1
|
Saikia B, S R, Debbarma J, Maharana J, Sastry GN, Chikkaputtaiah C. CRISPR/Cas9-based genome editing and functional analysis of SlHyPRP1 and SlDEA1 genes of Solanum lycopersicum L. in imparting genetic tolerance to multiple stress factors. FRONTIERS IN PLANT SCIENCE 2024; 15:1304381. [PMID: 38371406 PMCID: PMC10869523 DOI: 10.3389/fpls.2024.1304381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
CRISPR/Cas is a breakthrough genome editing system because of its precision, target specificity, and efficiency. As a speed breeding system, it is more robust than the conventional breeding and biotechnological approaches for qualitative and quantitative trait improvement. Tomato (Solanum lycopersicum L.) is an economically important crop, but its yield and productivity have been severely impacted due to different abiotic and biotic stresses. The recently identified SlHyPRP1 and SlDEA1 are two potential negative regulatory genes in response to different abiotic (drought and salinity) and biotic stress (bacterial leaf spot and bacterial wilt) conditions in S. lycopersicum L. The present study aimed to evaluate the drought, salinity, bacterial leaf spot, and bacterial wilt tolerance response in S. lycopersicum L. crop through CRISPR/Cas9 genome editing of SlHyPRP1 and SlDEA1 and their functional analysis. The transient single- and dual-gene SlHyPRP1 and SlDEA1 CRISPR-edited plants were phenotypically better responsive to multiple stress factors taken under the study. The CRISPR-edited SlHyPRP1 and SlDEA1 plants showed a higher level of chlorophyll and proline content compared to wild-type (WT) plants under abiotic stress conditions. Reactive oxygen species accumulation and the cell death count per total area of leaves and roots under biotic stress were less in CRISPR-edited SlHyPRP1 and SlDEA1 plants compared to WT plants. The study reveals that the combined loss-of-function of SlHyPRP1 along with SlDEA1 is essential for imparting significant multi-stress tolerance (drought, salinity, bacterial leaf spot, and bacterial wilt) in S. lycopersicum L. The main feature of the study is the detailed genetic characterization of SlDEA1, a poorly studied 8CM family gene in multi-stress tolerance, through the CRISPR/Cas9 gene editing system. The study revealed the key negative regulatory role of SlDEA1 that function together as an anchor gene with SlHyPRP1 in imparting multi-stress tolerance in S. lycopersicum L. It was interesting that the present study also showed that transient CRISPR/Cas9 editing events of SlHyPRP1 and SlDEA1 genes were successfully replicated in stably generated parent-genome-edited line (GEd0) and genome-edited first-generation lines (GEd1) of S. lycopersicum L. With these upshots, the study's key findings demonstrate outstanding value in developing sustainable multi-stress tolerance in S. lycopersicum L. and other crops to cope with climate change.
Collapse
Affiliation(s)
- Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Remya S
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, India
| | - G. Narahari Sastry
- Advanced Computational and Data Science Division, CSIR-NEIST, Jorhat, Assam, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
2
|
Priya Reddy YN, Oelmüller R. Lipid peroxidation and stress-induced signalling molecules in systemic resistance mediated by azelaic acid/AZELAIC ACID INDUCED1: signal initiation and propagation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:305-316. [PMID: 38623172 PMCID: PMC11016046 DOI: 10.1007/s12298-024-01420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/17/2024]
Abstract
Systemic acquired resistance protects plants against a broad spectrum of secondary infections by pathogens. A crucial compound involved in the systemic spread of the threat information after primary pathogen infection is the C9 oxylipin azelaic acid (AZA), a breakdown product of unsaturated C18 fatty acids. AZA is generated during lipid peroxidation in the plastids and accumulates in response to various abiotic and biotic stresses. AZA stimulates the expression of AZELAIC ACID INDUCED1 (AZI1), and a pool of AZI1 accumulates in the plastid envelope in association with AZA. AZA and AZI1 utilize the symplastic pathway to travel through the plasmodesmata to neighbouring cells to induce systemic stress resistance responses in distal tissues. Here, we describe the synthesis, travel and function of AZA and AZI1 and discuss open questions of signal initiation and propagation.
