1
|
Dong J, Wu YW, Dong Y, Pu R, Li XJ, Lyu YM, Bai T, Zhang JL. Genome-Wide Identification of the bHLH Gene Family in Rhododendron delavayi and Its Expression Analysis in Different Floral Tissues. Genes (Basel) 2024; 15:1256. [PMID: 39457380 PMCID: PMC11506958 DOI: 10.3390/genes15101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The bHLH genes play a crucial role in plant growth, development, and stress responses. However, there is currently limited research on bHLH genes in the important horticultural plant Rhododendron delavayi Franch. METHODS In this study, we conducted a comprehensive genome-wide identification and in-depth analysis of the bHLH gene family in R. delavayi using bioinformatics approaches. RESULTS A total of 145 bHLH family members were identified, encoding proteins ranging from 98 to 3300 amino acids in length, with molecular weights ranging from 11.44 to 370.51 kDa and isoelectric points ranging from 4.22 to 10.80. These 145 bHLH genes were unevenly distributed across 13 chromosomes, with three bHLH genes located on contig 52. Chromosome 8 contained the highest number of bHLH family members with 19 genes, while chromosomes 9 and 13 had the lowest, with 7 genes each. Phylogenetic analysis revealed a close evolutionary relationship between bHLH genes in R. delavayi and Arabidopsis thaliana. Subcellular localization analysis indicated that most bHLH genes were located in the nucleus. Promoter analysis of R. delavayi bHLH genes revealed the presence of various cis-regulatory elements associated with light responses, methyl jasmonate responses, low-temperature responses, and coenzyme responses, suggesting that bHLH genes are involved in multiple biological processes in R. delavayi. Through transcriptome analysis, we identified three key functional genes-Rhdel02G0041700, Rhdel03G0013600, and Rhdel03G0341200-that may regulate flower color in R. delavayi. CONCLUSIONS In conclusion, our study comprehensively identified and analyzed the bHLH gene family in R. delavayi and identified three bHLH genes related to flower color, providing a foundation for molecular biology research and breeding in R. delavayi.
Collapse
Affiliation(s)
- Jian Dong
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.D.); (Y.-W.W.); (R.P.); (X.-J.L.)
| | - Ya-Wen Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.D.); (Y.-W.W.); (R.P.); (X.-J.L.)
| | - Yan Dong
- China Flower Association, Beijing 100102, China;
| | - Ran Pu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.D.); (Y.-W.W.); (R.P.); (X.-J.L.)
| | - Xue-Jiao Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.D.); (Y.-W.W.); (R.P.); (X.-J.L.)
| | - Ying-Min Lyu
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China;
| | - Tian Bai
- National Rhododendron Germplasm Resource Bank, Kunming 650201, China
| | - Jing-Li Zhang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.D.); (Y.-W.W.); (R.P.); (X.-J.L.)
