1
|
Lakhwani S, Mateos MV, Martínez-López J, Paiva B, Rosiñol Dachs L, Martínez R, Oriol A, Bargay J, González-Montes Y, Gironella M, Encinas C, Martín J, Jarque I, Granell M, Abella E, García-Mateo A, Hernández-Rivas JÁ, Ramila E, Krsnik I, Casado Montero LF, De Arriba F, Palomera L, Sampol A, Moraleda JM, Casanova M, Delgado P, Lafuente A, Amutio E, López-Martínez A, Altés A, Ruíz MÁ, Alegre A, Lopez-Anglada L, De La Cruz J, Alonso Fernández R, Bladé Creixenti J, Lahuerta JJ, San-Miguel J, Hernández MT. Immunoparesis recovery in newly diagnosed transplant ineligible multiple myeloma patients, an independent prognostic factor that complements minimal residual disease. Ann Hematol 2024:10.1007/s00277-024-06031-0. [PMID: 39438321 DOI: 10.1007/s00277-024-06031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Information on the prognostic value of immunoparesis (IP) recovery in multiple myeloma (MM) patients has been only generated in some observational and retrospective studies. We have evaluated the prognostic impact of IP recovery and its association with minimal residual disease (MRD) in a series of 113 newly diagnosed transplant-ineligible (NDTI) patients, that received fix duration treatment (18 cycles of VMP/lenalidomide-dexamethasone) within the PETHEMA/GEM2010MAS65 trial and who achieved CR or VGPR. Immunoglobulin levels were measured at diagnosis, at the end of treatment (after cycle 18th) and during subsequent follow up whereas MRD was analyzed only at the end of the treatment (after cycle 18th). We found that patients who had IP at diagnosis and recovered it during or after treatment had longer progression free survival (PFS) [p < 0.001; HR 0.32 (0.19-0.52)] and longer overall survival (OS) [p = 0.007; HR 0.40 (0.20-0.80)] compared to those who failed to recover it. When we analyzed IP recovery in MRD negative patients, we found that those cases with IP recovery had longer PFS [p = 0.007; HR 0.31 (0.13-0.76)] and longer OS [p = 0.012; HR 0.21 (0.06-0.80)] as compared to MRD negative patients but without IP recovery. In conclusion, IP recovery confers better prognosis in NDTI-MM patients with fixed duration treatment who achieve CR or VGPR and the prognostic value of MRD can be complemented when combined with IP recovery.
Collapse
Affiliation(s)
- Sunil Lakhwani
- Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Spain.
| | | | - Joaquín Martínez-López
- Hospital Universitario 12 de Octubre, Universidad Complutense, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Bruno Paiva
- Cancer Center Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | | | | | - Albert Oriol
- Institut Català d'Oncologia, Institut Josep Carreras, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Joan Bargay
- Hospital Son Llàtzer, IdIsBa, Palma de Mallorca, Spain
| | | | | | - Cristina Encinas
- Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Jesús Martín
- Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Isidro Jarque
- Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | | | | | | | | | | | - Isabel Krsnik
- Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | - Felipe De Arriba
- Hospital Morales Meseguer, IMIB-Pascual Parrilla, Universidad de Murcia, Murcia, Spain
| | - Luis Palomera
- Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Antonia Sampol
- Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - José María Moraleda
- Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | - Albert Altés
- Hospital Althaia, Xarxa Assistencial de Manresa, Manresa, Spain
| | | | | | - Lucia Lopez-Anglada
- Unidad de Terapias Avanzadas de la Consejería de Sanidad de la Comunidad de Madrid, Madrid, Spain
| | - Javier De La Cruz
- Instituto De Investigación Sanitaria, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rafael Alonso Fernández
- Hospital Universitario 12 de Octubre, Universidad Complutense, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | - Juan-José Lahuerta
- Instituto De Investigación Sanitaria, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jesús San-Miguel
- Cancer Center Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | | |
Collapse
|
2
|
Pilcher WC, Yao L, Gonzalez-Kozlova E, Pita-Juarez Y, Karagkouni D, Acharya CR, Michaud ME, Hamilton M, Nanda S, Song Y, Sato K, Wang JT, Satpathy S, Ma Y, Schulman J, D'Souza D, Jayasinghe RG, Cheloni G, Bakhtiari M, Pabustan N, Nie K, Foltz JA, Saldarriaga I, Alaaeldin R, Lepisto E, Chen R, Fiala MA, Thomas BE, Cook A, Dos Santos JV, Chiang IL, Figueiredo I, Fortier J, Slade M, Oh ST, Rettig MP, Anderson E, Li Y, Dasari S, Strausbauch MA, Simon VA, Rahman AH, Chen Z, Lagana A, DiPersio JF, Rosenblatt J, Kim-Schulze S, Dhodapkar MV, Lonial S, Kumar S, Bhasin SS, Kourelis T, Vij R, Avigan D, Cho HJ, Mulligan G, Ding L, Gnjatic S, Vlachos IS, Bhasin M. A single-cell atlas characterizes dysregulation of the bone marrow immune microenvironment associated with outcomes in multiple myeloma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.593193. [PMID: 38798338 PMCID: PMC11118283 DOI: 10.1101/2024.05.15.593193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.
Collapse
Affiliation(s)
- William C. Pilcher
- Coultier Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lijun Yao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Edgar Gonzalez-Kozlova
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yered Pita-Juarez
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dimitra Karagkouni
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Marina E Michaud
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | | | - Shivani Nanda
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Julia T. Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarthak Satpathy
- Department of Biomedical Informatics, Emory School of Medicine, Atlanta, GA, USA
| | - Yuling Ma
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Darwin D'Souza
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reyka G. Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Giulia Cheloni
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mojtaba Bakhtiari
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | | | - Kai Nie
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer A. Foltz
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Rania Alaaeldin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | | | - Rachel Chen
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark A. Fiala
- Bone Marrow Transplantation & Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Beena E Thomas
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | | | - Junia Vieira Dos Santos
- Tisch Cancer Institute, Department of Immunology and Immunotherapy, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - I-ling Chiang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Igor Figueiredo
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie Fortier
- Bone Marrow Transplantation & Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael Slade
- Bone Marrow Transplantation & Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen T. Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael P. Rettig
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Ying Li
- Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Adeeb H Rahman
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhihong Chen
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Lagana
- Tisch Cancer Institute, Department of Immunology and Immunotherapy, Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F. DiPersio
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhav V Dhodapkar
- Department of Hematology Oncology, Emory School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory School of Medicine, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta
| | | | - Swati S Bhasin
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | | | - Ravi Vij
- Bone Marrow Transplantation & Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - David Avigan
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Sacha Gnjatic
- Human Immune Monitoring Center, Tisch Cancer Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ioannis S Vlachos
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Spatial Technologies Unit, Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
- Cancer Center & Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA
| | - Manoj Bhasin
- Coultier Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
3
|
Harandi H, Fallahtafti P, Karimi A, Hashemi SM, Mahalleh M, Ashouri M, Salehi MA, Hoveidaei A. Examining the immunological responses to COVID-19 vaccination in multiple myeloma patients: a systematic review and meta-analysis. BMC Geriatr 2024; 24:411. [PMID: 38720296 PMCID: PMC11080142 DOI: 10.1186/s12877-024-05006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Impaired immune response in multiple myeloma renders the patients vulnerable to infections, such as COVID-19, and may cause worse response to vaccines. Researchers should analyze this issue to enable the planning for special preventive measures, such as increased booster doses. Therefore, this meta-analysis aimed to evaluate the response and efficacy of COVID-19 vaccines in patients with multiple myeloma. METHODS This meta-analysis followed PRISMA 2020 guidelines, conducting a comprehensive database search using specified keywords. Study selection involved a two-phase title/abstract and full-text screening process. Data extraction was performed by two researchers, and statistical analysis involved meta-analysis, subgroup analysis based on vaccine dosage and study time, random effects meta-regression, and heterogeneity testing using the Q test. RESULTS The meta-analysis revealed that patients with multiple myeloma (MM) had a lower likelihood of developing detectable antibodies after COVID-19 vaccination compared to healthy controls (Log odds ratio with 95% CI: -3.34 [-4.08, -2.60]). The analysis of antibody response after different doses showed consistent lower seropositivity in MM patients (after first dose: -2.09, [-3.49, -0.69], second: -3.80, 95%CI [-4.71, -3.01], a booster dose: -3.03, [-5.91, -0.15]). However, there was no significant difference in the mean level of anti-S antibodies between MM patients and controls (Cohen's d -0.72, [-1.86, 0.43]). Evaluation of T-cell responses indicated diminished T-cell-mediated immunity in MM patients compared to controls. Seven studies reported clinical response, with breakthrough infections observed in vaccinated MM patients. CONCLUSIONS These findings highlight the impaired humoral and cellular immune responses in MM patients after COVID-19 vaccination, suggesting the need for further investigation and potential interventions.
