breast cancer patients.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Cardiology, HanDan Central Hospital, Handan, China
| | - Yanbin Ren
- Department of Ultrasound Medicine, HanDan Central Hospital, Handan, China.
| | - Aijun Hou
- Department of Cardiology, HanDan Central Hospital, Handan, China
| | - Jing Guo
- Department of Cardiology, HanDan Central Hospital, Handan, China
| | - Zhezhe Mao
- Second Ward of Respiratory Medicine, HanDan Central Hospital, Handan, China
| | - Shaojun Liu
- Office of Quality Management, HanDan Central Hospital, Handan, China
| | - Boya Wang
- Department of Cardiology, HanDan Central Hospital, Handan, China
| | - Zhichao Bai
- Department of Cardiology, HanDan Central Hospital, Handan, China
| | - Xiaoying Hou
- Department of Ultrasound Medicine, HanDan Central Hospital, Handan, China
| |
Collapse
|
37
|
Fan Q, Huang T, Sun X, Yang X, Wang J, Liu Y, Ni T, Gu S, Li Y, Wang Y. miR-130a-3p promotes cell proliferation and invasion by targeting estrogen receptor α and androgen receptor in cervical cancer. Exp Ther Med 2021; 21:414. [PMID: 33747155 PMCID: PMC7967885 DOI: 10.3892/etm.2021.9858] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is the most common gynecological cancer in women worldwide. Human papillomavirus (HPV) is required but not sufficient for developing cervical cancer. HPV E6 and E7 proteins are able to directly interact with certain nuclear receptors; however, whether steroid hormone receptors mediate cervical carcinogenesis is not completely understood. The present study demonstrated via immunohistochemistry that estrogen receptor α (ERα) and androgen receptor (AR) expression were decreased in a sequential manner from healthy cervical tissues to cervical intraepithelial neoplasia tissues and further to cervical cancer (CC) tissues, whereas microRNA (miR)-130a-3p expression levels were higher in CC tissues compared with healthy tissues. Both ERα and AR were direct targets of miR-130a-3p, as determined by performing luciferase reporter assays and western blotting. Functionally, compared with the corresponding control groups, miR-130a-3p knockdown, ERα overexpression and AR overexpression significantly inhibited CC cell proliferation and invasion, as demonstrated by the results obtained from the Cell Counting Kit-8 and Transwell assays in vitro. In addition, antagomiR-130a decreased tumor size and weight in vivo compared with control antagomiR as determined via the xenograft tumor growth assay. Therefore, the results suggested that miR-130a-3p might contribute to tumor progression by suppressing ERα and AR, and serve as a promising candidate target for the treatment of patients with CC.
Collapse
Affiliation(s)
- Qiong Fan
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Shanghai Key Clinical Department, Shanghai 200030, P.R. China.,Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,Shanghai Municipal Key Clinical Specialty, Shanghai 200030, P.R. China
| | - Ting Huang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Shanghai Key Clinical Department, Shanghai 200030, P.R. China.,Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,Shanghai Municipal Key Clinical Specialty, Shanghai 200030, P.R. China
| | - Xiao Sun
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Shanghai Key Clinical Department, Shanghai 200030, P.R. China.,Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Xiaoming Yang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jing Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yao Liu
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Ting Ni
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Shenglan Gu
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yuhong Li
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yudong Wang
- Department of Gynecological Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Shanghai Key Clinical Department, Shanghai 200030, P.R. China.,Shanghai Key Laboratory of Embryo Original Diseases Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,Shanghai Municipal Key Clinical Specialty, Shanghai 200030, P.R. China
| |
Collapse
|
38
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
39
|
Zhu L, Jing J, Qin S, Zheng Q, Lu J, Zhu C, Liu Y, Fang F, Li Y, Ling Y. miR-130a-3p regulates steroid hormone synthesis in goat ovarian granulosa cells by targeting the PMEPA1 gene. Theriogenology 2021; 165:92-98. [PMID: 33647740 DOI: 10.1016/j.theriogenology.2021.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
MicroRNAs (miRNAs) are key epigenomic regulators of proliferation, differentiation, and secretion in cells involved in follicular development. We here studied the functional role of one such molecule, miR-130a-3p, in goat ovarian granulosa cells (GCs). High expression of this miRNA was evident in goat GCs by fluorescence in situ hybridization and suppressed estradiol and progesterone secretion from these cells, as determined by ELISA. miR-130a-3p was predicted to have a binding site for the 3' UTR of the prostate transmembrane protein androgen induced 1 gene (PMEPA1), and this was verified by a dual-luciferase reporter assay. PMEPA1 mRNA and protein expression were both found to be regulated by miR-130a-3p in GCs. Moreover, the overexpression or knockdown of PMEPA1 enhanced or suppressed estradiol and progesterone secretion from these cells, respectively. Furthermore, the secretion of estradiol and progesterone did not change significantly after the offsetting of PMEPA1 overexpression in GCs by miR-130a-3p. In summary, our present data indicate that miR-130a-3p inhibits the secretion of estradiol and progesterone in GCs by targeting PMEPA1. Our study thus provides seminal data and important new insights into the regulation of reproductive mechanisms in the nanny goat and other female mammals.