| |
Collapse
|
2
|
Ma S, Sun C, Su W, Zhao W, Zhang S, Su S, Xie B, Kong L, Zheng J. Transcriptomic and physiological analysis of atractylodes chinensis in response to drought stress reveals the putative genes related to sesquiterpenoid biosynthesis. BMC PLANT BIOLOGY 2024; 24:91. [PMID: 38317086 PMCID: PMC10845750 DOI: 10.1186/s12870-024-04780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Atractylodes chinensis (DC) Koidz., a dicotyledonous and hypogeal germination species, is an important medicinal plant because its rhizome is enriched in sesquiterpenes. The development and production of A. chinensis are negatively affected by drought stress, especially at the seedling stage. Understanding the molecular mechanism of A. chinensis drought stress response plays an important role in ensuring medicinal plant production and quality. In this study, A. chinensis seedlings were subjected to drought stress treatment for 0 (control), 3 (D3), and 9 days (D9). For the control, the sample was watered every two days and collected on the second morning after watering. The integration of physiological and transcriptomic analyses was carried out to investigate the effects of drought stress on A. chinensis seedlings and to reveal the molecular mechanism of its drought stress response. RESULTS The malondialdehyde, proline, soluble sugar, and crude protein contents and antioxidative enzyme (superoxide dismutase, peroxidase, and catalase) activity were significantly increased under drought stress compared with the control. Transcriptomic analysis indicated a total of 215,665 unigenes with an average length of 759.09 bp and an N50 of 1140 bp. A total of 29,449 differentially expressed genes (DEGs) were detected between the control and D3, and 14,538 DEGs were detected between the control and D9. Under drought stress, terpenoid backbone biosynthesis had the highest number of unigenes in the metabolism of terpenoids and polyketides. To identify candidate genes involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, we observed 22 unigene-encoding enzymes in the terpenoid backbone biosynthetic pathway and 15 unigene-encoding enzymes in the sesquiterpenoid and triterpenoid biosynthetic pathways under drought stress. CONCLUSION Our study provides transcriptome profiles and candidate genes involved in sesquiterpenoid and triterpenoid biosynthesis in A. chinensis in response to drought stress. Our results improve our understanding of how drought stress might affect sesquiterpenoid and triterpenoid biosynthetic pathways in A. chinensis.
Collapse
Affiliation(s)
- Shanshan Ma
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Chengzhen Sun
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Wennan Su
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Wenjun Zhao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Sai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Shuyue Su
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Boyan Xie
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Lijing Kong
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Jinshuang Zheng
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China.
| |
Collapse
|
3
|
Kumar D, Kirti PB. The genus Arachis: an excellent resource for studies on differential gene expression for stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1275854. [PMID: 38023864 PMCID: PMC10646159 DOI: 10.3389/fpls.2023.1275854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Peanut Arachis hypogaea is a segmental allotetraploid in the section Arachis of the genus Arachis along with the Section Rhizomataceae. Section Arachis has several diploid species along with Arachis hypogaea and A. monticola. The section Rhizomataceae comprises polyploid species. Several species in the genus are highly tolerant to biotic and abiotic stresses and provide excellent sets of genotypes for studies on differential gene expression. Though there were several studies in this direction, more studies are needed to identify more and more gene combinations. Next generation RNA-seq based differential gene expression study is a powerful tool to identify the genes and regulatory pathways involved in stress tolerance. Transcriptomic and proteomic study of peanut plants under biotic stresses reveals a number of differentially expressed genes such as R genes (NBS-LRR, LRR-RLK, protein kinases, MAP kinases), pathogenesis related proteins (PR1, PR2, PR5, PR10) and defense related genes (defensin, F-box, glutathione S-transferase) that are the most consistently expressed genes throughout the studies reported so far. In most of the studies on biotic stress induction, the differentially expressed genes involved in the process with enriched pathways showed plant-pathogen interactions, phenylpropanoid biosynthesis, defense and signal transduction. Differential gene expression studies in response to abiotic stresses, reported the most commonly expressed genes are transcription factors (MYB, WRKY, NAC, bZIP, bHLH, AP2/ERF), LEA proteins, chitinase, aquaporins, F-box, cytochrome p450 and ROS scavenging enzymes. These differentially expressed genes are in enriched pathways of transcription regulation, starch and sucrose metabolism, signal transduction and biosynthesis of unsaturated fatty acids. These identified differentially expressed genes provide a better understanding of the resistance/tolerance mechanism, and the genes for manipulating biotic and abiotic stress tolerance in peanut and other crop plants. There are a number of differentially expressed genes during biotic and abiotic stresses were successfully characterized in peanut or model plants (tobacco or Arabidopsis) by genetic manipulation to develop stress tolerance plants, which have been detailed out in this review and more concerted studies are needed to identify more and more gene/gene combinations.