Collapse
Affiliation(s)
- Hamid Harandi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Fallahtafti
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Mehrdad Mahalleh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ashouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Armin Hoveidaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Aljabban J, Syed S, Syed S, Rohr M, Mukhtar M, Aljabban H, Cottini F, Mohammed M, Hughes T, Gonzalez T, Panahiazr M, Hadley D, Benson D. Characterization of monoclonal gammopathy of undetermined significance progression to multiple myeloma through meta-analysis of GEO data. Heliyon 2023; 9:e17298. [PMID: 37539132 PMCID: PMC10394915 DOI: 10.1016/j.heliyon.2023.e17298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
The etiology of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma (MM) is still obscure as are the processes that enable the progression of MGUS to MM. Understanding the unique vs. shared transcriptomes can potentially elucidate why individuals develop one or the other. Furthermore, highlighting key pathways and genes involved in the pathogenesis of MM or the development of MGUS to MM may allow the discovery of novel drug targets and therapies. We employed STARGEO platform to perform three separate meta-analysis to compare MGUS and MM transcriptomes. For these analyses we tagged (1) 101 MGUS patient plasma cells from bone marrow samples and 64 plasma cells from healthy controls (2) 383 MM patient CD138+ cells from bone marrow and the 101 MGUS samples in the first analysis as controls (3) 517 MM patient peripheral blood samples and 97 peripheral blood samples from healthy controls. We then utilized Ingenuity Pathway Analysis (IPA) to analyze the unique genomic signatures within and across these samples. Our study identified genes that may have unique roles in MGUS (GADD45RA and COMMD3), but also newly identified signaling pathways (EIF2, JAK/STAT, and MYC) and gene activity (NRG3, RBFOX2, and PARP15) in MGUS that have previously been shown to be involved in MM suggesting a spectrum of molecular overlap. On the other hand, genes such as DUSP4, RN14, LAMP5, differentially upregulated in MM, may be seen as tipping the scales from benignity to malignancy and could serve as drug targets or novel biomarkers for risk of progression. Furthermore, our analysis of MM identified newly associated gene/pathway activity such as inhibition of Wnt-signaling and defective B cell development. Finally, IPA analysis, suggests the multifactorial, oncogenic qualities of IFNγ signaling in MM may be a unifying pathway for these diverse mechanisms and prompts the need for further studies.
Collapse
Affiliation(s)
- Jihad Aljabban
- University of Wisconsin Hospital and Clinics, Department of Medicine, United States
| | - Sharjeel Syed
- University of Chicago Medical Center, Department of Medicine, United States
| | - Saad Syed
- Northwestern Memorial Hospital, Department of Medicine, United States
| | - Michael Rohr
- University of Central Florida College of Medicine, United States
| | - Mohamed Mukhtar
- Michigan State University College of Human Medicine, United States
| | | | - Francesca Cottini
- Ohio State University Wexner Medical Center, United States
- James Cancer Hospital Solove Research Institute, United States
| | | | - Tiffany Hughes
- Ohio State University Wexner Medical Center, United States
| | | | - Maryam Panahiazr
- University of California San Francisco, Department of Surgery, United States
| | - Dexter Hadley
- University of Central Florida College of Medicine, United States
- University of Central Florida, Chief of the Department of Artificial Intelligence, United States
| | - Don Benson
- Ohio State University Wexner Medical Center, United States
- James Cancer Hospital Solove Research Institute, United States
| |
Collapse
|
5
|
Pilcher W, Thomas BE, Bhasin SS, Jayasinghe RG, Yao L, Gonzalez-Kozlova E, Dasari S, Kim-Schulze S, Rahman A, Patton J, Fiala M, Cheloni G, Kourelis T, Dhodapkar MV, Vij R, Mehr S, Hamilton M, Cho HJ, Auclair D, Avigan DE, Kumar SK, Gnjatic S, Ding L, Bhasin M. Cross center single-cell RNA sequencing study of the immune microenvironment in rapid progressing multiple myeloma. NPJ Genom Med 2023; 8:3. [PMID: 36702834 PMCID: PMC9879959 DOI: 10.1038/s41525-022-00340-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/18/2022] [Indexed: 01/27/2023] Open
Abstract
Despite advancements in understanding the pathophysiology of Multiple Myeloma (MM), the cause of rapid progressing disease in a subset of patients is still unclear. MM's progression is facilitated by complex interactions with the surrounding bone marrow (BM) cells, forming a microenvironment that supports tumor growth and drug resistance. Understanding the immune microenvironment is key to identifying factors that promote rapid progression of MM. To accomplish this, we performed a multi-center single-cell RNA sequencing (scRNA-seq) study on 102,207 cells from 48 CD138- BM samples collected at the time of disease diagnosis from 18 patients with either rapid progressing (progression-free survival (PFS) < 18 months) or non-progressing (PFS > 4 years) disease. Comparative analysis of data from three centers demonstrated similar transcriptome profiles and cell type distributions, indicating subtle technical variation in scRNA-seq, opening avenues for an expanded multicenter trial. Rapid progressors depicted significantly higher enrichment of GZMK+ and TIGIT+ exhausted CD8+ T-cells (P = 0.022) along with decreased expression of cytolytic markers (PRF1, GZMB, GNLY). We also observed a significantly higher enrichment of M2 tolerogenic macrophages in rapid progressors and activation of pro-proliferative signaling pathways, such as BAFF, CCL, and IL16. On the other hand, non-progressive patients depicted higher enrichment for immature B Cells (i.e., Pre/Pro B cells), with elevated expression for markers of B cell development (IGLL1, SOX4, DNTT). This multi-center study identifies the enrichment of various pro-tumorigenic cell populations and pathways in those with rapid progressing disease and further validates the robustness of scRNA-seq data generated at different study centers.
Collapse
Affiliation(s)
- William Pilcher
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lijun Yao
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Edgar Gonzalez-Kozlova
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Surendra Dasari
- Division of Biomedical Statistics & Informatics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Mark Fiala
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Giulia Cheloni
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Madhav V Dhodapkar
- Department of Hematology/Medical Oncology Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Ravi Vij
- Washington University School of Medicine, St Louis, MO, USA
| | - Shaadi Mehr
- Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - Mark Hamilton
- Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - Hearn Jay Cho
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - Daniel Auclair
- Multiple Myeloma Research Foundation (MMRF), Norwalk, CT, USA
| | - David E Avigan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shaji K Kumar
- Mayo Clinic Rochester, Division of Hematology, Rochester, MN, USA
| | - Sacha Gnjatic
- Human Immune Monitoring Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, USA.
- Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Biomedical Informatics, Emory School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Improving NK cell function in multiple myeloma with NKTR-255, a novel polymer-conjugated human IL-15. Blood Adv 2023; 7:9-19. [PMID: 35882498 DOI: 10.1182/bloodadvances.2022007985] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 01/18/2023] Open
Abstract
Multiple myeloma (MM) is characterized by an immunosuppressive microenvironment that enables tumor development. One of the mechanisms of immune evasion used by MM cells is the inhibition of natural killer (NK) cell effector functions; thus, the restoration of NK cell antitumor activity represents a key goal to increase tumor cell recognition, avoid tumor escape and potentially enhancing the effect of other drugs. In this study, we evaluated the ability of the investigational medicine NKTR-255, an IL-15 receptor agonist, to engage the IL-15 pathway and stimulate NK cells against MM cells. We observed that incubation with NKTR-255 was able to tilt the balance toward an activated phenotype in NK cells isolated from peripheral blood mononuclear cells of patients with MM, with increased expression of activating receptors on the surface of treated NK cells. This resulted in an enhanced degranulation, cytokine release, and anti-tumor cytotoxicity when the NK cells were exposed to both MM cell lines and primary MM cells. We further evaluated the in vivo effect of NKTR-255 in fully humanized immunocompetent mice subcutaneously engrafted with H929 MM cells. Compared with placebo, weekly injection of the mice with NKTR-255 increased the number of circulating NK cells in peripheral blood and delayed tumor growth. Finally, we observed that combination of NKTR-255 with the anti-CD38 antibody, daratumumab, was effective against MM cells in vitro and in vivo. Taken together, our data suggest a significant impact of NKTR-255 in inducing NK cell function against MM cells with important translational implications.
Collapse
|
7
|
Shah N, Mustafa SS, Vinh DC. Management of secondary immunodeficiency in hematological malignancies in the era of modern oncology. Crit Rev Oncol Hematol 2023; 181:103896. [PMID: 36528276 DOI: 10.1016/j.critrevonc.2022.103896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Secondary immunodeficiency (SID) in patients with B-cell hematological malignancies is a common condition that presents with recurrent infection. SID is due to both the inherent immune defects due to the malignancy, as well as secondary to cancer therapies, many of which have B-cell depleting properties. The early diagnosis of SID and the optimization of intervention strategies are key to delivering the most effective cancer treatments and reducing infection-related morbidity and mortality. This review discusses current practice, recommendations, and challenges for SID diagnosis, based on the evaluation of clinical history and laboratory assessments, and the effectiveness of specific vaccines and immunoglobulin replacement therapy in reducing the frequency and recurrence of infections in patients with SID, and the healthcare system-associated costs.
Collapse
Affiliation(s)
- Nina Shah
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States.
| | - S Shahzad Mustafa
- Rochester Regional Health, Rochester, NY, United States; Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Donald C Vinh
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
8
|
Soekojo CY, Chng WJ. The Evolution Of Immune Dysfunction In Multiple Myeloma. Eur J Haematol 2022; 109:415-424. [PMID: 35880386 DOI: 10.1111/ejh.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This review discusses the role of immune dysfunction at the different stages of MM. METHODS Narrative review RESULTS: Multiple myeloma (MM) is a complex disease and immune dysfunction has been known to play an important role in disease pathogenesis, progression, and drug resistance. MM is known to be preceded by asymptomatic precursor states and progression from the precursor states to MM is likely related to a progressive impairment of the immune system. CONCLUSIONS An understanding of the role of the immune system in the progression of MM is important to guide the development of immunotherapeutic strategies for this disease.
