1
|
Melo-Carrillo A, Strassman AM, Broide R, Adams A, Dabruzzo B, Brin M, Burstein R. Novel insight into atogepant mechanisms of action in migraine prevention. Brain 2024; 147:2884-2896. [PMID: 38411458 PMCID: PMC11292906 DOI: 10.1093/brain/awae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Recently, we showed that while atogepant-a small-molecule calcitonin gene-related peptide (CGRP) receptor antagonist-does not fully prevent activation of meningeal nociceptors, it significantly reduces a cortical spreading depression (CSD)-induced early response probability in C fibres and late response probability in Aδ fibres. The current study investigates atogepant effect on CSD-induced activation and sensitization of high threshold (HT) and wide dynamic range (WDR) central dura-sensitive trigeminovascular neurons. In anaesthetized male rats, single-unit recordings were used to assess effects of atogepant (5 mg/kg) versus vehicle on CSD-induced activation and sensitization of HT and WDR trigeminovascular neurons. Single cell analysis of atogepant pretreatment effects on CSD-induced activation and sensitization of central trigeminovascular neurons in the spinal trigeminal nucleus revealed the ability of this small molecule CGRP receptor antagonist to prevent activation and sensitization of nearly all HT neurons (8/10 versus 1/10 activated neurons in the control versus treated groups, P = 0.005). In contrast, atogepant pretreatment effects on CSD-induced activation and sensitization of WDR neurons revealed an overall inability to prevent their activation (7/10 versus 5/10 activated neurons in the control versus treated groups, P = 0.64). Unexpectedly however, in spite of atogepant's inability to prevent activation of WDR neurons, it prevented their sensitization (as reflected their responses to mechanical stimulation of the facial receptive field before and after the CSD). Atogepant' ability to prevent activation and sensitization of HT neurons is attributed to its preferential inhibitory effects on thinly myelinated Aδ fibres. Atogepant's inability to prevent activation of WDR neurons is attributed to its lesser inhibitory effects on the unmyelinated C fibres. Molecular and physiological processes that govern neuronal activation versus sensitization can explain how reduction in CGRP-mediated slow but not glutamate-mediated fast synaptic transmission between central branches of meningeal nociceptors and nociceptive neurons in the spinal trigeminal nucleus can prevent their sensitization but not activation.
Collapse
Affiliation(s)
- Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Ron Broide
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
| | - Aubrey Adams
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
| | | | - Mitchell Brin
- Allergan, an Abbvie Company, Irvine, CA 92612, USA
- Department of Neurology, University of California, Irvine, CA 92697USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center. Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Basedau H, May A, Mehnert J. Cerebellar somatotopy of the trigemino-cervical complex during nociception. Eur J Pain 2024; 28:719-728. [PMID: 38013614 DOI: 10.1002/ejp.2212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION The somatotopic organization of the human cerebellum processes somato-motoric input. Its role during pain perception for nociceptive input remains ambiguous. A standardized experimental trigeminal nociceptive input in functional imaging might clarify the role of the cerebellum in trigeminal nociception. Also of interest is the greater occipital nerve, which innervates the back of the head, and can influence the trigeminal perception due to functional coupling within the brainstem, forming the so-called trigemino-cervical complex. METHODS In our preregistered study (clinicaltrials.gov: NTC03999060), we stimulated the greater occipital as well as the three main branches of the trigeminal nerve during functional magnetic resonance imaging in two independent cohorts of young healthy volunteers without psychiatric, neurological or pain-related disorders to disentangle overlapping somatotopic cerebellar organization of the nerves innervating the human head. RESULTS We found a dominant effect of the first trigeminal branch in the cerebellum, underpinning its particular role for headache diseases, and somatotopic representations in bilateral cerebellar lobules I-IV, V, VIIb, VIIIa and Crus I as well as in the brainstem. SIGNIFICANCE The study expands the current knowledge on facial and head pain processing by the cerebellum and provides an initial somatotopic map of the trigemino-cervical complex in the human cerebellum with a predominant representation of the first trigeminal branch.
