1
|
Snell HD, Vitenzon A, Tara E, Chen C, Tindi J, Jordan BA, Khodakhah K. Mechanism of stress-induced attacks in an episodic neurologic disorder. SCIENCE ADVANCES 2022; 8:eabh2675. [PMID: 35442745 PMCID: PMC9020779 DOI: 10.1126/sciadv.abh2675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/02/2022] [Indexed: 05/21/2023]
Abstract
Stress is the most common trigger among episodic neurologic disorders. In episodic ataxia type 2 (EA2), physical or emotional stress causes episodes of severe motor dysfunction that manifest as ataxia and dystonia. We used the tottering (tg/tg) mouse, a faithful animal model of EA2, to dissect the mechanisms underlying stress-induced motor attacks. We find that in response to acute stress, activation of α1-adrenergic receptors (α1-Rs) on Purkinje cells by norepinephrine leads to their erratic firing and consequently motor attacks. We show that norepinephrine induces erratic firing of Purkinje cells by disrupting their spontaneous intrinsic pacemaking via a casein kinase 2 (CK2)-dependent signaling pathway, which likely reduces the activity of calcium-dependent potassium channels. Moreover, we report that disruption of this signaling cascade at a number of nodes prevents stress-induced attacks in the tottering mouse. Together, our results suggest that norepinephrine and CK2 are required for the initiation of stress-induced attacks in EA2 and provide previously unidentified targets for therapeutic intervention.
Collapse
Affiliation(s)
- Heather D. Snell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariel Vitenzon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Esra Tara
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chris Chen
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jaafar Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Stay TL, Miterko LN, Arancillo M, Lin T, Sillitoe RV. In vivo cerebellar circuit function is disrupted in an mdx mouse model of Duchenne muscular dystrophy. Dis Model Mech 2019; 13:dmm040840. [PMID: 31704708 PMCID: PMC6906634 DOI: 10.1242/dmm.040840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/30/2019] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a debilitating and ultimately lethal disease involving progressive muscle degeneration and neurological dysfunction. DMD is caused by mutations in the dystrophin gene, which result in extremely low or total loss of dystrophin protein expression. In the brain, dystrophin is heavily localized to cerebellar Purkinje cells, which control motor and non-motor functions. In vitro experiments in mouse Purkinje cells revealed that loss of dystrophin leads to low firing rates and high spiking variability. However, it is still unclear how the loss of dystrophin affects cerebellar function in the intact brain. Here, we used in vivo electrophysiology to record Purkinje cells and cerebellar nuclear neurons in awake and anesthetized female mdx (also known as Dmd) mice. Purkinje cell simple spike firing rate is significantly lower in mdx mice compared to controls. Although simple spike firing regularity is not affected, complex spike regularity is increased in mdx mutants. Mean firing rate in cerebellar nuclear neurons is not altered in mdx mice, but their local firing pattern is irregular. Based on the relatively well-preserved cytoarchitecture in the mdx cerebellum, our data suggest that faulty signals across the circuit between Purkinje cells and cerebellar nuclei drive the abnormal firing activity. The in vivo requirements of dystrophin during cerebellar circuit communication could help explain the motor and cognitive anomalies seen in individuals with DMD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Trace L Stay
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Lauren N Miterko
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marife Arancillo
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Gornati SV, Schäfer CB, Eelkman Rooda OHJ, Nigg AL, De Zeeuw CI, Hoebeek FE. Differentiating Cerebellar Impact on Thalamic Nuclei. Cell Rep 2019; 23:2690-2704. [PMID: 29847799 PMCID: PMC5990493 DOI: 10.1016/j.celrep.2018.04.098] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/26/2018] [Accepted: 04/24/2018] [Indexed: 11/30/2022] Open
Abstract
The cerebellum plays a role in coordination of movements and non-motor functions. Cerebellar nuclei (CN) axons connect to various parts of the thalamo-cortical network, but detailed information on the characteristics of cerebello-thalamic connections is lacking. Here, we assessed the cerebellar input to the ventrolateral (VL), ventromedial (VM), and centrolateral (CL) thalamus. Confocal and electron microscopy showed an increased density and size of CN axon terminals in VL compared to VM or CL. Electrophysiological recordings in vitro revealed that optogenetic CN stimulation resulted in enhanced charge transfer and action potential firing in VL neurons compared to VM or CL neurons, despite that the paired-pulse ratio was not significantly different. Together, these findings indicate that the impact of CN input onto neurons of different thalamic nuclei varies substantially, which highlights the possibility that cerebellar output differentially controls various parts of the thalamo-cortical network. Cerebello-thalamic axons form terminals of varying size in distinct thalamic nuclei Cerebello-thalamic responses vary in amplitude in distinct thalamic nuclei Repetitive stimuli depress cerebello-thalamic responses in all thalamic nuclei
Collapse
Affiliation(s)
- Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Carmen B Schäfer
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Oscar H J Eelkman Rooda
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; Department of Neurosurgery, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Alex L Nigg
- Department of Pathology, Optical Imaging Center, Erasmus MC, 3015 AA Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands; NIDOD Institute, Wilhelmina Children's Hospital and Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands.