Collapse
Affiliation(s)
- Lu Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Jing Jing
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Shuaiqi Qin
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Jiani Lu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Cuiyun Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Ya Liu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Yunsheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Anhui Hefei, 230036, China; Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Anhui Hefei, 230036, China.
| |
Collapse
|
40
|
Zhang T, Zhang P, Li HX. CAFs-Derived Exosomal miRNA-130a Confers Cisplatin Resistance of NSCLC Cells Through PUM2-Dependent Packaging. Int J Nanomedicine 2021; 16:561-577. [PMID: 33542625 PMCID: PMC7851405 DOI: 10.2147/ijn.s271976] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Chemoresistance is a significant barrier to the treatment and management of non-small cell lung cancer (NSCLC). Exosomes play an essential role in intercellular communication. Understanding the mechanism underlying the role of tumor stroma, especially cancer-associated fibroblasts (CAFs), during chemoresistance would significantly contribute to the clinical application of chemotherapy agents. RESULTS In this study, we demonstrated that NSCLC-derived CAFs were innately resistant to cisplatin treatment and CAFs-conditioned medium significantly promoted the survival rate of NSCLC cells after cisplatin treatment. Additionally, CAFs-derived exosomes were taken up by NSCLC cells. Moreover, exosomal miRNA-130a was transferred from CAFs to recipient NSCLC cells and knockdown of miRNA-130a reversed the effect of CAFs-derived exosomes during chemoresistance of NSCLC cells. Furthermore, pumilio homolog 2 (PUM2), a RNA-binding protein, mediated the packaging of miRNA-130a into exosomes. The overexpression and knockdown of PUM2 promoted and inhibited tumor growth of xenograft mice, respectively. CONCLUSION Taken together, these results suggest that CAFs-derived exosomes confer cisplatin resistance of NSCLC cells through transferring miRNA-130a and that PUM2 is a critical factor for packaging miRNA-130a into exosomes. This study indicates that CAFs-derived exosomal miRNA-130a may be a potential therapeutic target for cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Tuberculosis, Linyi People’s Hospital, Linyi, Shandong276034, People’s Republic of China
| | - Ping Zhang
- Reproductive Medicine, Linyi People’s Hospital, Linyi, Shandong276034, People’s Republic of China
| | - Hong-Xia Li
- Endoscopic Room, Linyi Chest Hospital, Linyi, Shandong276034, People’s Republic of China
| |
Collapse
|
41
|
Pirlog R, Cismaru A, Nutu A, Berindan-Neagoe I. Field Cancerization in NSCLC: A New Perspective on MicroRNAs in Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22020746. [PMID: 33451052 PMCID: PMC7828565 DOI: 10.3390/ijms22020746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is currently the first cause of cancer-related death. The major lung cancer subtype is non-small cell lung cancers (NSCLC), which accounts for approximatively 85% of cases. The major carcinogenic associated with lung cancer is tobacco smoke, which produces long-lasting and progressive damage to the respiratory tract. The progressive and diffuse alterations that occur in the respiratory tract of patients with cancer and premalignant lesions have been described as field cancerization. At the level of tumor cells, adjacent tumor microenvironment (TME) and cancerized field are taking place dynamic interactions through direct cell-to-cell communication or through extracellular vesicles. These molecular messages exchanged between tumor and nontumor cells are represented by proteins, noncoding RNAs (ncRNAs) and microRNAs (miRNAs). In this paper, we analyze the miRNA roles in the macrophage polarization at the level of TME and cancerized field in NSCLC. Identifying molecular players that can influence the phenotypic states at the level of malignant cells, tumor microenvironment and cancerized field can provide us new insights into tumor regulatory mechanisms that can be further modulated to restore the immunogenic capacity of the TME. This approach could revert alterations in the cancerized field and could enhance currently available therapy approaches.