Collapse
Affiliation(s)
- Dilip Kumar
- Department of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pulugurtha Bharadwaja Kirti
- Agri Biotech Foundation, Professor Jayashankar Telangana State (PJTS) Agricultural University, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Mircea DM, Calone R, Shakya R, Zuzunaga-Rosas J, Sestras RE, Boscaiu M, Sestras AF, Vicente O. Evaluation of Drought Responses in Two Tropaeolum Species Used in Landscaping through Morphological and Biochemical Markers. Life (Basel) 2023; 13:life13040960. [PMID: 37109489 PMCID: PMC10145515 DOI: 10.3390/life13040960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One of the most important challenges horticultural crops confront is drought, particularly in regions such as the Mediterranean basin, where water supplies are usually limited and will become even scarcer due to global warming. Therefore, the selection and diversification of stress-tolerant cultivars are becoming priorities of contemporary ornamental horticulture. This study explored the impact of water stress on two Tropaeolum species frequently used in landscaping. Young plants obtained by seed germination were exposed to moderate water stress (half the water used in the control treatments) and severe water stress (complete withholding of irrigation) for 30 days. Plant responses to these stress treatments were evaluated by determining several growth parameters and biochemical stress markers. The latter were analysed by spectrophotometric methods and, in some cases, by non-destructive measurements using an optical sensor. The statistical analysis of the results indicated that although the stress responses were similar in these two closely related species, T. minus performed better under control and intermediate water stress conditions but was more susceptible to severe water stress. On the other hand, T. majus had a stronger potential for adaptation to soil water scarcity, which may be associated with its reported expansion and naturalisation in different regions of the world. The variations in proline and malondialdehyde concentrations were the most reliable biochemical indicators of water stress effects. The present study also showed a close relationship between the patterns of variation of flavonoid and chlorophyll contents obtained by sensor-based and spectrophotometric methods.
Collapse
Affiliation(s)
- Diana M Mircea
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Roberta Calone
- CREA-Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, I-40128 Bologna, I-00184 Rome, Italy
| | - Rashmi Shakya
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Department of Botany, Miranda House, University of Delhi, Delhi 110007, India
| | - Javier Zuzunaga-Rosas
- Department of Plant Production, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Radu E Sestras
- Department of Horticulture and Landscape, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Adriana F Sestras
- Department of Forestry, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur Street, 400372 Cluj-Napoca, Romania
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
5
|
Lin L, Wang J, Wang Q, Ji M, Hong S, Shang L, Zhang G, Zhao Y, Ma Q, Gu C. Transcriptome Approach Reveals the Response Mechanism of Heimia myrtifolia (Lythraceae, Myrtales) to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:877913. [PMID: 35874015 PMCID: PMC9305661 DOI: 10.3389/fpls.2022.877913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Drought is a major environmental condition that inhibits the development and cultivation of Heimia myrtifolia. The molecular processes of drought resistance in H. myrtifolia remain unknown, which has limited its application. In our study, transcriptome analyzes were compared across three treatment groups (CK, T1, and T2), to investigate the molecular mechanism of drought resistance. Plant leaves wilted and drooped as the duration of drought stress increased. The relative water content of the leaves declined dramatically, and relative electrolyte leakage rose progressively. Using an RNA-Seq approach, a total of 62,015 unigenes with an average length of 1730 bp were found, with 86.61% of them annotated to seven databases, and 14,272 differentially expressed genes (DEGs) were identified in drought stress. GO and KEGG enrichment analyzes of the DEGs revealed significantly enriched KEGG pathways, including photosynthesis, photosynthetic antenna proteins, plant hormone signal transduction, glutathione metabolism, and ascorbate and aldarate metabolism. Abscisic acid signal transduction was the most prevalent in the plant hormone signal transduction pathway, and other plant hormone signal transductions were also involved in the drought stress response. The transcription factors (including MYB, NAC, WRKY, and bHLH) and related differential genes on significantly enriched pathways all played important roles in the drought process, such as photosynthesis-related genes and antioxidant enzyme genes. In conclusion, this study will provide several genetic resources for further investigation of the molecular processes that will be beneficial to H. myrtifolia cultivation and breeding.