Collapse
Affiliation(s)
- Cinnie Yentia Soekojo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| | - Wee Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System
| |
Collapse
|
9
|
Clara JA, Childs RW. Harnessing natural killer cells for the treatment of multiple myeloma. Semin Oncol 2022; 49:69-85. [DOI: 10.1053/j.seminoncol.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
|
10
|
Zhu X, Suo Y, Fu Y, Zhang F, Ding N, Pang K, Xie C, Weng X, Tian M, He H, Wei X. Reply to Comment on "In vivo flow cytometry reveals a circadian rhythm of circulating tumor cells". LIGHT, SCIENCE & APPLICATIONS 2021; 10:189. [PMID: 34531363 PMCID: PMC8446013 DOI: 10.1038/s41377-021-00625-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 05/05/2023]
Affiliation(s)
- Xi Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yuanzhen Suo
- Biomedical Pioneering Innovation Center, Peking University, Beijing, 100871, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Yuting Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fuli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Nan Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kai Pang
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science & Technology University, Beijing, 100192, China
| | - Chengying Xie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaofu Weng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Meilu Tian
- Biomedical Engineering Department, Peking University, Beijing, 100081, China
| | - Hao He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Biomedical Engineering Department, Peking University, Beijing, 100081, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
11
|
Zhang L, Liu G, Kong M, Li T, Wu D, Zhou X, Yang C, Xia L, Yang Z, Chen L. Revealing dynamic regulations and the related key proteins of myeloma-initiating cells by integrating experimental data into a systems biological model. Bioinformatics 2021; 37:1554-1561. [PMID: 31350562 DOI: 10.1093/bioinformatics/btz542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 06/17/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The growth and survival of myeloma cells are greatly affected by their surrounding microenvironment. To understand the molecular mechanism and the impact of stiffness on the fate of myeloma-initiating cells (MICs), we develop a systems biological model to reveal the dynamic regulations by integrating reverse-phase protein array data and the stiffness-associated pathway. RESULTS We not only develop a stiffness-associated signaling pathway to describe the dynamic regulations of the MICs, but also clearly identify three critical proteins governing the MIC proliferation and death, including FAK, mTORC1 and NFκB, which are validated to be related with multiple myeloma by our immunohistochemistry experiment, computation and manually reviewed evidences. Moreover, we demonstrate that the systematic model performs better than widely used parameter estimation algorithms for the complicated signaling pathway. AVAILABILITY AND IMPLEMENTATION We can not only use the systems biological model to infer the stiffness-associated genetic signaling pathway and locate the critical proteins, but also investigate the important pathways, proteins or genes for other type of the cancer. Thus, it holds universal scientific significance. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Le Zhang
- College of Computer Science.,Medical Big Data Center, Sichuan University, Chengdu 610065, China.,Chongqqing Zhongdi Medical Information Technology Co., Ltd, Chongqing 401320, China
| | - Guangdi Liu
- College of Computer and Information Science, Southwest University, Chongqing 400715, China.,Library of Chengdu University, Chengdu University, Chengdu 610106, China
| | - Meijing Kong
- College of Computer and Information Science, Southwest University, Chongqing 400715, China
| | - Tingting Li
- College of Mathematics and Statistics, Southwest University, Chongqing 400715, China
| | - Dan Wu
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Chuanwei Yang
- Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Xia
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhenzhou Yang
- Cancer Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
12
|
Naicker SD, Feerick CL, Lynch K, Swan D, McEllistrim C, Henderson R, Leonard NA, Treacy O, Natoni A, Rigalou A, Cabral J, Chiu C, Sasser K, Ritter T, O'Dwyer M, Ryan AE. Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis. Oncoimmunology 2021; 10:1859263. [PMID: 33552684 PMCID: PMC7849715 DOI: 10.1080/2162402x.2020.1859263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multiple Myeloma (MM) is a malignant disorder of plasma cells which, despite significant advances in treatment, remains incurable. Daratumumab, the first CD38 directed monoclonal antibody, has shown promising activity alone and in combination with other agents for MM treatment. Daratumumab is thought to have pleiotropic mechanisms of activity including natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). With the knowledge that CD38-expressing NK cells are depleted by daratumumab, we sought to investigate a potential mechanism of enhancing macrophage-mediated antibody-dependent cellular phagocytosis (ADCP) by combining daratumumab with cyclophosphamide (CTX). Cyclophosphamide’s immunomodulatory function was investigated by conditioning macrophages with tumor cell secretome collected from cyclophosphamide treated MM cell lines (CTX-TCS). Flow cytometry analysis revealed that CTX-TCS conditioning augmented the migratory capacity of macrophages and increased CD32 and CD64 Fcγ receptor expression on their cell surface. Daratumumab-specific tumor clearance was increased by conditioning macrophages with CTX-TCS in a dose-dependent manner. This effect was impeded by pre-incubating macrophages with Cytochalasin D (CytoD), an inhibitor of actin polymerization, indicating macrophage-mediated ADCP as the mechanism of clearance. CD64 expression on macrophages directly correlated with MM cell clearance and was essential to the observed synergy between cyclophosphamide and daratumumab, as tumor clearance was attenuated in the presence of a FcγRI/CD64 blocking agent. Cyclophosphamide independently enhances daratumumab-mediated killing of MM cells by altering the tumor microenvironment to promote macrophage recruitment, polarization to a pro-inflammatory phenotype, and directing ADCP. These findings support the addition of cyclophosphamide to existing or novel monoclonal antibody-containing MM regimens.
Collapse
Affiliation(s)
- Serika D Naicker
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Claire L Feerick
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Kevin Lynch
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Dawn Swan
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Department of Hematology, Galway University Hospital, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland
| | - Cian McEllistrim
- Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Robert Henderson
- Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Niamh A Leonard
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Oliver Treacy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Alessandro Natoni
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Athina Rigalou
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | - Joana Cabral
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland
| | | | - Kate Sasser
- Janssen Research and Development, Pennsylvania, USA
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| | - Michael O'Dwyer
- School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Department of Hematology, Galway University Hospital, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,School of Medicine, College of Medicine, Nursing and Health Sciences, NUI Galway, Galway, Ireland.,Blood Cancer Network Ireland, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, NUI Galway, Galway, Ireland
| |
Collapse
|
13
|
Solimando AG, Summa SD, Vacca A, Ribatti D. Cancer-Associated Angiogenesis: The Endothelial Cell as a Checkpoint for Immunological Patrolling. Cancers (Basel) 2020; 12:cancers12113380. [PMID: 33203154 PMCID: PMC7696032 DOI: 10.3390/cancers12113380] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary A clinical decision and study design investigating the level and extent of angiogenesis modulation aimed at vascular normalization without rendering tissues hypoxic is key and represents an unmet medical need. Specifically, determining the active concentration and optimal times of the administration of antiangiogenetic drugs is crucial to inhibit the growth of any microscopic residual tumor after surgical resection and in the pre-malignant and smolder neoplastic state. This review uncovers the pre-clinical translational insights crucial to overcome the caveats faced so far while employing anti-angiogenesis. This literature revision also explores how abnormalities in the tumor endothelium harm the crosstalk with an effective immune cell response, envisioning a novel combination with other anti-cancer drugs and immunomodulatory agents. These insights hold vast potential to both repress tumorigenesis and unleash an effective immune response. Abstract Cancer-associated neo vessels’ formation acts as a gatekeeper that orchestrates the entrance and egress of patrolling immune cells within the tumor milieu. This is achieved, in part, via the directed chemokines’ expression and cell adhesion molecules on the endothelial cell surface that attract and retain circulating leukocytes. The crosstalk between adaptive immune cells and the cancer endothelium is thus essential for tumor immune surveillance and the success of immune-based therapies that harness immune cells to kill tumor cells. This review will focus on the biology of the endothelium and will explore the vascular-specific molecular mediators that control the recruitment, retention, and trafficking of immune cells that are essential for effective antitumor immunity. The literature revision will also explore how abnormalities in the tumor endothelium impair crosstalk with adaptive immune cells and how targeting these abnormalities can improve the success of immune-based therapies for different malignancies, with a particular focus on the paradigmatic example represented by multiple myeloma. We also generated and provide two original bio-informatic analyses, in order to sketch the physiopathology underlying the endothelial–neoplastic interactions in an easier manner, feeding into a vicious cycle propagating disease progression and highlighting novel pathways that might be exploited therapeutically.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico-IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy;
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence: (A.G.S.); (D.R.); Tel.: +39-3395626475 (A.G.S.); +39-080-5478326 (D.R.)
| |
Collapse
|
14
|
Zanwar S, Nandakumar B, Kumar S. Immune-based therapies in the management of multiple myeloma. Blood Cancer J 2020; 10:84. [PMID: 32829378 PMCID: PMC7443188 DOI: 10.1038/s41408-020-00350-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy affecting a predominantly elderly population. The continued development of newer therapies with novel mechanisms of action has reshaped the treatment paradigm of this disorder in the last two decades, leading to a significantly improved prognosis. This has in turn resulted in an increasing number of patients in need of therapy for relapsed/refractory disease. Immune-based therapies, including monoclonal antibodies, immune checkpoint inhibitors, and most promisingly, adoptive cellular therapies represent important therapeutic strategies in these patients due to their non-cross resistant mechanisms of actions with the usual frontline therapies comprising of immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs). The anti-CD38 antibodies daratumumab and more recently isatuximab, with their excellent efficacy and safety profile along with its synergy in combination with IMiDs and PIs, are being increasingly incorporated in the frontline setting. Chimeric antigen receptor-T cell (CART) therapies and bi-specific T-cell engager (BiTE) represent exciting new options that have demonstrated efficacy in heavily pretreated and refractory MM. In this review, we discuss the rationale for use of immune-based therapies in MM and summarize the currently available literature for common antibodies and CAR-T therapies that are utilized in MM.