| |
Collapse
|
4
|
Tara E, Vitenzon A, Hess E, Khodakhah K. Aberrant cerebellar Purkinje cell activity as the cause of motor attacks in a mouse model of episodic ataxia type 2. Dis Model Mech 2018; 11:11/9/dmm034181. [PMID: 30279196 PMCID: PMC6177005 DOI: 10.1242/dmm.034181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
Many cerebellar-induced neurological disorders, such as ataxias and cerebellar-induced dystonias, are associated with abnormal Purkinje cell activity. In tottering mice, a well-established mouse model of episodic ataxia type 2 (EA2), cerebellar Purkinje cells are required for the initiation of motor attacks. How Purkinje cells contribute to the initiation of attacks is not known, and to date there are no reports on the activity of Purkinje cells during motor attacks in the tottering mice. Here, we show that tottering Purkinje cells exhibit high-frequency burst firing during attacks, reminiscent of other mouse models of cerebellar-induced motor dysfunction. We recorded the activity of Purkinje cells in awake head-restrained tottering mice at baseline, or during caffeine-induced attacks. During motor attacks, firing of Purkinje cells transformed to high-frequency burst firing. Interestingly, the extent to which the activity of Purkinje cells was erratic was correlated with the severity of the motor dysfunction. In support of a causal role for erratic activity in generating motor dysfunction, we found that direct infusion of the small conductance calcium-activated potassium (SK) channel activator NS309 into the cerebellum of tottering mice in the midst of an attack normalized the firing of Purkinje cells and aborted attacks. Conversely, we found that inducing high-frequency burst firing of Purkinje cells in wild-type animals is sufficient to produce severe motor signs. We report that erratic activity of wild-type Purkinje cells results in ataxia and dystonic postures. Moreover, this aberrant activity is the cause of motor attacks in the tottering mice. Summary: Here, we report that in the well-established mouse model of episodic ataxia type 2, tottering, the severe episodic motor signs are caused by highly erratic activity of Purkinje cells.
Collapse
Affiliation(s)
- Esra Tara
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ariel Vitenzon
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ellen Hess
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322-3090, USA
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Muñoz-Castañeda R, Díaz D, Peris L, Andrieux A, Bosc C, Muñoz-Castañeda JM, Janke C, Alonso JR, Moutin MJ, Weruaga E. Cytoskeleton stability is essential for the integrity of the cerebellum and its motor- and affective-related behaviors. Sci Rep 2018; 8:3072. [PMID: 29449678 PMCID: PMC5814431 DOI: 10.1038/s41598-018-21470-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023] Open
Abstract
The cerebellum plays a key role in motor tasks, but its involvement in cognition is still being considered. Although there is an association of different psychiatric and cognitive disorders with cerebellar impairments, the lack of time-course studies has hindered the understanding of the involvement of cerebellum in cognitive and non-motor functions. Such association was here studied using the Purkinje Cell Degeneration mutant mouse, a model of selective and progressive cerebellar degeneration that lacks the cytosolic carboxypeptidase 1 (CCP1). The effects of the absence of this enzyme on the cerebellum of mutant mice were analyzed both in vitro and in vivo. These analyses were carried out longitudinally (throughout both the pre-neurodegenerative and neurodegenerative stages) and different motor and non-motor tests were performed. We demonstrate that the lack of CCP1 affects microtubule dynamics and flexibility, defects that contribute to the morphological alterations of the Purkinje cells (PCs), and to progressive cerebellar breakdown. Moreover, this degeneration led not only to motor defects but also to gradual cognitive impairments, directly related to the progression of cellular damage. Our findings confirm the cerebellar implication in non-motor tasks, where the formation of the healthy, typical PCs structure is necessary for normal cognitive and affective behavior.
Collapse
Affiliation(s)
- Rodrigo Muñoz-Castañeda
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain
| | - David Díaz
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain
| | - Leticia Peris
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - Annie Andrieux
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France.,CEA, BIG-GPC, F-38000, Grenoble, France
| | - Christophe Bosc
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - José M Muñoz-Castañeda
- Physics Department, Aeronautics Engineering School, Polytechnic University of Madrid, E-28040, Madrid, Spain
| | - Carsten Janke
- Institut Curie, F-91405, Orsay, France.,Paris Sciences et Lettres Research University, F-75005, Paris, France.,Centre National de la Recherche Scientifique, UMR3348, F-91405, Orsay, France
| | - José R Alonso
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain.,Institute for Higher Research, University of Tarapaca, Arica, Chile
| | - Marie-Jo Moutin
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - Eduardo Weruaga
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain. .,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain.