Collapse
Affiliation(s)
- Lin Lin
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Jie Wang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Qun Wang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Mengcheng Ji
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Sidan Hong
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Linxue Shang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Guozhe Zhang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Yu Zhao
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Qingqing Ma
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| | - Cuihua Gu
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
6
|
Zhou XL, Ma JY, Liu ZD, Dai NF, Yang HQ, Yang L, Wang YH, Shen SK. Gene Co-expression Network and Regression Analysis Identify the Transcriptomic, Physiological, and Biochemical Indicators of the Response of Alpine Woody Plant Rhododendron rex to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:896691. [PMID: 35693180 PMCID: PMC9174646 DOI: 10.3389/fpls.2022.896691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Increasing severity of drought stress due to global change and extreme weather has been affecting the biodiversity, function, and stability of forest ecosystems. However, despite being an important component in the alpine and subalpine vegetation in forest ecosystems, Rhododendron species have been paid rare attention in the study of molecular mechanism of tolerance or response to drought. Herein, we investigated the correlation of transcriptomic changes with the physiological and biochemical indicators of Rhododendron rex under drought stress by using the co-expression network approach and regression analysis. Compared with the control treatment, the number of significantly differentially expressed unigenes (DEGs) increased with the degree of drought stress. The DEGs were mainly enriched in the cell wall metabolic process, signaling pathways, sugar metabolism, and nitrogen metabolism. Coupled analysis of the transcriptome, physiological, and biochemical parameters indicated that the metabolic pathways were highly correlated with the physiological and biochemical indicators under drought stress, especially the chlorophyll fluorescence parameters, such as the actual photosynthetic efficiency of photosystem II, electron transport rate, photochemical quenching coefficient, and the maximum quantum efficiency of photosystem II photochemistry. The majority of the response genes related to the metabolic pathways, including photosynthesis, sugar metabolism, and phytohormone signal pathway, were highly expressed under drought stress. In addition, genes associated with cell wall, pectin, and galacturonan metabolism also played crucial roles in the response of R. rex to drought stress. The results provided novel insight into the molecular response of the alpine woody species under drought stress and may improve the understanding of the response of forest ecosystems to the global climate change.
Collapse
Affiliation(s)
- Xiong-Li Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| | - Jin-Yan Ma
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhen-Dian Liu
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Ni-fei Dai
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Hui-Qin Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Liu Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Yue-Hua Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Shi-Kang Shen
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Zhang L, Cai Y, Zhang M, Du G, Wang J. Selection and Evaluation of Candidate Reference Genes for Quantitative Real-Time PCR in Aboveground Tissues and Drought Conditions in Rhododendron Delavayi. Front Genet 2022; 13:876482. [PMID: 35495151 PMCID: PMC9046656 DOI: 10.3389/fgene.2022.876482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
There has been no systematic identification and screening of candidate reference genes for normalization of quantitative real-time PCR (qRT-PCR) results in Rhododendron delavayi to date. Therefore, the present study used GAPDH, Act, EF1, Tub-, Tub-5, UEC1, TATA, TATA-2, UEP, TIP41, and Ubiquitin to predict their stabilities on different aboveground tissues (matured leaves (ML), stem tips (STM), and flower buds (FB)) at different developmental stages (young and adult plants) using five statistical algorithms: Delta Ct method, BestKeeper, geNorm, Normfinder, and RefFinder. The findings were confirmed using ML obtained from plants that had been stressed by drought. By using RefFinder with ML samples collected under drought conditions, it was determined that the top five most stable reference genes were GAPDH > UEC1 > Actin > Tubulin- > Tubulin—5, whereas the least stable reference gene was Ubiquitin. In addition, under control conditions, UEC1, UEC2, Actin, and GAPDH were selected as the highest stable potential reference genes at the juvenile stage of R. delavayi with ML and STM. When ML and STM were combined with drought-stressed samples, TIP41, GAPDH, or their combination proved to be the most effective qRT-PCR primers. The findings will aid in the improvement of the precision and reliability of qRT-PCR data and laying the groundwork for future gene functional studies in R. delavayi.