Collapse
Affiliation(s)
- Saurabh Zanwar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer. Cancers (Basel) 2020; 12:cancers12082205. [PMID: 32781703 PMCID: PMC7466161 DOI: 10.3390/cancers12082205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the bone marrow microenvironment being widely recognised as a key player in cancer research, the current animal models that represent a human haematopoietic system lack the contribution of the humanised marrow microenvironment. Here we describe a murine model that relies on the combination of an orthotopic humanised tissue-engineered bone construct (ohTEBC) with patient-specific bone marrow (BM) cells to create a humanised bone marrow (hBM) niche capable of supporting the engraftment of human haematopoietic cells. Results showed that this model supports the engraftment of human CD34+ cells from a healthy BM with human haematopoietic cells migrating into the mouse BM, human BM compartment, spleen and peripheral blood. We compared these results with the engraftment capacity of human CD34+ cells obtained from patients with multiple myeloma (MM). We demonstrated that CD34+ cells derived from a diseased BM had a reduced engraftment potential compared to healthy patients and that a higher cell dose is required to achieve engraftment of human haematopoietic cells in peripheral blood. Finally, we observed that hematopoietic cells obtained from the mobilised peripheral blood of patients yields a higher number of CD34+, overcoming this problem. In conclusion, this humanised mouse model has potential as a unique and patient-specific pre-clinical platform for the study of tumour–microenvironment interactions, including human bone and haematopoietic cells, and could, in the future, serve as a drug testing platform.
Collapse
|
16
|
Cytokine-Mediated Dysregulation of Signaling Pathways in the Pathogenesis of Multiple Myeloma. Int J Mol Sci 2020; 21:ijms21145002. [PMID: 32679860 PMCID: PMC7403981 DOI: 10.3390/ijms21145002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic disorder of B lymphocytes characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow. The altered plasma cells overproduce abnormal monoclonal immunoglobulins and also stimulate osteoclasts. The host’s immune system and microenvironment are of paramount importance in the growth of PCs and, thus, in the pathogenesis of the disease. The interaction of MM cells with the bone marrow (BM) microenvironment through soluble factors and cell adhesion molecules causes pathogenesis of the disease through activation of multiple signaling pathways, including NF-κβ, PI3K/AKT and JAK/STAT. These activated pathways play a critical role in the inhibition of apoptosis, sustained proliferation, survival and migration of MM cells. Besides, these pathways also participate in developing resistance against the chemotherapeutic drugs in MM. The imbalance between inflammatory and anti-inflammatory cytokines in MM leads to an increased level of pro-inflammatory cytokines, which in turn play a significant role in dysregulation of signaling pathways and proliferation of MM cells; however, the association appears to be inadequate and needs more research. In this review, we are highlighting the recent findings on the roles of various cytokines and growth factors in the pathogenesis of MM and the potential therapeutic utility of aberrantly activated signaling pathways to manage the MM disease.
Collapse
|
17
|
Assi T, Samra B, Dercle L, Rassy E, Kattan J, Ghosn M, Houot R, Ammari S. Screening Strategies for COVID-19 in Patients With Hematologic Malignancies. Front Oncol 2020; 10:1267. [PMID: 32719749 PMCID: PMC7348065 DOI: 10.3389/fonc.2020.01267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022] Open
Abstract
COVID-19 has been declared a pandemic by the world health organization. Patients with cancer, and particularly hematologic malignancies may be at higher risk for severe complications due to their malignancy, immune dysregulation, therapy, and associated comorbidities. The oncology community has been proactive in issuing practice guidelines to help optimize management, and limit infection risk and complications from SARS-COV-2. Although hematologic malignancies account for only 10% of all cancers, their management is particularly complex, especially in the time of COVID-19. Screening or early detection of COVID-19 are central for preventative/mitigation strategy, which is the best current strategy in our battle against COVID-19. Herein, we provide an overview of COVID-19 screening strategies and highlight the unique aspects of treating patients with hematologic malignancies.
Collapse
Affiliation(s)
- Tarek Assi
- Department of Hematology and Medical Oncology, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Bachar Samra
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Laurent Dercle
- Radiology Department, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, United States
| | - Elie Rassy
- Department of Hematology and Medical Oncology, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Joseph Kattan
- Department of Hematology and Medical Oncology, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Marwan Ghosn
- Department of Hematology and Medical Oncology, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Roch Houot
- Department of Hematology, CHU de Rennes, Université de Rennes, Rennes, France.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Samy Ammari
- Radiology Department, Gustave Roussy Cancer Campus, Villejuif, France.,BIOMAPS, UMR1281, INSERM.CEA.CNRS, Université Paris-Saclay, Paris, France
| |
Collapse
|
18
|
Ria R, Vacca A. Bone Marrow Stromal Cells-Induced Drug Resistance in Multiple Myeloma. Int J Mol Sci 2020; 21:ijms21020613. [PMID: 31963513 PMCID: PMC7013615 DOI: 10.3390/ijms21020613] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 01/06/2023] Open
Abstract
Multiple myeloma is a B-cell lineage cancer in which neoplastic plasma cells expand in the bone marrow and pathophysiological interactions with components of microenvironment influence many biological aspects of the malignant phenotype, including apoptosis, survival, proliferation, and invasion. Despite the therapeutic progress achieved in the last two decades with the introduction of a more effective and safe new class of drugs (i.e., immunomodulators, proteasome inhibitors, monoclonal antibodies), there is improvement in patient survival, and multiple myeloma (MM) remains a non-curable disease. The bone marrow microenvironment is a complex structure composed of cells, extracellular matrix (ECM) proteins, and cytokines, in which tumor plasma cells home and expand. The role of the bone marrow (BM) microenvironment is fundamental during MM disease progression because modification induced by tumor plasma cells is crucial for composing a "permissive" environment that supports MM plasma cells proliferation, migration, survival, and drug resistance. The "activated phenotype" of the microenvironment of multiple myeloma is functional to plasma cell proliferation and spreading and to plasma cell drug resistance. Plasma cell drug resistance induced by bone marrow stromal cells is mediated by stress-managing pathways, autophagy, transcriptional rewiring, and non-coding RNAs dysregulation. These processes represent novel targets for the ever-increasing anti-MM therapeutic armamentarium.
Collapse
Affiliation(s)
- Roberto Ria
- Correspondence: ; Tel.: +39-080-559-31-06; Fax: +39-080-559-38-04
| | | |
Collapse
|
19
|
Mechanisms of Resistance to Anti-CD38 Daratumumab in Multiple Myeloma. Cells 2020; 9:cells9010167. [PMID: 31936617 PMCID: PMC7017193 DOI: 10.3390/cells9010167] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Daratumumab (Dara) is the first-in-class human-specific anti-CD38 mAb approved for the treatment of multiple myeloma (MM). Although recent data have demonstrated very promising results in clinical practice and trials, some patients do not achieve a partial response, and ultimately all patients undergo progression. Dara exerts anti-MM activity via antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), and immunomodulatory effects. Deregulation of these pleiotropic mechanisms may cause development of Dara resistance. Knowledge of this resistance may improve the therapeutic management of MM patients.
Collapse
|
20
|
Di Lullo G, Marcatti M, Heltai S, Tresoldi C, Paganoni AM, Bordignon C, Ciceri F, Protti MP. Immunomodulatory Drugs in the Context of Autologous Hematopoietic Stem Cell Transplantation Associate With Reduced Pro-tumor T Cell Subsets in Multiple Myeloma. Front Immunol 2019; 9:3171. [PMID: 30719025 PMCID: PMC6348257 DOI: 10.3389/fimmu.2018.03171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/24/2018] [Indexed: 01/07/2023] Open
Abstract
Immunomodulatory drugs (IMiDs) are effective therapeutics for multiple myeloma (MM), where in different clinical settings they exert their function both directly on MM cells and indirectly by modulating immune cell subsets, although with not completely defined mechanisms. Here we studied the role of IMiDs in the context of autologous hematopoietic stem cell transplantation on the T cell subset distribution in the bone marrow of newly diagnosed MM patients. We found that after transplantation pro-tumor Th17-Th1 and Th22 cells and their related cytokines were lower in patients treated with IMiDs during induction chemotherapy compared to untreated patients. Of note, lower levels of IL-17, IL-22, and related IL-6, TNF-α, IL-1β, and IL-23 in the bone marrow sera correlated with treatment with IMiDs and favorable clinical outcome. Collectively, our results suggest a novel anti-inflammatory role for IMiDs in MM.
Collapse
Affiliation(s)
- Giulia Di Lullo
- Tumor Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Magda Marcatti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Heltai
- Tumor Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Tresoldi
- Molecular Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Paganoni
- Laboratory for Modeling and Scientific Computing (MOX), Dipartimento di Matematica,Politecnico di Milano, Milan, Italy
| | | | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Pia Protti
- Tumor Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
21
|
Franssen LE, Mutis T, Lokhorst HM, van de Donk NWCJ. Immunotherapy in myeloma: how far have we come? Ther Adv Hematol 2019; 10:2040620718822660. [PMID: 30719268 PMCID: PMC6348514 DOI: 10.1177/2040620718822660] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
The treatment of multiple myeloma (MM) has evolved substantially over the past decades, leading to a significantly improved outcome of MM patients. The introduction of high-dose therapy, especially, and autologous stem cell transplantation, as well as the development of new drugs, such as immunomodulatory drugs (IMiDs) and proteasome inhibitors have contributed to the improvement in survival. However, eventually most MM patients relapse, which indicates that there is a need for new agents and novel treatment strategies. Importantly, the long-term survival in a subset of MM patients after allogeneic stem cell transplantation illustrates the potential of immunotherapy in MM, but allogeneic stem cell transplantation is also associated with a high rate of treatment-related mortality. Recently, a better insight into several immune-evasion mechanisms, which contribute to tumor progression, has resulted in the development of active and well-tolerated novel forms of immunotherapy. These immunotherapeutic agents can be used as monotherapy, or, even more successfully, in combination with other established anti-MM agents to further improve depth and duration of response by preventing the outgrowth of resistant clones. This review will discuss the mechanisms used by MM cells to evade the immune system, and also provide an overview of currently approved immunotherapeutic drugs, such as IMiDs (e.g. lenalidomide and pomalidomide) and monoclonal antibodies that target cell surface antigens present on the MM cell (e.g. elotuzumab and daratumumab), as well as novel immunotherapies (e.g. chimeric antigen receptor T-cells, bispecific antibodies and checkpoint inhibitors) currently in clinical development in MM.
