1
|
Elarab SME, Alsafy MAM, El-Gendy SAA, El-Bakary NER, Elsayed Noreldin A, Rashwan AM. Investigating the role of Purkinje fibers and synaptic connectivity in balance regulation through comprehensive ultrastructural and immunohistochemical analysis of the donkey's (Equus asinus) cerebellum. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:293-306. [PMID: 38229259 DOI: 10.1002/jez.2782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
The donkey's extraordinary capacity to endure substantial loads over long distances while maintaining equilibrium suggests a distinctive cerebellar architecture specialized in balance regulation. Consequently, our study aims to investigate the intricate histophysiology of the donkey's cerebellum using advanced ultrastructural and immunohistochemical methodologies to comprehend the mechanisms that govern this exceptional ability. This study represents the pioneering investigation to comprehensively describe the ultrastructure and immunohistochemistry within the donkey cerebellum. Five adult donkeys' cerebella were utilized for the study, employing stains such as hematoxylin, eosin, and toluidine blue to facilitate a comprehensive histological examination. For immunohistochemical investigation, synaptophysin (SP), calretinin, and glial fibrillary acidic protein were used and evaluated by the Image J software. Furthermore, a double immunofluorescence staining of SP and neuron-specific enolase (NSE) was performed to highlight the co-localization of these markers and explore their potential contribution to synaptic function within the donkey cerebellum. This investigation aims to understand their possible roles in regulating neuronal activity and synaptic connectivity. We observed co-expression of SP and NSE in the donkey cerebellum, which emphasizes the crucial role of efficient energy utilization for motor coordination and balance, highlighting the interdependence of synaptic function and energy metabolism. The Purkinje cells were situated in the intermediate zone of the cerebellum cortex, known as the Purkinje cell layer. Characteristically, the Purkinje cell's bodies exhibited a distinct pear-like shape. The cross-section area of the Purkinje cells was 107.7 ± 0.2 µm2 , and the Purkinje cell nucleus was 95.7 ± 0.1 µm2 . The length and diameter of the Purkinje cells were 36.4 × 23.4 µm. By scanning electron microscopy, the body of the Purkinje cell looked like a triangular or oval with a meandrous outer surface. The dendrites appeared to have small spines. The Purkinje cells' cytoplasm was rich with mitochondria, rough endoplasmic reticulum, ribosomes, Golgi apparatus, multivesicular bodies, and lysosomes. Purkinje cell dendrites were discovered in the molecular layer, resembling trees. This study sheds light on the anatomical and cellular characteristics underlying the donkey's exceptional balance-maintaining abilities.
Collapse
Affiliation(s)
- Samar M Ez Elarab
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed A M Alsafy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Samir A A El-Gendy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Neveen E R El-Bakary
- Department of Zoology, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ahmed Elsayed Noreldin
- Histology and Cytology Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed M Rashwan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
- Department of Life Science Frontiers, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Miguel JC, Perez SE, Malek-Ahmadi M, Mufson EJ. Cerebellar Calcium-Binding Protein and Neurotrophin Receptor Defects in Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:645334. [PMID: 33776745 PMCID: PMC7994928 DOI: 10.3389/fnagi.2021.645334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebellar hypoplasia is a major characteristic of the Down syndrome (DS) brain. However, the consequences of trisomy upon cerebellar Purkinje cells (PC) and interneurons in DS are unclear. The present study performed a quantitative and qualitative analysis of cerebellar neurons immunostained with antibodies against calbindin D-28k (Calb), parvalbumin (Parv), and calretinin (Calr), phosphorylated and non-phosphorylated intermediate neurofilaments (SMI-34 and SMI-32), and high (TrkA) and low (p75NTR) affinity nerve growth factor (NGF) receptors as well as tau and amyloid in DS (n = 12), Alzheimer's disease (AD) (n = 10), and healthy non-dementia control (HC) (n = 8) cases. Our findings revealed higher Aβ42 plaque load in DS compared to AD and HC but no differences in APP/Aβ plaque load between HC, AD, and DS. The cerebellar cortex neither displayed Aβ40 containing plaques nor pathologic phosphorylated tau in any of the cases examined. The number and optical density (OD) measurements of Calb immunoreactive (-ir) PC soma and dendrites were similar between groups, while the number of PCs positive for Parv and SMI-32 were significantly reduced in AD and DS compared to HC. By contrast, the number of SMI-34-ir PC dystrophic axonal swellings, termed torpedoes, was significantly greater in AD compared to DS. No differences in SMI-32- and Parv-ir PC OD measurements were observed between groups. Conversely, total number of Parv- (stellate/basket) and Calr (Lugaro, brush, and Golgi)-positive interneurons were significantly reduced in DS compared to AD and HC. A strong negative correlation was found between counts for Parv-ir interneurons, Calr-ir Golgi and brush cells, and Aβ42 plaque load. Number of TrkA and p75NTR positive PCs were reduced in AD compared to HC. These findings suggest that disturbances in calcium binding proteins play a critical role in cerebellar neuronal dysfunction in adults with DS.