| |
Collapse
|
6
|
Kros L, Lindeman S, Eelkman Rooda OHJ, Murugesan P, Bina L, Bosman LWJ, De Zeeuw CI, Hoebeek FE. Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy. Front Cell Neurosci 2017; 11:346. [PMID: 29163057 PMCID: PMC5671558 DOI: 10.3389/fncel.2017.00346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Absence epilepsy is characterized by the occurrence of generalized spike and wave discharges (GSWDs) in electrocorticographical (ECoG) recordings representing oscillatory activity in thalamocortical networks. The oscillatory nature of GSWDs has been shown to be reflected in the simple spike activity of cerebellar Purkinje cells and in the activity of their target neurons in the cerebellar nuclei, but it is unclear to what extent complex spike activity is implicated in generalized epilepsy. Purkinje cell complex spike firing is elicited by climbing fiber activation and reflects action potential firing in the inferior olive. Here, we investigated to what extent modulation of complex spike firing is reflected in the temporal patterns of seizures. Extracellular single-unit recordings in awake, head-restrained homozygous tottering mice, which suffer from a mutation in the voltage-gated CaV2.1 calcium channel, revealed that a substantial proportion of Purkinje cells (26%) showed increased complex spike activity and rhythmicity during GSWDs. Moreover, Purkinje cells, recorded either electrophysiologically or by using Ca2+-imaging, showed a significant increase in complex spike synchronicity for both adjacent and remote Purkinje cells during ictal events. These seizure-related changes in firing frequency, rhythmicity and synchronicity were most prominent in the lateral cerebellum, a region known to receive cerebral input via the inferior olive. These data indicate profound and widespread changes in olivary firing that are most likely induced by seizure-related activity changes in the thalamocortical network, thereby highlighting the possibility that olivary neurons can compensate for pathological brain-state changes by dampening oscillations.
Collapse
Affiliation(s)
- Lieke Kros
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Sander Lindeman
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Oscar H J Eelkman Rooda
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department of Neurosurgery, Erasmus MC, Rotterdam, Netherlands
| | | | - Lorenzo Bina
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
7
|
White JJ, Sillitoe RV. Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. Nat Commun 2017; 8:14912. [PMID: 28374839 PMCID: PMC5382291 DOI: 10.1038/ncomms14912] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/14/2017] [Indexed: 01/13/2023] Open
Abstract
Theories of cerebellar function place the inferior olive to cerebellum connection at the centre of motor behaviour. One possible implication of this is that disruption of olivocerebellar signalling could play a major role in initiating motor disease. To test this, we devised a mouse genetics approach to silence glutamatergic signalling only at olivocerebellar synapses. The resulting mice had a severe neurological condition that mimicked the early-onset twisting, stiff limbs and tremor that is observed in dystonia, a debilitating movement disease. By blocking olivocerebellar excitatory neurotransmission, we eliminated Purkinje cell complex spikes and induced aberrant cerebellar nuclear activity. Pharmacologically inhibiting the erratic output of the cerebellar nuclei in the mutant mice improved movement. Furthermore, deep brain stimulation directed to the interposed cerebellar nuclei reduced dystonia-like postures in these mice. Collectively, our data uncover a neural mechanism by which olivocerebellar dysfunction promotes motor disease phenotypes and identify the cerebellar nuclei as a therapeutic target for surgical intervention. Dystonia is thought to be driven by impairments in cerebellar signalling. The authors use a mouse genetic approach to silence excitatory transmission in the inferior olive to cerebellum pathway, resulting in dystonia-like signs in the animals which can be alleviated using DBS stimulation of the pathway.
Collapse
Affiliation(s)
- Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
8
|
White JJ, Arancillo M, King A, Lin T, Miterko LN, Gebre SA, Sillitoe RV. Pathogenesis of severe ataxia and tremor without the typical signs of neurodegeneration. Neurobiol Dis 2015; 86:86-98. [PMID: 26586559 DOI: 10.1016/j.nbd.2015.11.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/30/2015] [Accepted: 11/11/2015] [Indexed: 11/27/2022] Open
Abstract
Neurological diseases are especially devastating when they involve neurodegeneration. Neuronal destruction is widespread in cognitive disorders such as Alzheimer's and regionally localized in motor disorders such as Parkinson's, Huntington's, and ataxia. But, surprisingly, the onset and progression of these diseases can occur without neurodegeneration. To understand the origins of diseases that do not have an obvious neuropathology, we tested how loss of CAR8, a regulator of IP3R1-mediated Ca(2+)-signaling, influences cerebellar circuit formation and neural function as movement deteriorates. We found that faulty molecular patterning, which shapes functional circuits called zones, leads to alterations in cerebellar wiring and Purkinje cell activity, but not to degeneration. Rescuing Purkinje cell function improved movement and reducing their Ca(2+) influx eliminated ectopic zones. Our findings in Car8(wdl) mutant mice unveil a pathophysiological mechanism that may operate broadly to impact motor and non-motor conditions that do not involve degeneration.