Collapse
Affiliation(s)
- Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- Department of Functional Sciences, Immunology and Allergology, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, The “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (R.P.); (A.C.); (A.N.)
- The Functional Genomics Department, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania
- Correspondence: ; Tel.: +40-743-111-800
| |
Collapse
|
42
|
Li B, Zhang H. Knockdown of microRNA-130b improves doxorubicin sensitivity in bladder urothelial carcinoma by negatively regulating cylindromatosis expression. Arch Med Sci 2021; 17:1038-1043. [PMID: 34336031 PMCID: PMC8314415 DOI: 10.5114/aoms.2019.86622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/25/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Chemotherapeutic resistance reduces the sensitivity of bladder urothelial carcinoma (BUC) to chemotherapeutic drugs and contributes a barrier leading to treatment failure. The purpose of this research project is to investigate the regulatory effects of miR-130b on chemotherapeutic drug resistance of BUC and its mechanism. MATERIAL AND METHODS The relative expression of miRNA-130b and cylindromatosis (CYLD) was examined using real-time quantitative PCR. The cell proliferation and doxorubicin sensitivity were detected with the enhanced CCK-8 assay. The specific combination of miR-130b and CYLD was verified with the luciferase reporter gene assay. Protein expression was detected by Western blot. RESULTS Our study found that miR-130b was up-regulated in doxorubicin-insensitive BUC tissues and cell lines, and its high expression was negatively related to doxorubicin sensitivity in BUC. The miR-130b knockdown reduced the IC50 of doxorubicin and improved doxorubicin sensitivity of J82/Dox and T24/Dox cells. For the regulation mechanism analysis of miR-130b, bioinformatics analysis software was used to predict the potential targets of miR-130b, including the CYLD gene. The following luciferase activities assay, quantitative real time-PCR and western blot identified the CYLD gene as a target of miR-130b. Knockdown of CYLD reversed miR-130b's regulatory roles in doxorubicin sensitivity in J82/Dox and T24/Dox cells. CONCLUSIONS High expression of miR-130b is negatively related to doxorubicin sensitivity in BUC, and knockdown of miR-130b improves doxorubicin sensitivity in BUC by negatively regulating CYLD expression. Our findings will provide guidance for the clinical chemotherapy of BUC.
Collapse
Affiliation(s)
- Bo Li
- China Medical University, Shenyang, China
| | - Hui Zhang
- China Medical University, Shenyang, China
| |
Collapse
|
43
|
Nordmo C, Glehr G, Altenbuchinger M, Spang R, Ziepert M, Horn H, Staiger AM, Ott G, Schmitz N, Held G, Einsele H, Topp M, Rosenwald A, Rauert-Wunderlich H. Identification of a miRNA based model to detect prognostic subgroups in patients with aggressive B-cell lymphoma. Leuk Lymphoma 2020; 62:1107-1115. [PMID: 33353431 DOI: 10.1080/10428194.2020.1861268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In order to differentiate prognostic subgroups of patients with aggressive B-cell lymphoma, we analyzed the expression of 800 miRNAs with the NanoString nCounter human miRNA assay on a cohort of 228 FFPE samples of patients enrolled in the RICOVER-60 and MegaCHOEP trials. We identified significant miRNA signatures for overall survival (OS) and progression-free survival (PFS) by LASSO-penalized linear Cox-regression. High expression levels of miR-130a-3p and miR-423-5p indicate a better prognosis, whereas high levels of miR-374b-5p, miR-590-5p, miR-186-5p, and miR-106b-5p increase patients' risk levels for OS. Regarding PFS high expression of miR-365a-5p in addition to the other two miRNAs improves the prognosis and high levels of miR374a-5p, miR-106b-5p, and miR-590-5p, connects with increased risk and poor prognosis. We identified miRNA signatures to subdivide patients into two different risk groups. These prognostic models may be used in risk stratification in future clinical trials and help making personalized therapy decisions.