Collapse
Affiliation(s)
- Laurens E Franssen
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henk M Lokhorst
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Canovas Nunes S, Manzoni M, Pizzi M, Mandato E, Carrino M, Quotti Tubi L, Zambello R, Adami F, Visentin A, Barilà G, Trentin L, Manni S, Neri A, Semenzato G, Piazza F. The small GTPase RhoU lays downstream of JAK/STAT signaling and mediates cell migration in multiple myeloma. Blood Cancer J 2018; 8:20. [PMID: 29440639 PMCID: PMC5811530 DOI: 10.1038/s41408-018-0053-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma is a post-germinal center B-cell neoplasm, characterized by the proliferation of malignant bone marrow plasma cells, whose survival and proliferation is sustained by growth factors and cytokines present in the bone marrow microenvironment. Among them, IL-6 triggers the signal downstream of its receptor, leading to the activation of the JAK/STAT pathway. The atypical GTPase RhoU lays downstream of STAT3 transcription factor and could be responsible for mediating its effects on cytoskeleton dynamics. Here we demonstrate that RHOU is heterogeneously expressed in primary multiple myeloma cells and significantly modulated with disease progression. At the mRNA level, RHOU expression in myeloma patients correlated with the expression of STAT3 and its targets MIR21 and SOCS3. Also, IL-6 stimulation of human myeloma cell lines up-regulated RHOU through STAT3 activation. On the other hand, RhoU silencing led to a decrease in cell migration with the accumulation of actin stress fibers, together with a decrease in cyclin D2 expression and in cell cycle progression. Furthermore, we found that even though lenalidomide positively regulated RhoU expression leading to higher cell migration rates, it actually led to cell cycle arrest probably through a p21 dependent mechanism. Lenalidomide treatment in combination with RhoU silencing determined a loss of cytoskeletal organization inhibiting cell migration, and a further increase in the percentage of cells in a resting phase. These results unravel a role for RhoU not only in regulating the migratory features of malignant plasma cells, but also in controlling cell cycle progression.
Collapse
Affiliation(s)
- Sara Canovas Nunes
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Martina Manzoni
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Elisa Mandato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marilena Carrino
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Renato Zambello
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Fausto Adami
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Andrea Visentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Gregorio Barilà
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Antonino Neri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy.,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy. .,Laboratory of Normal and Malignant Hematopoiesis, Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
23
|
Abstract
Multiple myeloma (MM) is an incurable hematopoietic cancer that is characterized by malignant plasma cell infiltration of the bone marrow and/or extramedullary sites. Multi-modality approaches including "novel agents," traditional chemotherapy, and/or stem cell transplantation are used in MM therapy. Drug resistance, however, ultimately develops and the disease remains incurable for the vast majority of patients. In this chapter, we review both tumor cell-autonomous and non-autonomous (microenvironment-dependent) mechanisms of drug resistance. MM provides an attractive paradigm highlighting a number of current concepts and challenges in oncology. Firstly, identification of MM cancer stem cells and their unique drug resistance attributes may provide rational avenues towards MM eradication and cure. Secondly, the oligoclonal evolution of MM and alternation of "clonal tides" upon therapy challenge our current understanding of treatment responses. Thirdly, the success of MM "novel agents" provides exemplary evidence for the impact of therapies that target the immune and non-immune microenvironment. Fourthly, the rapid pace of drug approvals for MM creates an impetus for development of precision medicine strategies and biomarkers that promote efficacy and mitigate toxicity and cost. While routine cure of the disease remains the ultimate and yet unattainable prize, MM advances in the last 10-15 years have provided an astounding paradigm for the treatment of blood cancers in the modern era and have radically transformed patient outcomes.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- UW Carbone Cancer Center, Madison, WI, 53705, USA.
| | - Fotis Asimakopoulos
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, Madison, WI, 53705, USA
| |
Collapse
|
24
|
Dhodapkar MV, Borrello I, Cohen AD, Stadtmauer EA. Hematologic Malignancies: Plasma Cell Disorders. Am Soc Clin Oncol Educ Book 2017; 37:561-568. [PMID: 28561703 DOI: 10.1200/edbk_175546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by the growth of tumor cells in the bone marrow. Properties of the tumor microenvironment provide both potential tumor-promoting and tumor-restricting properties. Targeting underlying immune triggers for evolution of tumors as well as direct attack of malignant plasma cells is an emerging focus of therapy for MM. The monoclonal antibodies daratumumab and elotuzumab, which target the plasma cell surface proteins CD38 and SLAMF7/CS1, respectively, particularly when used in combination with immunomodulatory agents and proteasome inhibitors, have resulted in high response rates and improved survival for patients with relapsed and refractory MM. A number of other monoclonal antibodies are in various stages of clinical development, including those targeting MM cell surface antigens, the bone marrow microenvironment, and immune effector T cells such as antiprogrammed cell death protein 1 antibodies. Bispecific preparations seek to simultaneously target MM cells and activate endogenous T cells to enhance efficacy. Cellular immunotherapy seeks to overcome the limitations of the endogenous antimyeloma immune response through adoptive transfer of immune effector cells with MM specificity. Allogeneic donor lymphocyte infusion can be effective but can cause graft-versus-host disease. The most promising approach appears to be genetically modified cellular therapy, in which T cells are given novel antigen specificity through expression of transgenic T-cell receptors (TCRs) or chimeric antigen receptors (CARs). CAR T cells against several different targets are under investigation in MM. Infusion of CD19-targeted CAR T cells following salvage autologous stem cell transplantation (SCT) was safe and extended remission duration in a subset of patients with relapsed/refractory MM. CAR T cells targeting B-cell maturation antigen (BCMA) appear most promising, with dramatic remissions seen in patients with highly refractory disease in three ongoing trials. Responses are associated with degree of CAR T-cell expansion/persistence and often toxicity, including cytokine release syndrome (CRS) and neurotoxicity. Ongoing and future studies are exploring correlates of response, ways to mitigate toxicity, and "universal" CAR T cells.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- From Yale University, New Haven, CT; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Ivan Borrello
- From Yale University, New Haven, CT; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Adam D Cohen
- From Yale University, New Haven, CT; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Edward A Stadtmauer
- From Yale University, New Haven, CT; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
Ghosh A, Mailankody S, Giralt SA, Landgren CO, Smith EL, Brentjens RJ. CAR T cell therapy for multiple myeloma: where are we now and where are we headed? Leuk Lymphoma 2017; 59:2056-2067. [PMID: 29105517 DOI: 10.1080/10428194.2017.1393668] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While recent progress has been made in the management of multiple myeloma, it remains a highly fatal malignancy especially among patients with relapsed-refractory disease. Immunotherapy with adoptive T cells targeting myeloma-associated antigens are at various stages of development and have brought about a new hope for cure. This is a review on the emerging field of adoptively transferred engineered T cell based approaches, with an in-depth focus on chimeric antigen receptors (CAR) targeting multiple myeloma. The recent results from CAR T cells targeting B cell maturation antigen are encouraging but eventual resistance to the CAR T cell therapies remain problematic. With newer approaches in therapies for multiple myeloma, the role of transplantation is evolved to form a platform for T cell therapies.
Collapse
Affiliation(s)
- Arnab Ghosh
- a Hematology/Oncology/BMT Fellowship Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Sham Mailankody
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Sergio A Giralt
- c Adult BMT Service, Memorial Sloan Kettering Cancer Center , New York , NY , USA.,d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - C Ola Landgren
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Eric L Smith
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA.,d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Renier J Brentjens
- d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA.,e Leukemia Service, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
26
|
Rasche L, Weinhold N, Morgan GJ, van Rhee F, Davies FE. Immunologic approaches for the treatment of multiple myeloma. Cancer Treat Rev 2017; 55:190-199. [PMID: 28431262 DOI: 10.1016/j.ctrv.2017.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
Abstract
The FDA approval of two monoclonal antibodies in 2015has heralded a new era of targeted immunotherapies for multiple myeloma (MM). In this review we discuss the recent approaches using different immunological components to treat MM. In particular, we review current monoclonal antibody based therapies, engineered T- and NK cell products, 'off-target' immunomodulation, and strategies utilizing allogeneic cell transplantation in MM. We discuss how an immunologic approach offers promise for the treatment of this genetically heterogeneous disease, and how patients with acquired drug resistance may particularly benefit from these therapies. We also describe some of the limitations of the current strategies and speculate on the future of personalized immunotherapies for MM.