Collapse
Affiliation(s)
- Joshua J White
- Department of Pathology & Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Marife Arancillo
- Department of Pathology & Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Annesha King
- Department of Pathology & Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Tao Lin
- Department of Pathology & Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Lauren N Miterko
- Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Samrawit A Gebre
- Department of Pathology & Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| |
Collapse
|
9
|
Kros L, Eelkman Rooda OHJ, Spanke JK, Alva P, van Dongen MN, Karapatis A, Tolner EA, Strydis C, Davey N, Winkelman BHJ, Negrello M, Serdijn WA, Steuber V, van den Maagdenberg AMJM, De Zeeuw CI, Hoebeek FE. Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol 2015; 77:1027-49. [PMID: 25762286 PMCID: PMC5008217 DOI: 10.1002/ana.24399] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/13/2023]
Abstract
Objective Disrupting thalamocortical activity patterns has proven to be a promising approach to stop generalized spike‐and‐wave discharges (GSWDs) characteristic of absence seizures. Here, we investigated to what extent modulation of neuronal firing in cerebellar nuclei (CN), which are anatomically in an advantageous position to disrupt cortical oscillations through their innervation of a wide variety of thalamic nuclei, is effective in controlling absence seizures. Methods Two unrelated mouse models of generalized absence seizures were used: the natural mutant tottering, which is characterized by a missense mutation in Cacna1a, and inbred C3H/HeOuJ. While simultaneously recording single CN neuron activity and electrocorticogram in awake animals, we investigated to what extent pharmacologically increased or decreased CN neuron activity could modulate GSWD occurrence as well as short‐lasting, on‐demand CN stimulation could disrupt epileptic seizures. Results We found that a subset of CN neurons show phase‐locked oscillatory firing during GSWDs and that manipulating this activity modulates GSWD occurrence. Inhibiting CN neuron action potential firing by local application of the γ‐aminobutyric acid type A (GABA‐A) agonist muscimol increased GSWD occurrence up to 37‐fold, whereas increasing the frequency and regularity of CN neuron firing with the use of GABA‐A antagonist gabazine decimated its occurrence. A single short‐lasting (30–300 milliseconds) optogenetic stimulation of CN neuron activity abruptly stopped GSWDs, even when applied unilaterally. Using a closed‐loop system, GSWDs were detected and stopped within 500 milliseconds. Interpretation CN neurons are potent modulators of pathological oscillations in thalamocortical network activity during absence seizures, and their potential therapeutic benefit for controlling other types of generalized epilepsies should be evaluated. Ann Neurol 2015;77:1027–1049
Collapse
Affiliation(s)
- Lieke Kros
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Jochen K Spanke
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Parimala Alva
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, United Kingdom
| | - Marijn N van Dongen
- Bioelectronics Section, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Athanasios Karapatis
- Bioelectronics Section, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christos Strydis
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Neil Davey
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, United Kingdom
| | - Beerend H J Winkelman
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - Mario Negrello
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Wouter A Serdijn
- Bioelectronics Section, Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Delft, the Netherlands
| | - Volker Steuber
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, United Kingdom
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, the Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
10
|
Valberg SJ, Lewis SS, Shivers JL, Barnes NE, Konczak J, Draper ACE, Armién AG. The Equine Movement Disorder “Shivers” Is Associated With Selective Cerebellar Purkinje Cell Axonal Degeneration. Vet Pathol 2015; 52:1087-98. [DOI: 10.1177/0300985815571668] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
“Shivers” is a progressive equine movement disorder of unknown etiology. Clinically, horses with shivers show difficulty walking backward, assume hyperflexed limb postures, and have hind limb tremors during backward movement that resembles shivering. At least initially, forward movements are normal. Given that neither the neurophysiologic nor the pathologic mechanisms of the disease is known, nor has a neuroanatomic locus been identified, we undertook a detailed neuroanatomic and neuropathologic analysis of the complete sensorimotor system in horses with shivers and clinically normal control horses. No abnormalities were identified in the examined hind limb and forelimb skeletal muscles nor the associated peripheral nerves. Eosinophilic segmented axonal spheroids were a common lesion. Calretinin-positive axonal spheroids were present in many regions of the central nervous system, particularly the nucleus cuneatus lateralis; however, their numbers did not differ significantly from those of control horses. When compared to controls, calretinin-negative, calbindin-positive, and glutamic acid decarboxylase–positive spheroids were increased 80-fold in Purkinje cell axons within the deep cerebellar nuclei of horses with shivers. Unusual lamellar or membranous structures resembling marked myelin decompaction were present between myelin sheaths of presumed Purkinje cell axons in the deep cerebellar nuclei of shivers but not control horses. The immunohistochemical and ultrastructural characteristics of the lesions combined with their functional neuroanatomic distribution indicate, for the first time, that shivers is characterized by end-terminal neuroaxonal degeneration in the deep cerebellar nuclei, which results in context-specific hypermetria and myoclonus.