Collapse
Affiliation(s)
- Y. N. Priya Reddy
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller University Jena, Dornburger Str. 159, D-07743 Jena, Germany
| | - Ralf Oelmüller
- Matthias Schleiden Institute, Plant Physiology, Friedrich-Schiller University Jena, Dornburger Str. 159, D-07743 Jena, Germany
- Present Address: Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
3
|
Zhang T, Zhang W, Ding C, Hu Z, Fan C, Zhang J, Li Z, Diao S, Shen L, Zhang B, Liu G, Su X. A breeding strategy for improving drought and salt tolerance of poplar based on CRISPR/Cas9. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2160-2162. [PMID: 37535444 PMCID: PMC10579702 DOI: 10.1111/pbi.14147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Affiliation(s)
- Tengqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Zanmin Hu
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Chengming Fan
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Zhenghong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Songfeng Diao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Le Shen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
4
|
Zhang XL, Gong XQ, Su XJ, Yu HX, Cheng SY, Huang JW, Li DY, Lei ZL, Li MJ, Ma FW. The ubiquitin-binding protein MdRAD23D1 mediates drought response by regulating degradation of the proline-rich protein MdPRP6 in apple (Malus domestica). PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 37140026 PMCID: PMC10363924 DOI: 10.1111/pbi.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/13/2023] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
RAD23 (RADIATION SENSITIVE23) proteins are a group of UBL-UBA (ubiquitin-like-ubiquitin-associated) proteins that shuttle ubiquitylated proteins to the 26S proteasome for breakdown. Drought stress is a major environmental constraint that limits plant growth and production, but whether RAD23 proteins are involved in this process is unclear. Here, we demonstrated that a shuttle protein, MdRAD23D1, mediated drought response in apple plants (Malus domestica). MdRAD23D1 levels increased under drought stress, and its suppression resulted in decreased stress tolerance in apple plants. Through in vitro and in vivo assays, we demonstrated that MdRAD23D1 interacted with a proline-rich protein MdPRP6, resulting in the degradation of MdPRP6 by the 26S proteasome. And MdRAD23D1 accelerated the degradation of MdPRP6 under drought stress. Suppression of MdPRP6 resulted in enhanced drought tolerance in apple plants, mainly because the free proline accumulation is changed. And the free proline is also involved in MdRAD23D1-mediated drought response. Taken together, these findings demonstrated that MdRAD23D1 and MdPRP6 oppositely regulated drought response. MdRAD23D1 levels increased under drought, accelerating the degradation of MdPRP6. MdPRP6 negatively regulated drought response, probably by regulating proline accumulation. Thus, "MdRAD23D1-MdPRP6" conferred drought stress tolerance in apple plants.
Collapse
Affiliation(s)
- Xiao-Li Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiao-Qing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Xin-Jian Su
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Hai-Xia Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Si-Yuan Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jing-Wen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Dan-Yang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Zhao-Long Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Ming-Jun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Feng-Wang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Nascimento FDS, Rocha ADJ, Soares JMDS, Mascarenhas MS, Ferreira MDS, Morais Lino LS, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Gene Editing for Plant Resistance to Abiotic Factors: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:305. [PMID: 36679018 PMCID: PMC9860801 DOI: 10.3390/plants12020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.