Collapse
Affiliation(s)
- Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Yanfei Cai
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Mingchao Zhang
- School of Agriculture, Yunnan University, Kunming, China
| | - Guanghui Du
- School of Agriculture, Yunnan University, Kunming, China
- *Correspondence: Guanghui Du, ; Jihua Wang,
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, China
- *Correspondence: Guanghui Du, ; Jihua Wang,
| |
Collapse
|
8
|
The Rhododendron Plant Genome Database (RPGD): a comprehensive online omics database for Rhododendron. BMC Genomics 2021; 22:376. [PMID: 34022814 PMCID: PMC8141123 DOI: 10.1186/s12864-021-07704-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The genus Rhododendron L. has been widely cultivated for hundreds of years around the world. Members of this genus are known for great ornamental and medicinal value. Owing to advances in sequencing technology, genomes and transcriptomes of members of the Rhododendron genus have been sequenced and published by various laboratories. With increasing amounts of omics data available, a centralized platform is necessary for effective storage, analysis, and integration of these large-scale datasets to ensure consistency, independence, and maintainability. Results Here, we report our development of the Rhododendron Plant Genome Database (RPGD; http://bioinfor.kib.ac.cn/RPGD/), which represents the first comprehensive database of Rhododendron genomics information. It includes large amounts of omics data, including genome sequence assemblies for R. delavayi, R. williamsianum, and R. simsii, gene expression profiles derived from public RNA-Seq data, functional annotations, gene families, transcription factor identification, gene homology, simple sequence repeats, and chloroplast genome. Additionally, many useful tools, including BLAST, JBrowse, Orthologous Groups, Genome Synteny Browser, Flanking Sequence Finder, Expression Heatmap, and Batch Download were integrated into the platform. Conclusions RPGD is designed to be a comprehensive and helpful platform for all Rhododendron researchers. Believe that RPGD will be an indispensable hub for Rhododendron studies.
Collapse
|
9
|
Biochemical, Physiological, and Molecular Aspects of Ornamental Plants Adaptation to Deficit Irrigation. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
There is increasing concern regarding global warming and its severe impact on the farming sector and food security. Incidences of extreme weather conditions are becoming more and more frequent, posing plants to stressful conditions, such as flooding, drought, heat, or frost etc. Especially for arid lands, there is a tug-of-war between keeping high crop yields and increasing water use efficiency of limited water resources. This difficult task can be achieved through the selection of tolerant water stress species or by increasing the tolerance of sensitive species. In this scenario, it is important to understand the response of plants to water stress. So far, the response of staple foods and vegetable crops to deficit irrigation is well studied. However, there is lack of literature regarding the responses of ornamental plants to water stress conditions. Considering the importance of this ever-growing sector for the agricultural sector, this review aims to reveal the defense mechanisms and the involved morpho-physiological, biochemical, and molecular changes in ornamental plant’s responses to deficit irrigation.
Collapse
|
10
|
Li Y, Si YT, He YX, Li JX. Comparative analysis of drought-responsive and -adaptive genes in Chinese wingnut (Pterocarya stenoptera C. DC). BMC Genomics 2021; 22:155. [PMID: 33663380 PMCID: PMC7934232 DOI: 10.1186/s12864-021-07470-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background Drought is the main stress factor for the cultivation of Pterocarya stenoptera in urban areas, and this factor will cause its dehydration and affect its growth. Identifying drought-related genes will be useful for understanding the drought adaptation mechanism of P. stenoptera. Results We used physiological indicator detection, comparative transcriptome sequencing, and reanalysis on the results of previous landscape genomics studies to investigate the drought adaptation mechanism in P. stenoptera. The changes in malondialdehyde content showed that P. stenoptera was remarkably affected by drought stress, and the increase in soluble sugar content suggested its important role in response to drought stress. Results of comparative transcriptome sequencing showed that P. stenoptera initiated a series of programs, such as increasing the gene expression of unsaturated fatty acids, tyrosine, and plant pathogen resistance, to deal with the transient drought stress. According to the annotated results in a previous study, P. stenoptera adapts to the long-term differential drought stress by regulating the thickness of cell walls and expressing upper or lower limits of the downstream genes in the hormone signaling pathway. Through the comparative analysis of drought-responsive and -adaptive genes in P. stenoptera, this study supports the hypothesis that the environment-responsive genes (ERGs) introduced by the transient environmental stresses will be substantially more than the environment-adaptive genes (EAGs) in response to long-term differential environmental stresses, and the EAGs are not necessarily ERGs. Conclusions Our study identified drought-responsive and -adaptive genes in P. stenoptera and revealed that P. stenoptera increased the gene expression of unsaturated fatty acids, tyrosine, and plant pathogen resistance in response to transient drought stress. This study reveals the different adaptation mechanism of P. stenoptera under the transient and long-term differential drought stresses. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07470-z.