Collapse
Affiliation(s)
- S. J. Valberg
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - S. S. Lewis
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - J. L. Shivers
- Veterinary Diagnostic Laboratory, University of Minnesota, St Paul, MN, USA
| | - N. E. Barnes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - J. Konczak
- School of Kinesiology, University of Minnesota, Minneapolis, MN USA
| | - A. C. E. Draper
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - A. G. Armién
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
- Veterinary Diagnostic Laboratory, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
11
|
Stahl JS, Thumser ZC. Flocculus Purkinje cell signals in mouse Cacna1a calcium channel mutants of escalating severity: an investigation of the role of firing irregularity in ataxia. J Neurophysiol 2014; 112:2647-63. [PMID: 25143538 DOI: 10.1152/jn.00129.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutation of the Cacna1a gene for the P/Q (CaV2.1) calcium channel invariably leads to cerebellar dysfunction. The dysfunction has been attributed to disrupted rhythmicity of cerebellar Purkinje cells, but the hypothesis remains unproven. If irregular firing rates cause cerebellar dysfunction, then the irregularity and behavioral deficits should covary in a series of mutant strains of escalating severity. We compared firing irregularity in floccular and anterior vermis Purkinje cells in the mildly affected rocker and moderately affected tottering Cacna1a mutants and normal C57BL/6 mice. We also measured the amplitude and timing of modulations of floccular Purkinje cell firing rate during the horizontal vestibuloocular reflex (VOR, 0.25-1 Hz) and the horizontal and vertical optokinetic reflex (OKR, 0.125-1 Hz). We recorded Purkinje cells selective for rotational stimulation about the vertical axis (VAPCs) and a horizontal axis (HAPCs). Irregularity scaled with behavioral deficit severity in the flocculus but failed to do so in the vermis, challenging the irregularity hypothesis. Mutant VAPCs exhibited unusually strong modulation during VOR and OKR, the response augmentation scaling with phenotypic severity. HAPCs exhibited increased OKR modulation but in tottering only. The data contradict prior claims that modulation amplitude is unaffected in tottering but support the idea that attenuated compensatory eye movements in Cacna1a mutants arise from defective transfer of Purkinje cell signals to downstream circuitry, rather than attenuated synaptic transmission within the cerebellar cortex. Shifts in the relative sizes of the VAPC and HAPC populations raise the possibility that Cacna1a mutations influence the development of floccular zone architecture.
Collapse
Affiliation(s)
- John S Stahl
- Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio; and Department of Neurology, Case Western Reserve University, Cleveland, Ohio
| | - Zachary C Thumser
- Neurology Division, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio; and
| |
Collapse
|
12
|
Carulli D, Foscarin S, Faralli A, Pajaj E, Rossi F. Modulation of semaphorin3A in perineuronal nets during structural plasticity in the adult cerebellum. Mol Cell Neurosci 2013; 57:10-22. [PMID: 23999154 DOI: 10.1016/j.mcn.2013.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/05/2013] [Accepted: 08/24/2013] [Indexed: 02/02/2023] Open
Abstract
In the adult central nervous system (CNS) subsets of neurons are enwrapped by densely organized extracellular matrix structures, called perineuronal nets (PNNs). PNNs are formed at the end of critical periods and contribute to synapse stabilization. Enzymatic degradation of PNNs or genetic deletion of specific PNN components leads to the prolongation of the plasticity period. PNNs consist of extracellular matrix molecules, including chondroitin sulfate proteoglycans, hyaluronan, tenascins and link proteins. It has been recently shown that the chemorepulsive axon guidance protein semaphorin3A (Sema3A) is also a constituent of PNNs, binding with high affinity to the sugar chains of chondroitin sulfate proteoglycans. To elucidate whether the expression of Sema3A is modified in parallel with structural plasticity in the adult CNS, we examined Sema3A expression in the deep cerebellar nuclei of the adult mouse in a number of conditions associated with structural reorganization of the local connectivity. We found that Sema3A in PNNs is reduced during enhanced neuritic remodeling, in both physiological and injury-induced conditions. Moreover, we provide evidence that Sema3A is tightly associated with Purkinje axons and their terminals and its amount in the PNNs is related to Purkinje cell innervation of DCN neurons, but not to glutamatergic inputs. On the whole these data suggest that Sema3A may contribute to the growth-inhibitory properties of PNNs and Purkinje neurons may directly control their specific connection pattern through the release and capture of this guidance cue in the specialized ECM that surrounds their terminals.