Collapse
Affiliation(s)
- Jennifer C. Miguel
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Sylvia E. Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Michael Malek-Ahmadi
- Department of Biomedical Informatics, Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Elliott J. Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
4
|
Attaai AH, Noreldin AE, Abdel-Maksoud FM, Hussein MT. An updated investigation on the dromedary camel cerebellum (Camelus dromedarius) with special insight into the distribution of calcium-binding proteins. Sci Rep 2020; 10:21157. [PMID: 33273572 PMCID: PMC7713137 DOI: 10.1038/s41598-020-78192-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
Studying the cerebella of different animals is important to expand the knowledge about the cerebellum. Studying the camel cerebellum was neglected even though the recent research in the middle east and Asia. Therefore, the present study was designed to achieve a detailed description of the morphology and the cellular organization of the camel cerebellum. Because of the high importance of the calcium ions as a necessary moderator the current work also aimed to investigate the distribution of calcium binding proteins (CaBP) such as calbindin D-28K (CB), parvalbumin (PV) and calretinin (CR) in different cerebellar cells including the non-traditional neurons. The architecture of camel cerebellum, as different mammals, consists of the medulla and three layered-cortex. According to our observation the cells in the granular layer were not crowded and many spaces were observed. CB expression was the highest by Purkinje cells including their dendritic arborization. In addition to its expression by the inhibitory interneurons (basket, stellate and Golgi neurons), it is also expressed by the excitatory granule cells. PV was expressed by Purkinje cells, including their primary arborization, and by the molecular layer cells. CR immunoreactivity (-ir) was obvious in almost all cell layers with varying degrees, however a weak or any expression by the Purkinje cells. The molecular layer cells and the Golgi and the non traditional large neurons of the granular layer showed the strongest CR-ir. Granule neurons showed moderate immunoreactivity for CB and CR. In conclusion, the results of the current study achieved a complete map for the neurochemical organization of CaBP expression and distribution by different cells in the camel cerebellum.
Collapse
Affiliation(s)
- Abdelraheim H Attaai
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, 22511, Damanhour, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt.
| | - Manal T Hussein
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt
| |
Collapse
|
5
|
Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJT, Hawkes R. Consensus Paper: Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2016; 15:789-828. [PMID: 26439486 PMCID: PMC4846577 DOI: 10.1007/s12311-015-0724-2] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy.