Collapse
Affiliation(s)
| | - Anelita de Jesus Rocha
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | - Mileide dos Santos Ferreira
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kavi Kishor PB, Suravajhala P, Rathnagiri P, Sreenivasulu N. Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:867531. [PMID: 35795343 PMCID: PMC9252438 DOI: 10.3389/fpls.2022.867531] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 05/24/2023]
Abstract
Proline is a proteinogenic amino acid synthesized from glutamate and ornithine. Pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase are the two key enzymes involved in proline synthesis from glutamate. On the other hand, ornithine-δ-aminotransferase converts ornithine to pyrroline 5-carboxylate (P5C), an intermediate in the synthesis of proline as well as glutamate. Both proline dehydrogenase and P5C dehydrogenase convert proline back to glutamate. Proline accumulation is widespread in response to environmental challenges such as high temperatures, and it is known to defend plants against unpropitious situations promoting plant growth and flowering. While proline accumulation is positively correlated with heat stress tolerance in some crops, it has detrimental consequences in others. Although it has been established that proline is a key osmolyte, its exact physiological function during heat stress and plant ontogeny remains unknown. Emerging evidence pointed out its role as an overriding molecule in alleviating high temperature stress (HTS) by quenching singlet oxygen and superoxide radicals. Proline cycle acts as a shuttle and the redox couple (NAD+/NADH, NADP+/NADPH) appears to be highly crucial for energy transfer among different cellular compartments during plant development, exposure to HTS conditions and also during the recovery of stress. In this review, the progress made in recent years regarding its involvement in heat stress tolerance is highlighted.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to Be University), Guntur, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham University, Kerala, India
| | - P. Rathnagiri
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to Be University), Guntur, India
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Banos, Philippines
| |
Collapse
|
7
|
Lin M, Sun S, Fang J, Qi X, Sun L, Zhong Y, Sun Y, Hong G, Wang R, Li Y. BSR-Seq analysis provides insights into the cold stress response of Actinidia arguta F1 populations. BMC Genomics 2021; 22:72. [PMID: 33482717 PMCID: PMC7821520 DOI: 10.1186/s12864-021-07369-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Freezing injury, which is an important abiotic stress in horticultural crops, influences the growth and development and the production area of kiwifruit (Actinidia Lind1). Among Actinidia species, Actinidia arguta has excellent cold resistance, but knowledge relevant to molecular mechanisms is still limited. Understanding the mechanism underlying cold resistance in kiwifruit is important for breeding cold resistance. RESULTS In our study, a population resulting from the cross of A. arguta 'Ruby-3' × 'Kuilv' male was generated for kiwifruit hardiness study, and 20 cold-tolerant and 20 cold-sensitive populations were selected from 492 populations according to their LT50. Then, we performed bulked segregant RNA-seq combined with single-molecule real-time sequencing to identify differentially expressed genes that provide cold hardiness. We found that the content of soluble sucrose and the activity of β-amylase were higher in the cold-tolerant population than in the cold-sensitive population. Upon - 30 °C low-temperature treatment, 126 differentially expressed genes were identify; the expression of 59 genes was up-regulated and that of 67 genes was down-regulated between the tolerant and sensitive pools, respectively. KEGG pathway analysis showed that the DEGs were primarily related to starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism. Ten major key enzyme-encoding genes and two regulatory genes were up-regulated in the tolerant pool, and regulatory genes of the CBF pathway were found to be differentially expressed. In particular, a 14-3-3 gene was down-regulated and an EBF gene was up-regulated. To validate the BSR-Seq results, 24 DEGs were assessed via qRT-PCR, and the results were consistent with those obtained by BSR-Seq. CONCLUSION Our research provides valuable insights into the mechanism related to cold resistance in Actinidia and identified potential genes that are important for cold resistance in kiwifruit.
Collapse
Affiliation(s)
- Miaomiao Lin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Shihang Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Jinbao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China.
| | - Xiujuan Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China.
| | - Leiming Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yunpeng Zhong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yanxiang Sun
- Langfang Normal University, Langfang, 065000, China
| | - Gu Hong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Ran Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yukuo Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| |
Collapse
|
8
|
Bhattacharya A, Parkhi V, Char B. Genome editing for crop improvement: A perspective from India. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2021; 57:565-573. [PMID: 34075289 PMCID: PMC8152710 DOI: 10.1007/s11627-021-10184-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 05/11/2023]
Abstract
Human population is expected to reach to about 10 billion by 2050. Climate change affects crop production, thus posing food security challenges. Conventional breeding alone will not bridge the gap between current level of crop production and expected levels in the decades to come in the food production systems. Rate of genetic gain with time has remained narrow considerably. Biotechnology-enabled crops developed through genome editing will have a part to play in improving crop productivity, meeting food, nutrition security besides catering to regional preferences and fetching valuable foreign exchange. Political, social, economical proposition, scientific will, retailer and consumer acceptance are a must for genome editing (GE) to succeed and add value in the food value chain. This will also help to make agriculture a lucrative profession and attract youth. Therefore, the present review looks into existing regulations governing crops developed using biotechnology in India, institutes involved in genome editing, prospects of new tools developed in this sphere such as DNA-free editing systems, nanotechnology, their applicability in crop improvement efforts, social and future prospects taking cue from recent global developments. This will make GE more appealing to stakeholders and defray any safety concerns.