Collapse
Affiliation(s)
- Daniela Carulli
- Department of Neuroscience, Neuroscience Institute of Turin (NIT), University of Turin, Turin, Italy; Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Turin, Italy.
| | | | | | | | | |
Collapse
|
13
|
Alva P, Kros L, Maex R, De Zeeuw CI, Adams R, Davey N, Steuber V, Hoebeek FE. A potential role for the cerebellar nuclei in absence seizures. BMC Neurosci 2013. [PMCID: PMC3704568 DOI: 10.1186/1471-2202-14-s1-p170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Abstract
Functional aspects of network integration in the cerebellar cortex have been studied experimentally and modeled in much detail ever since the early work by theoreticians such as Marr, Albus and Braitenberg more than 40 years ago. In contrast, much less is known about cerebellar processing at the output stage, namely in the cerebellar nuclei (CN). Here, input from Purkinje cells converges to control CN neuron spiking via GABAergic inhibition, before the output from the CN reaches cerebellar targets such as the brainstem and the motor thalamus. In this article we review modeling studies that address how the CN may integrate cerebellar cortical inputs, and what kind of signals may be transmitted. Specific hypotheses in the literature contrast rate coding and temporal coding of information in the spiking output from the CN. One popular hypothesis states that post-inhibitory rebound spiking may be an important mechanism by which Purkinje cell inhibition is turned into CN output spiking, but this hypothesis remains controversial. Rate coding clearly does take place, but in what way it may be augmented by temporal codes remains to be more clearly established. Several candidate mechanisms distinct from rebound spiking are discussed, such as the significance of spike time correlations between Purkinje cell pools to determine CN spike timing, irregularity of Purkinje cell spiking as a determinant of CN firing rate, and shared brief pauses between Purkinje cell pools that may trigger individual CN spikes precisely.
Collapse
|
15
|
Luthman J, Hoebeek FE, Maex R, Davey N, Adams R, De Zeeuw CI, Steuber V. STD-dependent and independent encoding of input irregularity as spike rate in a computational model of a cerebellar nucleus neuron. THE CEREBELLUM 2012; 10:667-82. [PMID: 21761198 PMCID: PMC3215884 DOI: 10.1007/s12311-011-0295-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurons in the cerebellar nuclei (CN) receive inhibitory inputs from Purkinje cells in the cerebellar cortex and provide the major output from the cerebellum, but their computational function is not well understood. It has recently been shown that the spike activity of Purkinje cells is more regular than previously assumed and that this regularity can affect motor behaviour. We use a conductance-based model of a CN neuron to study the effect of the regularity of Purkinje cell spiking on CN neuron activity. We find that increasing the irregularity of Purkinje cell activity accelerates the CN neuron spike rate and that the mechanism of this recoding of input irregularity as output spike rate depends on the number of Purkinje cells converging onto a CN neuron. For high convergence ratios, the irregularity induced spike rate acceleration depends on short-term depression (STD) at the Purkinje cell synapses. At low convergence ratios, or for synchronised Purkinje cell input, the firing rate increase is independent of STD. The transformation of input irregularity into output spike rate occurs in response to artificial input spike trains as well as to spike trains recorded from Purkinje cells in tottering mice, which show highly irregular spiking patterns. Our results suggest that STD may contribute to the accelerated CN spike rate in tottering mice and they raise the possibility that the deficits in motor control in these mutants partly result as a pathological consequence of this natural form of plasticity.
Collapse
Affiliation(s)
- Johannes Luthman
- Science and Technology Research Institute, University of Hertfordshire, College Lane, Hatfield, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Todorov B, Kros L, Shyti R, Plak P, Haasdijk ED, Raike RS, Frants RR, Hess EJ, Hoebeek FE, De Zeeuw CI, van den Maagdenberg AMJM. Purkinje cell-specific ablation of Cav2.1 channels is sufficient to cause cerebellar ataxia in mice. CEREBELLUM (LONDON, ENGLAND) 2012; 11:246-58. [PMID: 21870131 PMCID: PMC3311848 DOI: 10.1007/s12311-011-0302-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
The Cacna1a gene encodes the α(1A) subunit of voltage-gated Ca(V)2.1 Ca(2+) channels that are involved in neurotransmission at central synapses. Ca(V)2.1-α(1)-knockout (α1KO) mice, which lack Ca(V)2.1 channels in all neurons, have a very severe phenotype of cerebellar ataxia and dystonia, and usually die around postnatal day 20. This early lethality, combined with the wide expression of Ca(V)2.1 channels throughout the cerebellar cortex and nuclei, prohibited determination of the contribution of particular cerebellar cell types to the development of the severe neurobiological phenotype in Cacna1a mutant mice. Here, we crossed conditional Cacna1a mice with transgenic mice expressing Cre recombinase, driven by the Purkinje cell-specific Pcp2 promoter, to specifically ablate the Ca(V)2.1-α(1A) subunit and thereby Ca(V)2.1 channels in Purkinje cells. Purkinje cell Ca(V)2.1-α(1A)-knockout (PCα1KO) mice aged without difficulties, rescuing the lethal phenotype seen in α1KO mice. PCα1KO mice exhibited cerebellar ataxia starting around P12, much earlier than the first signs of progressive Purkinje cell loss, which appears in these mice between P30 and P45. Secondary cell loss was observed in the granular and molecular layers of the cerebellum and the volume of all individual cerebellar nuclei was reduced. In this mouse model with a cell type-specific ablation of Ca(V)2.1 channels, we show that ablation of Ca(V)2.1 channels restricted to Purkinje cells is sufficient to cause cerebellar ataxia. We demonstrate that spatial ablation of Ca(V)2.1 channels may help in unraveling mechanisms of human disease.