Collapse
Affiliation(s)
- Leo Rasche
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Niels Weinhold
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gareth J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Frits van Rhee
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Faith E Davies
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
27
|
Boyiadzis M, Bishop MR, Abonour R, Anderson KC, Ansell SM, Avigan D, Barbarotta L, Barrett AJ, Van Besien K, Bergsagel PL, Borrello I, Brody J, Brufsky J, Cairo M, Chari A, Cohen A, Cortes J, Forman SJ, Friedberg JW, Fuchs EJ, Gore SD, Jagannath S, Kahl BS, Kline J, Kochenderfer JN, Kwak LW, Levy R, de Lima M, Litzow MR, Mahindra A, Miller J, Munshi NC, Orlowski RZ, Pagel JM, Porter DL, Russell SJ, Schwartz K, Shipp MA, Siegel D, Stone RM, Tallman MS, Timmerman JM, Van Rhee F, Waller EK, Welsh A, Werner M, Wiernik PH, Dhodapkar MV. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia. J Immunother Cancer 2016; 4:90. [PMID: 28018601 PMCID: PMC5168808 DOI: 10.1186/s40425-016-0188-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
Increasing knowledge concerning the biology of hematologic malignancies as well as the role of the immune system in the control of these diseases has led to the development and approval of immunotherapies that are resulting in impressive clinical responses. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a hematologic malignancy Cancer Immunotherapy Guidelines panel consisting of physicians, nurses, patient advocates, and patients to develop consensus recommendations for the clinical application of immunotherapy for patients with multiple myeloma, lymphoma, and acute leukemia. These recommendations were developed following the previously established process based on the Institute of Medicine's clinical practice guidelines. In doing so, a systematic literature search was performed for high-impact studies from 2004 to 2014 and was supplemented with further literature as identified by the panel. The consensus panel met in December of 2014 with the goal to generate consensus recommendations for the clinical use of immunotherapy in patients with hematologic malignancies. During this meeting, consensus panel voting along with discussion were used to rate and review the strength of the supporting evidence from the literature search. These consensus recommendations focus on issues related to patient selection, toxicity management, clinical endpoints, and the sequencing or combination of therapies. Overall, immunotherapy is rapidly emerging as an effective therapeutic strategy for the management of hematologic malignances. Evidence-based consensus recommendations for its clinical application are provided and will be updated as the field evolves.
Collapse
Affiliation(s)
- Michael Boyiadzis
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh Medical Center, 5150 Centre Avenue, Suite 564, Pittsburg, PA 15232 USA
| | - Michael R. Bishop
- Hematopoietic Cellular Therapy Program, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 USA
| | - Rafat Abonour
- Indiana University School of Medicine, 980 W. Walnut St., Walther Hall-R3, C400, Indianapolis, IN 46202 USA
| | | | | | - David Avigan
- Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215 USA
| | - Lisa Barbarotta
- Smilow Cancer Hospital at Yale New Haven, 35 Park Street, New Haven, CT 06519 USA
| | - Austin John Barrett
- National Institutes of Health, Building 10-CRC Room 3-5330, Bethesda, MD 20814 USA
| | - Koen Van Besien
- Weill Cornell Medical College, 407 E 71st St, New York, NY 10065 USA
| | | | - Ivan Borrello
- Johns Hopkins School of Medicine, 1650 Orleans St, Baltimore, MD 21231 USA
| | - Joshua Brody
- Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Jill Brufsky
- University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Pittsburgh, PA 15232 USA
| | - Mitchell Cairo
- New York Medical College at Maria Fareri Children’s Hospital, 100 Woods Road, Valhalla, New York 10595 USA
| | - Ajai Chari
- Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Adam Cohen
- Abramson Cancer Center at the University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Jorge Cortes
- MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030 USA
| | - Stephen J. Forman
- City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010 USA
| | - Jonathan W. Friedberg
- Wilmot Cancer Institute, University of Rochester, 601 Elmwood Avenue, Box 704, Rochester, NY 14642 USA
| | - Ephraim J. Fuchs
- Johns Hopkins University School of Medicine, 401 N. Broadway, Baltimore, MD 21231 USA
| | - Steven D. Gore
- Yale Cancer Center, 333 Cedar Street, New Haven, CT 06511 USA
| | - Sundar Jagannath
- Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Brad S. Kahl
- Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110 USA
| | - Justin Kline
- The University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637 USA
| | - James N. Kochenderfer
- National Institutes of Health, National Cancer Institute, 8500 Roseweood Drive, Bethesda, MD 20814 USA
| | - Larry W. Kwak
- City of Hope National Medical Center, 1500 E. Duarte Road, Beckman Bldg., Room 4117, Duarte, CA 91010 USA
| | - Ronald Levy
- Division of Medical Oncology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305 USA
| | - Marcos de Lima
- Department of Medicine-Hematology and Oncology, Case Western Reserve University, 11100 Euclid Ave., Cleveland, OH 44106 USA
| | - Mark R. Litzow
- Department of Hematology, Mayo Clinic Cancer Center, 200 First Street SW, Rochester, MN 55905 USA
| | - Anuj Mahindra
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0324, San Francisco, CA 94143 USA
| | - Jeffrey Miller
- Division of Hematology/Oncology, University of Minnesota, 420 Delaware St SE, Minneapolis, MN 55455 USA
| | - Nikhil C. Munshi
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Dana B106, Boston, MA 02215 USA
| | - Robert Z. Orlowski
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 429, Houston, TX 77030 USA
| | - John M. Pagel
- Swedish Cancer Institute, 1221 Madison Street, Suite 1020, Seattle, WA 98104 USA
| | - David L. Porter
- University of Pennsylvania, 3400 Civic Center Blvd, PCAM 12 South Pavilion, Philadelphia, PA 19104 USA
| | | | - Karl Schwartz
- Patients Against Lymphoma, 3774 Buckwampum Road, Riegelsville, PA 18077 USA
| | - Margaret A. Shipp
- Dana-Farber Cancer Institute, 450 Brookline Ave, Mayer 513, Boston, MA 02215 USA
| | - David Siegel
- Hackensack University Medical Center, 92 2nd St., Hackensack, NJ 07601 USA
| | - Richard M. Stone
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215 USA
| | - Martin S. Tallman
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - John M. Timmerman
- University of California, Los Angeles, 10833 LeConte Ave., Los Angeles, CA 90095 USA
| | - Frits Van Rhee
- University of Arkansas for Medical Sciences, Myeloma Institute, 4301 W Markham #816, Little Rock, AR 72205 USA
| | - Edmund K. Waller
- Winship Cancer Institute, Emory University, 1365B Clifton Road NE, Atlanta, GA 30322 USA
| | - Ann Welsh
- University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 USA
| | - Michael Werner
- Patient Advocate, 33 East Bellevue Place, Chicago, IL 60611 USA
| | - Peter H. Wiernik
- Cancer Research Foundation of New York, 43 Longview Lane, Chappaqua, NY 10514 USA
| | - Madhav V. Dhodapkar
- Department of Hematology & Immunobiology, Yale University, 333 Cedar Street, Box 208021, New Haven, CT 06510 USA
| |
Collapse
|
28
|
Garfall AL, Stadtmauer EA. Cellular and vaccine immunotherapy for multiple myeloma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:521-527. [PMID: 27913524 PMCID: PMC6142464 DOI: 10.1182/asheducation-2016.1.521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Allogeneic hematopoietic cell transplantation and donor lymphocyte infusion for multiple myeloma (MM) can induce graft-versus-myeloma immunity and long-term survivorship, but limited efficacy and associated toxicities have prevented its widespread use. Cellular immunotherapies and vaccines seek to induce more specific, reliable, and potent antimyeloma immune responses with less treatment-related risk than is possible with allogeneic transplantation. Advances in molecular biology, and basic and applied immunology, have led to promising approaches such as genetically engineered T cells with chimeric antigen receptors and T-cell receptors targeting myeloma-specific epitopes, vaccine primed ex vivo expanded autologous T cells, expanded marrow-infiltrating lymphocytes, and plasma cell/dendritic cell fusion vaccines. The addition of these emerging therapies to immunomodulatory drugs and inhibitors of programmed death-1 T-cell regulatory pathways are poised to improve outcome for our patients with myeloma.
Collapse
Affiliation(s)
- Alfred L Garfall
- Division of Hematology-Oncology and the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Edward A Stadtmauer
- Division of Hematology-Oncology and the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
29
|
Neri P, Bahlis NJ, Lonial S. New Strategies in Multiple Myeloma: Immunotherapy as a Novel Approach to Treat Patients with Multiple Myeloma. Clin Cancer Res 2016; 22:5959-5965. [PMID: 27797968 DOI: 10.1158/1078-0432.ccr-16-0184] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is a B-cell malignancy characterized by proliferation of monoclonal plasma cells in the bone marrow. Although new therapeutic options introduced in recent years have resulted in improved survival outcomes, multiple myeloma remains incurable for a large number of patients, and new treatment options are urgently needed. Over the last 5 years, there has been a renewed interest in the clinical potential of immunotherapy for the treatment of multiple myeloma. Clinical progression of myeloma is known to be associated with progressive immune dysregulation and loss of immune surveillance that contribute to disease progression in association with progressive genetic complexity, rendering signaling-based treatments less effective. A variety of strategies to reverse the multiple myeloma-induced immunosuppression has been developed either in the form of immunomodulatory drugs, checkpoint inhibitors, mAbs, engineered T cells, and vaccines. They have shown encouraging results in patients with relapsed refractory multiple myeloma and hold great promise in further improving patient outcomes in multiple myeloma. This review will summarize the major approaches in multiple myeloma immunotherapies and discuss the mechanisms of action and clinical activity of these strategies. Clin Cancer Res; 22(24); 5959-65. ©2016 AACR.