Collapse
Affiliation(s)
- Yong Li
- Innovation Platform of Molecular Biology, College of Landcape and Art, Henan Agricultural University, Zhengzhou, China.
| | - Yu-Tao Si
- Innovation Platform of Molecular Biology, College of Landcape and Art, Henan Agricultural University, Zhengzhou, China
| | - Yan-Xia He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jia-Xin Li
- Innovation Platform of Molecular Biology, College of Landcape and Art, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Jiang C, Li X, Zou J, Ren J, Jin C, Zhang H, Yu H, Jin H. Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties. BMC PLANT BIOLOGY 2021; 21:64. [PMID: 33504328 PMCID: PMC7839228 DOI: 10.1186/s12870-020-02761-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/01/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The peanut is one of the most important oil crops worldwide. Qualities and yields of peanut can be dramatically diminished by abiotic stresses particularly by drought. Therefore, it would be beneficial to gain a comprehensive understanding on peanut drought-responsive transcriptional regulatory activities, and hopefully to extract critical drought-tolerance-related molecular mechanism from it. RESULTS In this study, two peanut Arachis hypogaea L. varieties, NH5 (tolerant) and FH18 (sensitive), which show significantly differential drought tolerance, were screened from 23 main commercial peanut cultivars and used for physiological characterization and transcriptomic analysis. NH5 leaves showed higher water and GSH contents, faster stomatal closure, and lower relative conductivity (REC) than FH18. Under the time-course of drought-treatments 0 h (CK), 4 h (DT1), 8 h (DT2) and 24 h (DT3), the number of down-regulated differential expressed genes (DEGs) increased with the progression of treatments indicating repressive impacts on transcriptomes by drought in both peanut varieties. CONCLUSIONS Nevertheless, NH5 maintained more stable transcriptomic dynamics than FH18. Furthermore, annotations of identified DEGs implicate signal transduction, the elimination of reactive oxygen species, and the maintenance of cell osmotic potential which are key drought-tolerance-related pathways. Finally, evidences from the examination of ABA and SA components suggested that the fast stomatal closure in NH5 was likely mediated through SA rather than ABA signaling. In all, these results have provided us a comprehensive overview of peanut drought-responsive transcriptomic changes, which could serve as solid foundation for further identification of the molecular drought-tolerance mechanism in peanut and other oil crops.
Collapse
Affiliation(s)
- Chunji Jiang
- College of Agriculture, Shenyang Agricultural University, Shenyang, 110000, China
| | - Xinlin Li
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Jixiang Zou
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Jingyao Ren
- College of Agriculture, Shenyang Agricultural University, Shenyang, 110000, China
| | - Chunyi Jin
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - He Zhang
- College of Agriculture, Shenyang Agricultural University, Shenyang, 110000, China
| | - Haiqiu Yu
- College of Agriculture, Shenyang Agricultural University, Shenyang, 110000, China.
| | - Hua Jin
- College of Environment and Resources, Dalian Minzu University, Dalian, 116600, China.
| |
Collapse
|