Collapse
Affiliation(s)
- Carmen Nordmo
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - Gunther Glehr
- Institute of Functional Genomics, Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Michael Altenbuchinger
- Institute of Functional Genomics, Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Rainer Spang
- Institute of Functional Genomics, Statistical Bioinformatics, University of Regensburg, Regensburg, Germany
| | - Marita Ziepert
- Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Heike Horn
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Tuebingen, Germany.,Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Annette M Staiger
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tuebingen, Tuebingen, Germany.,Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Norbert Schmitz
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Gerhard Held
- DSHNHL Studiensekretariat, Westpfalz Klinikum GmbH, Kaiserslautern, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Max Topp
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - Hilka Rauert-Wunderlich
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| |
Collapse
|
44
|
Mishra N, Raina K, Agarwal R. Deciphering the role of microRNAs in mustard gas-induced toxicity. Ann N Y Acad Sci 2020; 1491:25-41. [PMID: 33305460 DOI: 10.1111/nyas.14539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022]
Abstract
Mustard gas (sulfur mustard, SM), a highly vesicating chemical warfare agent, was first deployed in warfare in 1917 and recently during the Iraq-Iran war (1980s) and Syrian conflicts (2000s); however, the threat of exposure from stockpiles and old artillery shells still looms large. Whereas research has been long ongoing on SM-induced toxicity, delineating the precise molecular pathways is still an ongoing area of investigation; thus, it is important to attempt novel approaches to decipher these mechanisms and develop a detailed network of pathways associated with SM-induced toxicity. One such avenue is exploring the role of microRNAs (miRNAs) in SM-induced toxicity. Recent research on the regulatory role of miRNAs provides important results to fill in the gaps in SM toxicity-associated mechanisms. In addition, differentially expressed miRNAs can also be used as diagnostic markers to determine the extent of toxicity in exposed individuals. Thus, in our review, we have summarized the studies conducted so far in cellular and animal models, including human subjects, on the expression profiles and roles of miRNAs in SM- and/or SM analog-induced toxicity. Further detailed research in this area will guide us in devising preventive strategies, diagnostic tools, and therapeutic interventions against SM-induced toxicity.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
45
|
Huang Y, Luo F. Elevated microRNA-130b-5p or silenced ELK1 inhibits self-renewal ability, proliferation, migration, and invasion abilities, and promotes apoptosis of cervical cancer stem cells. IUBMB Life 2020; 73:118-129. [PMID: 33295145 DOI: 10.1002/iub.2409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Cervical cancer (CC) is the most familiar gynecological malignancy. With the poor prognosis of CC patients, this study explored the effect of microRNA (miR)-130b-5p targeting ELK1 expression on self-renewal ability and stemness of CC stem cells. The tissues of patients with CC or cervical benign lesions were collected. MiR-130b-5p and ELK1 expression was detected by reverse transcription quantitative polymerase chain reaction and western blot analysis. Human CC cell line Hela was cultured and the induced CC stem cells were introduced with miR-130b-5p mimic or silenced ELK1 to figure their roles in self-renewal ability, stemness, colony formation, proliferation, migration, invasion abilities, and apoptosis of CC stem cells. Tumor growth was detected in nude mice in vivo. The targeting relationship between miR-130b-5p and ELK1 was analyzed using bioinformatic prediction and dual luciferase reporter gene assay. Decreased miR-130b-5p and elevated ELK1 existed in CC tissues of patients. Up-regulated miR-130b-5p decreased ELK1 expression in CC stem cells. Elevated miR-130b-5p or silenced ELK1 inhibited self-renewal ability and stemness, colony formation, proliferation, migration and invasion abilities, promoted apoptosis of CC stem cells, as well as decreased the weight and volume of tumor in nude mice. ELK1 was found to be targeted by miR-130b-5p. Overexpression ELK1 effectively reversed the cellular phenotypic changes and tumor formation in vivo caused by up-regulation of miR-130b-5p. We conclude that up-regulated miR-130b-5p or silenced ELK1 inhibits CC stem cell growth.