Collapse
Affiliation(s)
- Paola Neri
- Division of Hematology and Bone Marrow Transplant, University of Calgary, Alberta, Canada.,Southern Alberta, Cancer Research Institute (SACRI), Calgary, Alberta, Canada
| | - Nizar J Bahlis
- Division of Hematology and Bone Marrow Transplant, University of Calgary, Alberta, Canada.,Southern Alberta, Cancer Research Institute (SACRI), Calgary, Alberta, Canada
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| |
Collapse
|
30
|
MGUS to myeloma: a mysterious gammopathy of underexplored significance. Blood 2016; 128:2599-2606. [PMID: 27737890 DOI: 10.1182/blood-2016-09-692954] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022] Open
Abstract
All cases of multiple myeloma (MM) are preceded by precursor states termed monoclonal gammopathy of undetermined significance (MGUS) or smoldering myeloma (SMM). Genetic analyses of MGUS cells have provided evidence that it is a genetically advanced lesion, wherein tumor cells carry many of the genetic changes found in MM cells. Intraclonal heterogeneity is also established early during the MGUS phase. Although the genetic features of MGUS or SMM cells at baseline may predict disease risk, transition to MM involves altered growth of preexisting clones. Recent advances in mouse modeling of MGUS suggest that the clinical dormancy of the clone may be regulated in part by growth controls extrinsic to the tumor cells. Interactions of MGUS cells with immune cells, bone cells, and others in the bone marrow niche may be key regulators of malignant transformation. These interactions involve a bidirectional crosstalk leading to both growth-supporting and inhibitory signals. Because MGUS is already a genetically complex lesion, application of new tools for earlier detection should allow delineation of earlier stages, which we term as pre-MGUS Analyses of populations at increased risk of MGUS also suggest the possible existence of a polyclonal phase preceding the development of MGUS. Monoclonal gammopathy in several patients may have potential clinical significance in spite of low risk of malignancy. Understanding the entire spectrum of these disorders may have broader implications beyond prevention of clinical malignancy.
Collapse
|
31
|
The immunotherapy era of myeloma: monoclonal antibodies, vaccines, and adoptive T-cell therapies. Blood 2016; 128:1679-87. [DOI: 10.1182/blood-2016-05-636357] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/17/2016] [Indexed: 01/06/2023] Open
Abstract
Abstract
The treatment of multiple myeloma has evolved significantly over the last decades from primarily alkylator-based chemotherapeutic agents with minimal efficacy to the introduction of more effective agents including immune modulators and proteasome inhibitors, which have changed the landscape of therapy for this disease. We are now entering a new era that will increasingly integrate immunotherapy into standard treatment. This review discusses the current immune-based strategies currently approved, as well as various immune approaches being actively investigated including monoclonal antibodies, checkpoint inhibitors, vaccines, and adoptive T-cell therapies.
Collapse
|
32
|
Kocoglu M, Badros A. The Role of Immunotherapy in Multiple Myeloma. Pharmaceuticals (Basel) 2016; 9:ph9010003. [PMID: 26784207 PMCID: PMC4812367 DOI: 10.3390/ph9010003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma is the second most common hematologic malignancy. The treatment of this disease has changed considerably over the last two decades with the introduction to the clinical practice of novel agents such as proteasome inhibitors and immunomodulatory drugs. Basic research efforts towards better understanding of normal and missing immune surveillence in myeloma have led to development of new strategies and therapies that require the engagement of the immune system. Many of these treatments are under clinical development and have already started providing encouraging results. We, for the second time in the last two decades, are about to witness another shift of the paradigm in the management of this ailment. This review will summarize the major approaches in myeloma immunotherapies.
Collapse
Affiliation(s)
- Mehmet Kocoglu
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA.
| | - Ashraf Badros
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA.
| |
Collapse
|
33
|
Wichert S, Pettersson Å, Hellmark T, Johansson Å, Hansson M. Phagocyte function decreases after high-dose treatment with melphalan and autologous stem cell transplantation in patients with multiple myeloma. Exp Hematol 2016; 44:342-351.e5. [PMID: 26774385 DOI: 10.1016/j.exphem.2016.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 11/28/2022]
Abstract
High-dose melphalan with autologous hematopoietic stem cell transplantation (ASCT) is the standard of care for younger patients with newly diagnosed multiple myeloma and is aimed at achieving as deep and complete a response as possible after various combinations of induction therapy. However, it is frequently associated with infectious complications. This study investigated the effects of high-dose treatment with autologous stem cell support on patients' innate immunity, with a focus on subpopulations and functioning of recently released polymorphonuclear leukocytes (PMNs) and monocytes in peripheral blood. Flow cytometry-based analysis was used to measure the degree of PMN maturation and activation, before and after ASCT and compared with healthy controls. After high-dose treatment and ASCT, a smaller proportion of patients' PMNs had the capacity for oxidative burst. Moreover, patients' PMNs, both before and after ASCT, had a reduced capacity for phagocytosis. Eosinophils, which recently have been suggested to play a role in promoting malignant plasma cell proliferation, were markedly reduced after ASCT, with slow regeneration. HLA-DR expression by monocytes was significantly depressed after ASCT, a characteristic often attributed to monocytic myeloid-derived suppressor cells. Our results suggest that several aspects of phagocytic function are impaired for at least 20 days after ASCT.
Collapse
Affiliation(s)
- Stina Wichert
- Department of Hematology, Skåne University Hospital and Lund University, Lund, Sweden.
| | - Åsa Pettersson
- Department of Nephrology, Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Thomas Hellmark
- Department of Nephrology, Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Åsa Johansson
- Department of Hematology, Skåne University Hospital and Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, University and Regional Laboratories Region Skåne, Lund, Sweden
| | - Markus Hansson
- Department of Hematology, Skåne University Hospital and Lund University, Lund, Sweden
| |
Collapse
|
34
|
Ayed AO, Chang LJ, Moreb JS. Immunotherapy for multiple myeloma: Current status and future directions. Crit Rev Oncol Hematol 2015; 96:399-412. [DOI: 10.1016/j.critrevonc.2015.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/26/2015] [Accepted: 06/15/2015] [Indexed: 01/01/2023] Open
|
35
|
Chhabra S, Jain S, Wallace C, Hong F, Liu B. High expression of endoplasmic reticulum chaperone grp94 is a novel molecular hallmark of malignant plasma cells in multiple myeloma. J Hematol Oncol 2015; 8:77. [PMID: 26108343 PMCID: PMC4483199 DOI: 10.1186/s13045-015-0177-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/17/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematologic malignancy that is characterized by the proliferation of abnormal bone marrow plasma cells (BMPC) and overproduction of immunoglobulin or light chains with evidence of end-organ damage such as bone damage, anemia, hypercalcemia, and renal dysfunction. The pathogenesis of MM is closely linked to dysregulated unfolded protein response (UPR) in the endoplasmic reticulum (ER). Constitutive activation of UPR in mice, as demonstrated by transgenic expression of a master UPR transcription factor XBP1s (a UPR-specific splice variant of X-box binding protein 1), causes myeloma. grp94 (gp96) is a key downstream chaperone in the ER that mediates the UPR as a part of the protein quality control mechanism in the secretory pathway. Our recent study has shown that the persistence of plasma cells as well as the development of myeloma in XBP1s-transgenic mice is critically dependent on grp94. However, the role of grp94 in the initiation and progression of human MM is still unknown. METHODS The expression level of grp94 in BMPCs was measured by flow cytometry, real-time RT-PCR, and Western blot analysis. We compared the expression levels of grp94 in BMPCs in a spectrum of patients including MM, monoclonal gammopathy of undetermined significance (MGUS), smoldering MM (SMM), as well as non-plasma cell disorders (NPC). RESULTS We found that grp94 was highly expressed in malignant plasma cells in patients with MM, but not in BMPCs in patients with MGUS/SMM and NPC. The expression level of grp94 correlated significantly with CD138 expression level. We also found that the grp94 expression level in BMPCs from International Staging System (ISS) stage III MM patients is higher than those in ISS stage I/II MM patients. CONCLUSIONS grp94 is highly expressed in BMPCs in MM, which correlates with the advanced stage of this disease. Our data demonstrated that grp94 is a novel diagnostic and prognostic biomarker. It also positioned grp94 as a promising therapeutic target for MM.
Collapse
Affiliation(s)
- Saurabh Chhabra
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC, 29425, USA. .,Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Sandeep Jain
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC, 29425, USA. .,Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Caroline Wallace
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC, 29425, USA. .,Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC, 29425, USA.
| | - Feng Hong
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC, 29425, USA. .,Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC, 29425, USA.
| | - Bei Liu
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC, 29425, USA. .,Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC, 29425, USA.
| |
Collapse
|
36
|
Di Lullo G, Marcatti M, Heltai S, Brunetto E, Tresoldi C, Bondanza A, Bonini C, Ponzoni M, Tonon G, Ciceri F, Bordignon C, Protti MP. Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival. Oncoimmunology 2015; 4:e1005460. [PMID: 26155400 PMCID: PMC4485827 DOI: 10.1080/2162402x.2015.1005460] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 12/19/2022] Open
Abstract
There is increased production of plasmacytoid dendritic cells (pDCs) in the bone marrow (BM) of multiple myeloma (MM) patients and these favor Th22 cell differentiation. Here, we found that the frequency of interleukin (IL)-22+IL-17-IL-13+ T cells is significantly increased in peripheral blood (PB) and BM of stage III and relapsed/refractory MM patients compared with healthy donors and patients with asymptomatic or stage I/II disease. Th22 cells cloned from the BM of MM patients were CCR6+CXCR4+CCR4+CCR10- and produced IL-22 and IL-13 but not IL-17. Furthermore, polyfunctional Th22-Th2 and Th22-Th1 clones were identified based on the co-expression of additional chemokine receptors and cytokines (CRTh2 or CXCR3 and IL-5 or interferon gamma [IFNγ], respectively). A fraction of MM cell lines and primary tumors aberrantly expressed the IL-22RA1 and IL-22 induced STAT-3 phosphorylation, cell growth, and resistance to drug-induced cell death in MM cells. IL-13 treatment of normal BM mesenchymal stromal cells (MSCs) induced STAT-6 phosphorylation, adhesion molecule upregulation, and increased IL-6 production and significantly favored MM cell growth compared with untreated BM MSCs. Collectively, our data show that increased frequency of IL-22+IL-17-IL-13+ T cells correlates with poor prognosis in MM through IL-22 and IL-13 protumor activity and suggest that interference with IL-22 and IL-13 signaling pathways could be exploited for therapeutic intervention.