Collapse
Affiliation(s)
- Boyan Todorov
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Reinald Shyti
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Petra Plak
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Robert S. Raike
- Department of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Rune R. Frants
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ellen J. Hess
- Department of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Freek E. Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Sciences (KNAW), Amsterdam, The Netherlands
| | - Arn M. J. M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
17
|
Witter L, De Zeeuw CI, Ruigrok TJH, Hoebeek FE. The cerebellar nuclei take center stage. CEREBELLUM (LONDON, ENGLAND) 2011; 10:633-6. [PMID: 21279491 PMCID: PMC3215877 DOI: 10.1007/s12311-010-0245-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Laurens Witter
- Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Academy for Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Department of Neuroscience, Ee 1202, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Ee 1202, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Freek E. Hoebeek
- Department of Neuroscience, Ee 1202, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
18
|
Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1a mutations. J Neurosci 2011; 31:4311-26. [PMID: 21411672 DOI: 10.1523/jneurosci.5342-10.2011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inherited loss of P/Q-type calcium channel function causes human absence epilepsy, episodic dyskinesia, and ataxia, but the molecular "birthdate" of the neurological syndrome and its dependence on prenatal pathophysiology is unknown. Since these channels mediate transmitter release at synapses throughout the brain and are expressed early in embryonic development, delineating the critical circuitry and onset underlying each of the emergent phenotypes requires targeted control of gene expression. To visualize P/Q-type Ca(2+) channels and dissect their role in neuronal networks at distinct developmental stages, we created a novel conditional Cacna1a knock-in mouse by inserting the floxed green fluorescent protein derivative Citrine into the first exon of Cacna1a and then crossed it with a postnatally expressing PCP2-Cre line for delayed Purkinje cell (PC) gene deletion within the cerebellum and sparsely in forebrain (purky). PCs in purky mice lacked P/Q-type calcium channel protein and currents within the first month after birth, displayed altered spontaneous firing, and showed impaired neurotransmission. Unexpectedly, adult purky mice exhibited the full spectrum of neurological deficits seen in mice with genomic Cacna1a ablation. Our results show that the ataxia, dyskinesia, and absence epilepsy caused by inherited disorders of the P/Q-type channel arise from signaling defects beginning in late infancy, revealing an early window of opportunity for therapeutic intervention.
Collapse
|
19
|
Foscarin S, Ponchione D, Pajaj E, Leto K, Gawlak M, Wilczynski GM, Rossi F, Carulli D. Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses. PLoS One 2011; 6:e16666. [PMID: 21304956 PMCID: PMC3031615 DOI: 10.1371/journal.pone.0016666] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/10/2011] [Indexed: 12/29/2022] Open
Abstract
Structural remodeling or repair of neural circuits depends on the balance between intrinsic neuronal properties and regulatory cues present in the surrounding microenvironment. These processes are also influenced by experience, but it is still unclear how external stimuli modulate growth-regulatory mechanisms in the central nervous system. We asked whether environmental stimulation promotes neuronal plasticity by modifying the expression of growth-inhibitory molecules, specifically those of the extracellular matrix. We examined the effects of an enriched environment on neuritic remodeling and modulation of perineuronal nets in the deep cerebellar nuclei of adult mice. Perineuronal nets are meshworks of extracellular matrix that enwrap the neuronal perikaryon and restrict plasticity in the adult CNS. We found that exposure to an enriched environment induces significant morphological changes of Purkinje and precerebellar axon terminals in the cerebellar nuclei, accompanied by a conspicuous reduction of perineuronal nets. In the animals reared in an enriched environment, cerebellar nuclear neurons show decreased expression of mRNAs coding for key matrix components (as shown by real time PCR experiments), and enhanced activity of matrix degrading enzymes (matrix metalloproteinases 2 and 9), which was assessed by in situ zymography. Accordingly, we found that in mutant mice lacking a crucial perineuronal net component, cartilage link protein 1, perineuronal nets around cerebellar neurons are disrupted and plasticity of Purkinje cell terminal is enhanced. Moreover, all the effects of environmental stimulation are amplified if the afferent Purkinje axons are endowed with enhanced intrinsic growth capabilities, induced by overexpression of GAP-43. Our observations show that the maintenance and growth-inhibitory function of perineuronal nets are regulated by a dynamic interplay between pre- and postsynaptic neurons. External stimuli act on this interaction and shift the balance between synthesis and removal of matrix components in order to facilitate neuritic growth by locally dampening the activity of inhibitory cues.