Collapse
Affiliation(s)
- Yu Huang
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Fangyuan Luo
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
46
|
Liang Q, Zhang H. MAP17 contributes to non-small cell lung cancer progression via suppressing miR-27a-3p expression and p38 signaling pathway. Cancer Biol Ther 2020; 22:19-29. [PMID: 33280497 DOI: 10.1080/15384047.2020.1836948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PROBLEM AND AIM The overexpression of MAP17 has been reported in various human carcinomas. However, its molecular mechanism in non-small cell lung cancer (NSCLC) has not been fully understood. Our study aimed to reveal the molecular mechanism of NSCLC that involved MAP17 and identify its target miRNA. METHODS RT-qPCR and immunoblot assays were conducted to measure the expression of mRNA and protein in NSCLC tissues and cell lines. Meanwhile, the A549 cells (an NSCLC cell line) were randomly assigned to the MAP17 overexpression group, the MAP17 knockdown group and negative control group to study the roles of MAP17 in cell viability, cell proliferation, migration, invasion, and apoptosis by performing Trypan blue exclusion, MTT, colony formation, transwell, wound healing and flow-cytometric apoptosis assays. The luciferase reporter assay was conducted to confirm the target relationship between MAP17 and miR-27a-3p. RESULTS The upregulation of MAP17 mRNA and protein was observed in NSCLC tissues and cell lines. In vitro, the positive roles of MAP17 on cell viability, migration, and invasion were confirmed in A549 cells. It was also found that MAP17 could inhibit cell apoptosis by suppressing the activation of the p38 pathway. This research eventually proved the target relationship between MAP17 and miR-27a-3p, and that miR-27a-3p reversed the effects of MAP17 in A549 cells by directly targeting MAP17. CONCLUSIONS MAP17 plays an oncogenic role in NSCLC by suppressing the activation of the p38 pathway. Apart from that, the miR-27a-3p can inhibit the expression of MAP17 to suppress the NSCLC progression.
Collapse
Affiliation(s)
- Qian Liang
- Department of Integrated 2, Affiliated Hospital of Jianghan University , Wuhan, Hubei, China
| | - Huan Zhang
- Department of Integrated 2, Affiliated Hospital of Jianghan University , Wuhan, Hubei, China
| |
Collapse
|
47
|
Wang J, Zhao L, Peng X, Liu K, Zhang C, Chen X, Han Y, Lai Y. Evaluation of miR-130 family members as circulating biomarkers for the diagnosis of bladder cancer. J Clin Lab Anal 2020; 34:e23517. [PMID: 32761678 PMCID: PMC7755799 DOI: 10.1002/jcla.23517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Previous research has shown that the miR-130 family is closely related to the occurrence and development of bladder cancer. We hope to use the miR-130 family members as new, non-invasive, and easily detectable biomarkers for bladder cancer. METHODS We analyzed 428 cases in The Cancer Genome Atlas-Bladder Urothelial Carcinoma database and verified that the miR-130 family members were significantly overexpressed in bladder cancer. A total of 74 bladder cancer patients and 90 controls were enrolled. The relative expression of the miR-130 family in serum was detected using quantitative reverse transcription-polymerase chain reaction. The diagnostic efficacy of the miR-130 family members was determined using the receiver operating characteristic method (ROC), and a diagnostic panel was built using logistic regression. The results of the study were further confirmed in an external validation set of 492 samples from the Gene Expression Omnibus database. RESULTS The expression of the miR-130 family members (except for miR-301b-3p) in the serum of bladder cancer patients was higher than that in the controls. The diagnostic capabilities for bladder cancer were 0.847 (miR-130a-3p), 0.762 (miR-130b-3p), and 0.892 (miR-301a-3p). We established a three-miRNA panel with an area under the ROC curve as high as 0.961, indicating that it is a promising clinical diagnostic biomarker of bladder cancer with high sensitivity and specificity. CONCLUSION The expression levels of miR-130 family members in serum can effectively distinguish the bladder cancer patients from healthy controls. This finding will facilitate the clinical diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Jingyao Wang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| | - Liwen Zhao
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Anhui Medical UniversityHefeiChina
| | - Xiqi Peng
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeShantouChina
| | - Kaihao Liu
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Anhui Medical UniversityHefeiChina
| | - Chunduo Zhang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| | - Xuan Chen
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
- Shantou University Medical CollegeShantouChina
| | - Yanni Han
- Department of UltrasoundPeking University Shenzhen HospitalShenzhenChina
| | - Yongqing Lai
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and GeneticsPeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|
48
|