Collapse
Affiliation(s)
- Anjanabha Bhattacharya
- Mahyco Research Centre, Mahyco Private Limited, Jalna-Aurangabad Road, Dawalwadi, Jalna, Maharashtra 431203 India
| | - Vilas Parkhi
- Mahyco Research Centre, Mahyco Private Limited, Jalna-Aurangabad Road, Dawalwadi, Jalna, Maharashtra 431203 India
| | - Bharat Char
- Mahyco Research Centre, Mahyco Private Limited, Jalna-Aurangabad Road, Dawalwadi, Jalna, Maharashtra 431203 India
| |
Collapse
|
9
|
Saikia B, Debbarma J, Maharana J, Singha DL, Velmuruagan N, Dekaboruah H, Arunkumar KP, Chikkaputtaiah C. SlHyPRP1 and DEA1, the multiple stress responsive eight-cysteine motif family genes of tomato ( Solanum lycopersicum L.) are expressed tissue specifically, localize and interact at cytoplasm and plasma membrane in vivo. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2553-2568. [PMID: 33424164 PMCID: PMC7772121 DOI: 10.1007/s12298-020-00913-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/22/2020] [Accepted: 11/17/2020] [Indexed: 05/09/2023]
Abstract
Owing to rapid global climate change, the occurrence of multiple abiotic stresses is known to influence the outburst of biotic stress factors which affects crop productivity. Therefore, it is essential to understand the molecular and cell biology of key genes associated with multiple stress responses in crop plants. SlHyPRP1 and DEA1, the members of eight-cysteine motif (8CM) family genes have been recently identified as putative regulators of multiple stress responses in tomato (Solanum lycopersicum L.). In order to gain deeper insight into cell and molecular biology of SlHyPRP1 and DEA1, we performed their expression analysis in three tomato cultivars and in vivo cell biological analysis. The semi-quantitative PCR and qRT-PCR results showed the higher expression of SlHyPRP1 and DEA1 in leaf, stem, flower and root tissues as compared to fruit and seed tissues in all three cultivars. The expression levels of SlHyPRP1 and DEA1 were found to be relatively higher in a wilt susceptible tomato cultivar (Arka Vikas) than a multiple disease resistant cultivar (Arka Abhed). In vivo cell biological analysis through Gateway cloning and Bi-FC assay revealed the predominant sub-cellular localization and strong protein-protein interaction of SlHyPRP1 and DEA1 at the cytoplasm and plasma membrane. Moreover, SlHyPRP1 showed in vivo interaction with stress responsive proteins WRKY3 and MST1. Our findings suggest that SlHyPRP1 with DEA1 are co-expressed with tissue specificity and might function together by association with WRKY3 and MST1 in plasma membrane for regulating multiple stress responses in the tomato plant.
Collapse
Affiliation(s)
- Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785 006 India
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, 201 002 India
| | - Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785 006 India
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, 201 002 India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam India
- Present Address: Institute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Dhanawantari L. Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785 006 India
| | - Natarajan Velmuruagan
- Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-NEIST, Arunachal Pradesh, Naharlagun, 791 110 India
| | - Hariprasanna Dekaboruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785 006 India
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, 201 002 India
| | - Kallare P. Arunkumar
- Central Muga Eri Research and Training Institute (CMER&TI), Lahdoigarh, Jorhat, Assam, 785 700 India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785 006 India
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, 201 002 India
| |
Collapse
|