Collapse
Affiliation(s)
- Hauke Basedau
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| | - Jan Mehnert
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Expression of the Calcitonin Receptor-like Receptor (CALCRL) in Normal and Neoplastic Tissues. Int J Mol Sci 2023; 24:ijms24043960. [PMID: 36835377 PMCID: PMC9962437 DOI: 10.3390/ijms24043960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Little information is available concerning protein expression of the calcitonin receptor-like receptor (CALCRL) at the protein level. Here, we developed a rabbit monoclonal antibody, 8H9L8, which is directed against human CALCRL but cross-reacts with the rat and mouse forms of the receptor. We confirmed antibody specificity via Western blot analyses and immunocytochemistry using the CALCRL-expressing neuroendocrine tumour cell line BON-1 and a CALCRL-specific small interfering RNA (siRNA). We then used the antibody for immunohistochemical analyses of various formalin-fixed, paraffin-embedded specimens of normal and neoplastic tissues. In nearly all tissue specimens examined, CALCRL expression was detected in the capillary endothelium, smooth muscles of the arterioles and arteries, and immune cells. Analyses of normal human, rat, and mouse tissues revealed that CALCRL was primarily present in distinct cell populations in the cerebral cortex; pituitary; dorsal root ganglia; epithelia, muscles, and glands of the larger bronchi; intestinal mucosa (particularly in enteroendocrine cells); intestinal ganglia; exocrine and endocrine pancreas; arteries, capillaries, and glomerular capillary loops in the kidneys; the adrenals; Leydig cells in the testicles; and syncytiotrophoblasts in the placenta. In the neoplastic tissues, CALCRL was predominantly expressed in thyroid carcinomas, parathyroid adenomas, small-cell lung cancers, large-cell neuroendocrine carcinomas of the lung, pancreatic neuroendocrine neoplasms, renal clear-cell carcinomas, pheochromocytomas, lymphomas, and melanomas. In these tumours with strong expression of CALCRL, the receptor may represent a useful target structure for future therapies.
Collapse
|
5
|
Rees TA, Hay DL, Walker CS. Comment on Yoo et al. Amylin Protein Expression in the Rat Brain and Neuro-2a Cells. Int. J. Mol. Sci. 2022, 23, 4348. Int J Mol Sci 2023; 24:ijms24021058. [PMID: 36674572 PMCID: PMC9864805 DOI: 10.3390/ijms24021058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 01/09/2023] Open
Abstract
We read with great interest the recent article by Yoo and colleagues [...].
Collapse
Affiliation(s)
- Tayla A. Rees
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
- Correspondence:
| | - Debbie L. Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand
| | - Christopher S. Walker
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
6
|
Guo S, Jansen-Olesen I, Olesen J, Christensen SL. Role of PACAP in migraine: An alternative to CGRP? Neurobiol Dis 2023; 176:105946. [PMID: 36481434 DOI: 10.1016/j.nbd.2022.105946] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a widespread and debilitating neurological condition affecting more than a billion people worldwide. Thus, more effective migraine therapies are highly needed. In the last decade, two endogenous neuropeptides, calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP), were identified to be implicated in migraine. Recently, introduction of monoclonal antibodies (mAbs) blocking the CGRP is the most important advance in migraine therapy for decades. However, 40% of patients are unresponsive to these new drugs. We believe that PACAP may be involved in these patients. Like CGRP, PACAP is located to sensory nerve fibers, it dilates cranial arteries, it causes migraine when infused into patients and it is a peptide that lends itself to antibody therapy. Also, recent studies suggest that the PACAP pathway is independent of the CGRP pathway. Understanding the signaling pathways of PACAP may therefore lead to identification of novel therapeutic targets of particular interest in patients unresponsive to anti-CGRP therapy. Accordingly, neutralizing mAb to PACAP is currently in clinical phase II development. The aim of the present review is, therefore, to give a thorough account of the existing data on PACAP, its receptors and its relation to migraine.