Greither T, Wenzel C, Jansen J, Kraus M, Wabitsch M, Behre HM. MiR-130a in the adipogenesis of human SGBS preadipocytes and its susceptibility to androgen regulation. Adipocyte 2020; 9:197-205. [PMID: 32272867 PMCID: PMC7153545 DOI: 10.1080/21623945.2020.1750256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objectives: Adipogenesis is the differentiation process generating mature adipocytes from undifferentiated mesenchymal stem cells. The differentiation can be inhibited by androgens, although knowledge about intracellular effectors of this inhibition is scarce. Recently, androgen-regulated microRNAs were detected as interesting candidates in this context. In this study, we analyse the role of miR-130a and miR-301 in the adipogenesis of human SGBS preadipocytes and whether they are prone to androgen regulation. Materials and Methods: microRNA expression during adipogenic differentiation with or without androgen stimulation was measured by qPCR. Putative target genes of miR-130a and miR-301 were identified by target database search and validated in luciferase reporter assays. Results: miR-130a and miR-301 are both significantly downregulated on day 3 and day 5 of adipogenic differentiation in comparison to day 0. Under androgen stimulation, a significant upregulation of miR-130a was detected after 7 days of adipogenesis lasting to day 14, while miR-301 did not change significantly until day 14. Luciferase reporter assays revealed the androgen receptor (AR), adiponectin (ADIPOQ) and tumour necrosis factor alpha (TNFα) as miR-130a target genes. Conclusions: miR-130a is an androgen-regulated microRNA that is downregulated during the early phase of adipogenesis and exerts its functions by regulating AR and ADIPOQ translation. These data may help to identify new signalling pathways associated with the androgen-mediated inhibition of adipogenesis.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carina Wenzel
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Julia Jansen
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Matthias Kraus
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Hermann M. Behre
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
49
|
Poodineh J, Sirati-Sabet M, Rajabibazl M, Mohammadi-Yeganeh S. MiR-130a-3p blocks Wnt signaling cascade in the triple-negative breast cancer by targeting the key players at multiple points. Heliyon 2020; 6:e05434. [PMID: 33225091 PMCID: PMC7662874 DOI: 10.1016/j.heliyon.2020.e05434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Aberrant Wnt signaling cascade is a hallmark of the triple-negative breast cancer (TNBC) that is linked with the increased proliferation, invasion, and poor overall survival. many genes are post-transcriptionally regulated by microRNAs (miRNAs) therefore; it is indisputable that the dysregulation of the miRNAs is an explanation for the aberrant signaling cascades. Thus, the present study was conducted to find the putative miRNA targeting the key players of Wnt/β -catenin cascade in the TNBC. METHODS The miR-130a-3p was found as a potential regulator of the Wnt signaling cascade by applying several bioinformatic algorithms. Quantitative real-time PCR (qRT-PCR) was used to analyze the expression levels of miR-130a-3p and Wnt cascade genes in the TNBC cells. Afterward, TNBC cells were transiently transfected with the miR-130a-3p to investigate its effects on the expression of Wnt cascade genes. Subsequently, MTT, soft agar colony formation, scratch, transwell cell migration, and transwell cell invasion assays were used to determine the behavior of the TNBC cells in response to miR-130a-3p restoration. RESULTS Results of the qRT-PCR showed downregulation of miR-130a-3p and upregulation of the Wnt cascade genes in the TNBC cells compared to the normal cells. Transient overexpression of miR-130a-3p decreased the expression levels of Wnt cascade genes significantly in the TNBC cells. Moreover, following the miR-130a-3p overexpression, the proliferation, anchorage-independent growth, and migration of the TNBC cells were reduced. CONCLUSION Overall, our findings provided an evidence for the significant role of miR-130a-3p in the regulation of Wnt/β-catenin cascade, and also introduced the miR-130a-3p as a new therapeutic target for the patients with TNBC.
Collapse
Affiliation(s)
- Jafar Poodineh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Sirati-Sabet
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Pathway Analysis of Selected Circulating miRNAs in Plasma of Breast Cancer Patients: A Preliminary Study. Int J Mol Sci 2020; 21:ijms21197288. [PMID: 33023154 PMCID: PMC7583045 DOI: 10.3390/ijms21197288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs in the circulation of breast cancer (BC) patients have great potential for the early diagnosis, treatment and monitoring of breast cancer. The aim of this preliminary study was to obtain the expression profile of selected miRNAs in the plasma of BC patients that could discriminate BC patients from healthy volunteers and may be useful in early detection of BC. Significantly deregulated miRNAs were evaluated by pathway analysis with the prediction of potential miRNA targets. The study enrolled plasma samples from 65 BC patients and 34 healthy volunteers. Selected miRNAs were screened in pilot testing by the real-time PCR (qPCR) method, and the most appropriate reference genes were selected for normalisation by the geNorm algorithm. In the final testing, we detected miR-99a, miR-130a, miR-484 and miR-1260a (p < 0.05) as significantly up-regulated in the plasma of BC patients. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis revealed that all significantly deregulated miRNAs are involved in the Hippo and Transforming Growth Factor-beta (TGF-beta) signalling pathways. Our study confirmed a different profile of selected circulating miRNAs in the plasma of BC patients with an emphasis on some critical points in the analysis process.
Collapse
|