| | - Marife Arancillo
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Esther B E Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN, 37232, USA
| | - Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
- Department of Pediatrics, Genetics Division, University of Washington, Seattle, WA, USA
| | - Isabelle Dusart
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Institut de Biologie Paris Seine, France, 75005, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR8246, INSERM U1130, Neuroscience Paris Seine, France, 75005, Paris, France
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, 10065, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Salvador Martinez
- Department Human Anatomy, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Karl Schilling
- Anatomie und Zellbiologie, Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Gabriella Sekerková
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy V Sillitoe
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Constantino Sotelo
- Institut de la Vision, UPMC Université de Paris 06, Paris, 75012, France
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Annika Wefers
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4NI, AB, Canada
| |
Collapse
|
6
|
Toledano A, Alvarez MI, Monleón E, Toledano-Díaz A, Badiola JJ, Monzón M. Changes induced by natural scrapie in the calretinin-immunopositive cells and fibres of the sheep cerebellar cortex. THE CEREBELLUM 2012; 11:593-604. [PMID: 22116659 DOI: 10.1007/s12311-011-0335-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calretinin (CR)-immunopositive cells and fibres in the cerebellar cortex (vermal archicerebellum and neocerebellum) of scrapie-affected, ARQ/ARQ, Rasa Aragonesa breed sheep were studied in comparison with healthy, young and aged, ARQ/ARQ, Rasa Aragonesa animals and with Manchega breed sheep. The scrapie-affected sheep showed signs of both cellular involution and hypertrophic/hyperimmunoreactive responses in all neuronal subtypes; the distribution of the neuronal subtypes in the archi- and neocerebellum, however, did not change compared with controls. The results suggest that the different CR expression and/or CR content of cerebellar cortical neurons in scrapie-affected sheep are more related to their specific functions than any neuroprotective response. The reduction in the cell density of some CR-immunopositive neuronal subsets (i.e. unipolar brush cells) is contradictory to the supposed neuroprotective role of the calcium binding protein CR. However, the hyperimmunoreactivity of many CR-immunopositive neuronal subsets (e.g. the Purkinje cells) suggests the involvement of an over-expression of CR (transitory or restricted to selected neurons) as an adaptative mechanism to fight against the neurodegeneration caused by this prion disease. The changes in the number of immunopositive cells and the hypertrophic/hyperimmunoreactive response seen in scrapie-affected and aged sheep suggests that some different and some similar mechanisms are at work in this disease and aging.
Collapse
|
8
|
Mugnaini E, Sekerková G, Martina M. The unipolar brush cell: a remarkable neuron finally receiving deserved attention. BRAIN RESEARCH REVIEWS 2011; 66:220-45. [PMID: 20937306 PMCID: PMC3030675 DOI: 10.1016/j.brainresrev.2010.10.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/17/2022]
Abstract
Unipolar brush cells (UBC) are small, glutamatergic neurons residing in the granular layer of the cerebellar cortex and the granule cell domain of the cochlear nuclear complex. Recent studies indicate that this neuronal class consists of three or more subsets characterized by distinct chemical phenotypes, as well as by intrinsic properties that may shape their synaptic responses and firing patterns. Yet, all UBCs have a unique morphology, as both the dendritic brush and the large endings of the axonal branches participate in the formation of glomeruli. Although UBCs and granule cells may share the same excitatory and inhibitory inputs, the two cell types are distinctively differentiated. Typically, whereas the granule cell has 4-5 dendrites that are innervated by different mossy fibers, and an axon that divides only once to form parallel fibers after ascending to the molecular layer, the UBC has but one short dendrite whose brush engages in synaptic contact with a single mossy fiber terminal, and an axon that branches locally in the granular layer; branches of UBC axons form a non-canonical, cortex-intrinsic category of mossy fibers synapsing with granule cells and other UBCs. This is thought to generate a feed-forward amplification of single mossy fiber afferent signals that would reach the overlying Purkinje cells via ascending granule cell axons and their parallel fibers. In sharp contrast to other classes of cerebellar neurons, UBCs are not distributed homogeneously across cerebellar lobules, and subsets of UBCs also show different, albeit overlapping, distributions. UBCs are conspicuously rare in the expansive lateral cerebellar areas targeted by the cortico-ponto-cerebellar pathway, while they are a constant component of the vermis and the flocculonodular lobe. The presence of UBCs in cerebellar regions involved in the sensorimotor processes that regulate body, head and eye position, as well as in regions of the cochlear nucleus that process sensorimotor information suggests a key role in these critical functions; it also invites further efforts to clarify the cellular biology of the UBCs and their specific functions in the neuronal microcircuits in which they are embedded. High density of UBCs in specific regions of the cerebellar cortex is a feature largely conserved across mammals and suggests an involvement of these neurons in fundamental aspects of the input/output organization as well as in clinical manifestation of focal cerebellar disease.
Collapse
Affiliation(s)
- Enrico Mugnaini
- Department of Cellular and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Chicago, IL, USA.
| | | | | |
Collapse
|