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
7
|
Characterization of Antibodies against Receptor Activity-Modifying Protein 1 (RAMP1): A Cautionary Tale. Int J Mol Sci 2022; 23:ijms232416035. [PMID: 36555690 PMCID: PMC9787598 DOI: 10.3390/ijms232416035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a key component of migraine pathophysiology, yielding effective migraine therapeutics. CGRP receptors contain a core accessory protein subunit: receptor activity-modifying protein 1 (RAMP1). Understanding of RAMP1 expression is incomplete, partly due to the challenges in identifying specific and validated antibody tools. We profiled antibodies for immunodetection of RAMP1 using Western blotting, immunocytochemistry and immunohistochemistry, including using RAMP1 knockout mouse tissue. Most antibodies could detect RAMP1 in Western blotting and immunocytochemistry using transfected cells. Two antibodies (844, ab256575) could detect a RAMP1-like band in Western blots of rodent brain but not RAMP1 knockout mice. However, cross-reactivity with other proteins was evident for all antibodies. This cross-reactivity prevented clear conclusions about RAMP1 anatomical localization, as each antibody detected a distinct pattern of immunoreactivity in rodent brain. We cannot confidently attribute immunoreactivity produced by RAMP1 antibodies (including 844) to the presence of RAMP1 protein in immunohistochemical applications in brain tissue. RAMP1 expression in brain and other tissues therefore needs to be revisited using RAMP1 antibodies that have been comprehensively validated using multiple strategies to establish multiple lines of convincing evidence. As RAMP1 is important for other GPCR/ligand pairings, our results have broader significance beyond the CGRP field.
Collapse
|
8
|
Wang M, Tutt JO, Dorricott NO, Parker KL, Russo AF, Sowers LP. Involvement of the cerebellum in migraine. Front Syst Neurosci 2022; 16:984406. [PMID: 36313527 PMCID: PMC9608746 DOI: 10.3389/fnsys.2022.984406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/27/2022] [Indexed: 11/14/2022] Open
Abstract
Migraine is a disabling neurological disease characterized by moderate or severe headaches and accompanied by sensory abnormalities, e.g., photophobia, allodynia, and vertigo. It affects approximately 15% of people worldwide. Despite advancements in current migraine therapeutics, mechanisms underlying migraine remain elusive. Within the central nervous system, studies have hinted that the cerebellum may play an important sensory integrative role in migraine. More specifically, the cerebellum has been proposed to modulate pain processing, and imaging studies have revealed cerebellar alterations in migraine patients. This review aims to summarize the clinical and preclinical studies that link the cerebellum to migraine. We will first discuss cerebellar roles in pain modulation, including cerebellar neuronal connections with pain-related brain regions. Next, we will review cerebellar symptoms and cerebellar imaging data in migraine patients. Lastly, we will highlight the possible roles of the neuropeptide calcitonin gene-related peptide (CGRP) in migraine symptoms, including preclinical cerebellar studies in animal models of migraine.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Joseph O. Tutt
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Krystal L. Parker
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States,Department of Neurology, University of Iowa, Iowa City, IA, United States,Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States
| | - Levi P. Sowers
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States,Department of Pediatrics, University of Iowa, Iowa City, IA, United States,*Correspondence: Levi P. Sowers
| |
Collapse
|
9
|
Wang M, Duong TL, Rea BJ, Waite JS, Huebner MW, Flinn HC, Russo AF, Sowers LP. CGRP Administration Into the Cerebellum Evokes Light Aversion, Tactile Hypersensitivity, and Nociceptive Squint in Mice. FRONTIERS IN PAIN RESEARCH 2022; 3:861598. [PMID: 35547239 PMCID: PMC9082264 DOI: 10.3389/fpain.2022.861598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is a major player in migraine pathophysiology. Previous preclinical studies demonstrated that intracerebroventricular administration of CGRP caused migraine-like behaviors in mice, but the sites of action in the brain remain unidentified. The cerebellum has the most CGRP binding sites in the central nervous system and is increasingly recognized as both a sensory and motor integration center. The objective of this study was to test whether the cerebellum, particularly the medial cerebellar nuclei (MN), might be a site of CGRP action. In this study, CGRP was directly injected into the right MN of C57BL/6J mice via a cannula. A battery of tests was done to assess preclinical behaviors that are surrogates of migraine-like symptoms. CGRP caused light aversion measured as decreased time in the light zone even with dim light. The mice also spent more time resting in the dark zone, but not the light, along with decreased rearing and transitions between zones. These behaviors were similar for both sexes. Moreover, significant responses to CGRP were seen in the open field assay, von Frey test, and automated squint assay, indicating anxiety, tactile hypersensitivity, and spontaneous pain, respectively. Interestingly, CGRP injection caused significant anxiety and spontaneous pain responses only in female mice, and a more robust tactile hypersensitivity in female mice. No detectable effect of CGRP on gait was observed in either sex. These results suggest that CGRP injection in the MN causes light aversion accompanied by increased anxiety, tactile hypersensitivity, and spontaneous pain. A caveat is that we cannot exclude contributions from other cerebellar regions in addition to the MN due to diffusion of the injected peptide. These results reveal the cerebellum as a new site of CGRP actions that may contribute to migraine-like hypersensitivity.