Collapse
Affiliation(s)
- Simona Foscarin
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Danilo Ponchione
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Ermira Pajaj
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Ketty Leto
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| | - Maciej Gawlak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Ferdinando Rossi
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
- * E-mail:
| | - Daniela Carulli
- Neuroscience Institute of Turin (NIT), Department of Neuroscience, University of Turin, Turin, Italy
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation (NICO), University of Turin, Orbassano, Turin, Italy
| |
Collapse
|
20
|
Ethanol and Vestibular Stimulation Reveal Simple and Complex Aspects of Cerebellar Heterogeneity. THE CEREBELLUM 2010; 10:475-83. [DOI: 10.1007/s12311-010-0238-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Abstract
The deep cerebellar nuclei (DCN) are a major hub in the cerebellar circuitry but the functional classification of their neurons is incomplete. We have previously characterized three cell groups in the lateral cerebellar nucleus: large non-GABAergic neurons and two groups of smaller neurons, one of which express green fluorescence protein (GFP) in a GAD67/GFP mouse line and is therefore GABAergic. However, as a substantial number of glycinergic and glycine/GABA co-expressing neurons have been described in the DCN, this classification needed to be refined by considering glycinergic neurons. To this end we took advantage of a glycine transporter isoform 2 (GlyT2)-eGFP mouse line that allows identification of GlyT2-expressing, presumably glycinergic neurons in living cerebellar slices and compared their electrophysiological properties with previously described DCN neuron populations. We found two electrophysiologically and morphologically distinct sets of GlyT2-expressing neurons in the lateral cerebellar nucleus. One of them showed electrophysiological similarity to the previously characterized GABAergic cell group. The second GlyT2+ cell population, however, differed from all other so far described neuron types in DCN in that the cells (1) are intrinsically silent in slices and only fire action potentials upon depolarizing current injection and (2) have a projecting axon that was often seen to leave the DCN and project in the direction of the cerebellar cortex. Presence of this so far undescribed DCN neuron population in the lateral nucleus suggests a direct inhibitory pathway from the DCN to the cerebellar cortex.
Collapse
Affiliation(s)
- Marylka Uusisaari
- Laboratory for Neuronal Circuit Dynamics, Brain Science Institute, RIKEN, Wako-shi, Saitama, Japan
| | | |
Collapse
|
22
|
Abstract
Episodic ataxia type 2 (EA2) is a hereditary cerebellar ataxia associated with mutations in the P/Q-type voltage-gated calcium (Ca(2+)) channels. Therapeutic approaches for treatment of EA2 are very limited. Presently, the potassium (K(+)) channel blocker 4-aminopyridine (4-AP) constitutes the most promising treatment, although its mechanism of action is not understood. Here we show that, in contrast to what is commonly believed, therapeutic concentrations of 4-AP do not increase the inhibitory drive of cerebellar Purkinje cells. Instead, 4-AP restores the severely diminished precision of pacemaking in Purkinje cells of EA2 mutant mice by prolonging the action potential and increasing the action potential afterhyperpolarization. Consistent with this mode of action, the therapeutic efficacy of 4-AP was comparable, and not additive, to chlorzoxazone, an activator of Ca(2+)-dependent K(+) channels that also restores the precision of Purkinje cell pacemaking. The likely target of 4-AP at the concentrations used are the K(v)1 family of K(+) channels, possibly the K(v)1.5 subtype. Because at higher concentrations 4-AP blocks a large array of K(+) channels and is a proconvulsant, use of selective K(v)1 channel blockers is likely to be a safer substitute for treatment of cerebellar ataxia.
Collapse
|
23
|
Abstract
Mutations in the CACNA1A gene that encodes the pore-forming alpha1 subunit of human voltage-gated CaV2.1 (P/Q-type) Ca2+ channels cause several autosomal-dominant neurologic disorders, including familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2, and spinocerebellar ataxia type 6 (SCA6). For each channelopathy, the review describes the disease phenotype as well as the functional consequences of the disease-causing mutations on recombinant human CaV2.1 channels and, in the case of FHM1 and SCA6, on neuronal CaV2.1 channels expressed at the endogenous physiological level in knockin mouse models. The effects of FHM1 mutations on cortical spreading depression, the phenomenon underlying migraine aura, and on cortical excitatory and inhibitory synaptic transmission in FHM1 knockin mice are also described, and their implications for the disease mechanism discussed. Moreover, the review describes different ataxic spontaneous cacna1a mouse mutants and the important insights into the cerebellar mechanisms underlying motor dysfunction caused by mutant CaV2.1 channels that were obtained from their functional characterization.
Collapse
|