Collapse
Key Words
- Ab, antibody; BM, bone marrow; BMMCs, bone marrow mononuclear cells; DCs, dendritic cells; Dx, dexamethasone; ICS, intracellular cytokine staining; IFN, interferon; IL, interleukin; ISS, International Staging System; LCL, Epstein–Barr virus-transformed B lymphoblastoid cell line; Ln, lenalidomide; MGUS, monoclonal gammopathy of undetermined clinical significance; MM, multiple myeloma; MSC, mesenchymal stromal cell; PB, peripheral blood; PBMCs, peripheral blood mononuclear cells; pDCs, plasmacytoid dendritic cells; SMM, smoldering multiple myeloma; Th, T helper; TNF, tumor necrosis factor; Treg, regulatory T cells; WB, Western blot
- CD4+ T helper lymphocytes
- IL-22RA1
- Th22 cells
- bone marrow mesenchymal stromal cells
- bone marrow microenvironment
- interleukin-13
- interleukin-22
- multiple myeloma
Collapse
Affiliation(s)
- Giulia Di Lullo
- Tumor Immunology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Magda Marcatti
- Hematology and Bone Marrow Transplantation Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Silvia Heltai
- Tumor Immunology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Emanuela Brunetto
- Tumor Immunology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Cristina Tresoldi
- Hematology and Bone Marrow Transplantation Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Attilio Bondanza
- Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Leukenia Immunotherapy Group; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Chiara Bonini
- Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Experimental Hematology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Maurilio Ponzoni
- Pathology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Division of Molecular Oncology; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Giovanni Tonon
- Division of Molecular Oncology; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Functional Genomics of Cancer Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| | - Claudio Bordignon
- MolMed SpA ; Milan, Italy ; Vita-Salute San Raffaele University ; Milan, Italy
| | - Maria Pia Protti
- Tumor Immunology Unit; IRCCS San Raffaele Scientific Institute ; Milan, Italy ; Division of Immunology, Transplantation and Infectious Diseases; IRCCS San Raffaele Scientific Institute ; Milan, Italy
| |
Collapse
|
37
|
The tumor microenvironment shapes hallmarks of mature B-cell malignancies. Oncogene 2015; 34:4673-82. [PMID: 25639873 DOI: 10.1038/onc.2014.403] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023]
Abstract
B-cell tumorigenesis results from a host of known and unknown genetic anomalies, including non-random translocations of genes that normally function as determinants of cell proliferation or cell survival to regions juxtaposed to active immunoglobulin heavy chain enhancer elements, chromosomal aneuploidy, somatic mutations that further affect oncogenic signaling and loss of heterozygosity of tumor-suppressor genes. However, it is critical to recognize that even in the setting of a genetic disease, the B-cell/plasma cell tumor microenvironment (TME) contributes significantly to malignant transformation and pathogenesis. Over a decade ago, we proposed the concept of cell adhesion-mediated drug resistance to delineate a form of TME-mediated drug resistance that protects hematopoietic tumor cells from the initial effect of diverse therapies. In the interim, it has been increasingly appreciated that TME also contributes to tumor initiation and progression through sustained growth/proliferation, self-renewal capacity, immune evasion, migration and invasion as well as resistance to cell death in a host of B-cell malignancies, including mantle cell lymphoma, diffuse large B-cell lymphoma, Waldenstroms macroglobulinemia, chronic lymphocytic leukemia and multiple myeloma. Within this review, we propose that TME and the tumor co-evolve as a consequence of bidirectional signaling networks. As such, TME represents an important target and should be considered integral to tumor progression and drug response.
Collapse
|
38
|
Fu R, Gao S, Peng F, Li J, Liu H, Wang H, Xing L, Shao Z. Relationship between abnormal osteoblasts and cellular immunity in multiple myeloma. Cancer Cell Int 2014; 14:62. [PMID: 25788856 PMCID: PMC4364033 DOI: 10.1186/1475-2867-14-62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 06/09/2014] [Indexed: 03/06/2023] Open
Abstract
Bone destruction and abnormal immunity always occur in patients with multiple myeloma (MM), which manifested by impaired osteoblasts and immune system. In this study, we investigated the quantity and function of osteoblasts by co-culture, the status of cellular immunity by flow cytometry, and the relationship between them in MM patients. The results showed that the numbers and function of osteoblasts in MM patients were lower than those in normal controls. Bortezomib could increase the numbers, calcium depositions and the expression of Bone morphogenetic protein–2 (BMP-2) mRNA of osteoblasts from MM patients in vitro. The status of cellular immunity in MM patients was abnormal, including decreased ratio of CD4+/CD8+, DC1/DC2 and Th1/Th2, and increased ratio of regulatory T cells. The ratio of CD4+/CD8+(r = 0.685) and CD4+CD25+/CD3+T(r = 0.568) were positively correlated with the quantity of osteoblasts (both P < 0.05). The serum interleukin-7(IL-7) level of MM patients was higher than that of normal controls (2.07 ± 0.71 vs. 1.62 ± 0.15 ng/L, P < 0.05), and was negatively correlated with the quantity of osteoblasts (r = -0.682, P < 0.01). Our data indicated that the proliferation and osteogenic potential of osteoblasts in MM patients were decreased which could be recovered by bortezomib in vitro. The down-regulation of cellular immunity was correlated with the quantity of osteoblasts.
Collapse
Affiliation(s)
- Rong Fu
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshan Street, Heping District, Tianjin 300052, China
| | - Shan Gao
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshan Street, Heping District, Tianjin 300052, China
| | - Fengping Peng
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshan Street, Heping District, Tianjin 300052, China
| | - Jing Li
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshan Street, Heping District, Tianjin 300052, China
| | - Hui Liu
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshan Street, Heping District, Tianjin 300052, China
| | - Huaquan Wang
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshan Street, Heping District, Tianjin 300052, China
| | - Linmin Xing
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshan Street, Heping District, Tianjin 300052, China
| | - Zonghong Shao
- Department of Hematology, General Hospital, Tianjin Medical University, 154 Anshan Street, Heping District, Tianjin 300052, China
| |
Collapse
|
39
|
Moreau P, Giralt SA. Optimizing therapy for transplant-eligible patients with newly diagnosed multiple myeloma. Leuk Res 2012. [DOI: 10.1016/s0145-2126(12)70004-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Pessoa de Magalhães RJ, Vidriales MB, Paiva B, Fernandez-Gimenez C, García-Sanz R, Mateos MV, Gutierrez NC, Lecrevisse Q, Blanco JF, Hernández J, de las Heras N, Martinez-Lopez J, Roig M, Costa ES, Ocio EM, Perez-Andres M, Maiolino A, Nucci M, De La Rubia J, Lahuerta JJ, San-Miguel JF, Orfao A. Analysis of the immune system of multiple myeloma patients achieving long-term disease control by multidimensional flow cytometry. Haematologica 2012; 98:79-86. [PMID: 22773604 DOI: 10.3324/haematol.2012.067272] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Multiple myeloma remains largely incurable. However, a few patients experience more than 10 years of relapse-free survival and can be considered as operationally cured. Interestingly, long-term disease control in multiple myeloma is not restricted to patients with a complete response, since some patients revert to having a profile of monoclonal gammopathy of undetermined significance. We compared the distribution of multiple compartments of lymphocytes and dendritic cells in the bone marrow and peripheral blood of multiple myeloma patients with long-term disease control (n=28), patients with newly diagnosed monoclonal gammopathy of undetermined significance (n=23), patients with symptomatic multiple myeloma (n=23), and age-matched healthy adults (n=10). Similarly to the patients with monoclonal gammopathy of undetermined significance and symptomatic multiple myeloma, patients with long-term disease control showed an expansion of cytotoxic CD8(+) T cells and natural killer cells. However, the numbers of bone marrow T-regulatory cells were lower in patients with long-term disease control than in those with symptomatic multiple myeloma. It is noteworthy that B cells were depleted in patients with monoclonal gammopathy of undetermined significance and in those with symptomatic multiple myeloma, but recovered in both the bone marrow and peripheral blood of patients with long-term disease control, due to an increase in normal bone marrow B-cell precursors and plasma cells, as well as pre-germinal center peripheral blood B cells. The number of bone marrow dendritic cells and tissue macrophages differed significantly between patients with long-term disease control and those with symptomatic multiple myeloma, with a trend to cell count recovering in the former group of patients towards levels similar to those found in healthy adults. In summary, our results indicate that multiple myeloma patients with long-term disease control have a constellation of unique immune changes favoring both immune cytotoxicity and recovery of B-cell production and homing, suggesting improved immune surveillance.
Collapse
|