Collapse
Affiliation(s)
- Mengya Wang
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Thomas L. Duong
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
| | - Brandon J. Rea
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States
| | - Jayme S. Waite
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
| | - Michael W. Huebner
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
| | - Harold C. Flinn
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
| | - Levi P. Sowers
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
- Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Iowa City, IA, United States
- *Correspondence: Levi P. Sowers
| |
Collapse
|
10
|
Hendrikse ER, Rees TA, Tasma Z, Le Foll C, Lutz TA, Siow A, Wookey PJ, Walker CS, Hay DL. Calcitonin receptor antibody validation and expression in the rodent brain. Cephalalgia 2022; 42:815-826. [PMID: 35410497 PMCID: PMC9441190 DOI: 10.1177/03331024221084029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIM Therapeutics that reduce calcitonin gene-related peptide activity are effective migraine treatments. However, gaps remain in our understanding of the molecular mechanisms that link calcitonin gene-related peptide to migraine. The amylin 1 receptor responds potently to calcitonin gene-related peptide, and to the related peptide amylin, but its role in relation to either peptide or to migraine is unclear. We sought to better understand the expression of the amylin 1 receptor protein subunit, the calcitonin receptor, in the rodent brain. METHODS We profiled three antibodies for immunodetection of calcitonin receptor, using immunocytochemistry, western blotting, and calcitonin receptor conditional knockout mouse tissue. Selected migraine-relevant rat brain regions were then examined for calcitonin receptor-like immunoreactivity. RESULTS All three antibodies detected calcitonin receptor protein but only one (188/10) produced robust immunostaining in rodent brain, under the conditions used. Calcitonin receptor-like immunoreactivity was apparent in the rat brainstem and midbrain including the locus coeruleus, periaqueductal grey and spinal trigeminal nucleus. CONCLUSIONS Anti-calcitonin receptor antibodies require comprehensive profiling to ensure confidence in the detection of calcitonin receptor. Using a validated antibody, calcitonin receptor-like immunoreactivity was detected in several brain regions relevant to migraine. Further research is needed to understand the functional consequences of calcitonin receptor expression for calcitonin gene-related peptide or amylin physiology and pathophysiology.
Collapse
Affiliation(s)
- Erica R Hendrikse
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Andrew Siow
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Peter J Wookey
- Department of Medicine-Austin, The University of Melbourne, Heidelberg, Australia
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,Department of Pharmacology and Toxicology, The University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Simonetta I, Riolo R, Todaro F, Tuttolomondo A. New Insights on Metabolic and Genetic Basis of Migraine: Novel Impact on Management and Therapeutical Approach. Int J Mol Sci 2022; 23:3018. [PMID: 35328439 PMCID: PMC8955051 DOI: 10.3390/ijms23063018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a hereditary disease, usually one-sided, sometimes bilateral. It is characterized by moderate to severe pain, which worsens with physical activity and may be associated with nausea and vomiting, may be accompanied by photophobia and phonophobia. The disorder can occur at any time of the day and can last from 4 to 72 h, with and without aura. The pathogenic mechanism is unclear, but extensive preclinical and clinical studies are ongoing. According to electrophysiology and imaging studies, many brain areas are involved, such as cerebral cortex, thalamus, hypothalamus, and brainstem. The activation of the trigeminovascular system has a key role in the headache phase. There also appears to be a genetic basis behind the development of migraine. Numerous alterations have been identified, and in addition to the genetic cause, there is also a close association with the surrounding environment, as if on the one hand, the genetic alterations may be responsible for the onset of migraine, on the other, the environmental factors seem to be more strongly associated with exacerbations. This review is an analysis of neurophysiological mechanisms, neuropeptide activity, and genetic alterations that play a fundamental role in choosing the best therapeutic strategy. To date, the goal is to create a therapy that is as personalized as possible, and for this reason, steps forward have been made in the pharmacological field in order to identify new therapeutic strategies for both acute treatment and prophylaxis.
Collapse
Affiliation(s)
- Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| | - Renata Riolo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
| | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.)
- Molecular and Clinical Medicine PhD Programme, University of Palermo, P.zza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
12
|
Dai W, Liu RH, Qiu E, Liu Y, Chen Z, Chen X, Ao R, Zhuo M, Yu S. Cortical mechanisms in migraine. Mol Pain 2021; 17:17448069211050246. [PMID: 34806494 PMCID: PMC8606910 DOI: 10.1177/17448069211050246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Migraine is the second most prevalent disorder in the world; yet, its underlying mechanisms are still poorly understood. Cumulative studies have revealed pivotal roles of cerebral cortex in the initiation, propagation, and termination of migraine attacks as well as the interictal phase. Investigation of basic mechanisms of the cortex in migraine not only brings insight into the underlying pathophysiology but also provides the basis for designing novel treatments. We aim to summarize the current research literatures and give a brief overview of the cortex and its role in migraine, including the basic structure and function; structural, functional, and biochemical neuroimaging; migraine-related genes; and theories related to cortex in migraine pathophysiology. We propose that long-term plasticity of synaptic transmission in the cortex encodes migraine.
Collapse
Affiliation(s)
- Wei Dai
- Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Ren-Hao Liu
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China
| | - Enchao Qiu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Yinglu Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Zhiye Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Ran Ao
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, 12480Xi'an Jiaotong University, Xi'an, China.,International Institute for Brain Research, Qingdao International Academician Park, Qingdao, China.,Department of Physiology, 1 King's College Circle, University of Toronto, Toronto, ON, Canada
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Westgate CSJ, Israelsen IME, Jensen RH, Eftekhari S. Understanding the link between obesity and headache- with focus on migraine and idiopathic intracranial hypertension. J Headache Pain 2021; 22:123. [PMID: 34629054 PMCID: PMC8504002 DOI: 10.1186/s10194-021-01337-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Obesity confers adverse effects to every system in the body including the central nervous system. Obesity is associated with both migraine and idiopathic intracranial hypertension (IIH). The mechanisms underlying the association between obesity and these headache diseases remain unclear. METHODS We conducted a narrative review of the evidence in both humans and rodents, for the putative mechanisms underlying the link between obesity, migraine and IIH. RESULTS Truncal adiposity, a key feature of obesity, is associated with increased migraine morbidity and disability through increased headache severity, frequency and more severe cutaneous allodynia. Obesity may also increase intracranial pressure and could contribute to headache morbidity in migraine and be causative in IIH headache. Weight loss can improve both migraine and IIH headache. Preclinical research highlights that obesity increases the sensitivity of the trigeminovascular system to noxious stimuli including inflammatory stimuli, but the underlying molecular mechanisms remain unelucidated. CONCLUSIONS This review highlights that at the epidemiological and clinical level, obesity increases morbidity in migraine and IIH headache, where weight loss can improve headache morbidity. However, further research is required to understand the molecular underpinnings of obesity related headache in order to generate novel treatments.
Collapse
Affiliation(s)
- Connar Stanley James Westgate
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Glostrup Research Institute, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Ida Marchen Egerod Israelsen
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Glostrup Research Institute, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Rigmor Højland Jensen
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Glostrup Research Institute, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark
| | - Sajedeh Eftekhari
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Glostrup Research Institute, University of Copenhagen, Nordstjernevej 42, 2600, Glostrup, Denmark.
| |
Collapse
|
14
|
Ashina H, Iljazi A, Al-Khazali HM, Christensen CE, Amin FM, Ashina M, Schytz HW. Hypersensitivity to Calcitonin Gene-Related Peptide in Post-Traumatic Headache. Ann Neurol 2020; 88:1220-1228. [PMID: 32959458 DOI: 10.1002/ana.25915] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To demonstrate that calcitonin gene-related peptide (CGRP) induces headache exacerbation with migraine-like features in patients with persistent post-traumatic headache (PTH) attributed to mild traumatic brain injury (TBI). METHODS A randomized, double-blind, placebo-controlled, two-way crossover study was conducted. Analyses were intention-to-treat. Eligible patients were aged 18 to 65 years and had a history of persistent PTH after mild TBI for at least 12 months. Patients were randomized to receive an intravenous infusion of 1.5μg/min of CGRP or placebo (isotonic saline) over 20 minutes on two separate experimental days. A 12-hour observational period was used to evaluate the following outcomes: (1) difference in incidence of headache exacerbation with migraine-like features and (2) difference in area under the curve for headache intensity scores. RESULTS Thirty patients (mean age = 37 years, 25 women [83%]) were randomized and completed the study. During the 12-hour observational period, 21 of 30 patients (70%) developed headache exacerbation with migraine-like features after CGRP, compared with 6 patients (20%) after placebo (p < 0.001). The baseline-corrected area under the curve for headache intensity scores was significantly larger after CGRP, compared with placebo (p < 0.001). INTERPRETATION Patients with persistent PTH are hypersensitive to CGRP, which underscores its pathophysiological importance. Furthermore, CGRP-targeted therapies might provide a novel mechanism-based treatment option for patients with persistent PTH. ANN NEUROL 2020;88:1220-1228.
Collapse
Affiliation(s)
- Håkan Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Afrim Iljazi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Haidar M Al-Khazali
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Casper E Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal M Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik W Schytz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Vécsei L, Lukács M, Tajti J, Fülöp F, Toldi J, Edvinsson L. The Therapeutic Impact of New Migraine Discoveries. Curr Med Chem 2019; 26:6261-6281. [PMID: 29848264 DOI: 10.2174/0929867325666180530114534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Migraine is one of the most disabling neurological conditions and associated with high socio-economic costs. Though certain aspects of the pathomechanism of migraine are still incompletely understood, the leading hypothesis implicates the role of the activation of the trigeminovascular system. Triptans are considered to be the current gold standard therapy for migraine attacks; however, their use in clinical practice is limited. Prophylactic treatment includes non-specific approaches for migraine prevention. All these support the need for future studies in order to develop innovative anti-migraine drugs. OBJECTIVE The present study is a review of the current literature regarding new therapeutic lines in migraine research. METHODS A systematic literature search in the database of PUBMED was conducted concerning therapeutic strategies in a migraine published until July 2017. RESULTS Ongoing clinical trials with 5-HT1F receptor agonists and glutamate receptor antagonists offer promising new aspects for acute migraine treatment. Monoclonal antibodies against CGRP and the CGRP receptor are revolutionary in preventive treatment; however, further long-term studies are needed to test their tolerability. Preclinical studies show positive results with PACAP- and kynurenic acid-related treatments. Other promising therapeutic strategies (such as those targeting TRPV1, substance P, NOS, or orexin) have failed to show efficacy in clinical trials. CONCLUSION Due to their side-effects, current therapeutic approaches are not suitable for all migraine patients. Especially frequent episodic and chronic migraine represents a therapeutic challenge for researchers. Clinical and preclinical studies are needed to untangle the pathophysiology of migraine in order to develop new and migraine-specific therapies.
Collapse
Affiliation(s)
- László Vécsei
- Department of Neurology, University of Szeged, Szeged, Hungary.,MTASZTE Neuroscience Research Group, Szeged, Hungary
| | - Melinda Lukács
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - János Tajti
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry and MTA-SZTE Research Group for Stereochemistry, University of Szeged, Szeged, Hungary
| | - József Toldi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.,Department of Clinical Experimental Research, Copenhagen University, Glostrup Hospital, Copenhagen, Denmark
| |
Collapse
|
16
|
Noseda R, Schain AJ, Melo-Carrillo A, Tien J, Stratton J, Mai F, Strassman AM, Burstein R. Fluorescently-labeled fremanezumab is distributed to sensory and autonomic ganglia and the dura but not to the brain of rats with uncompromised blood brain barrier. Cephalalgia 2019; 40:229-240. [PMID: 31856583 PMCID: PMC7233263 DOI: 10.1177/0333102419896760] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background The presence of calcitonin gene-related peptide and its receptors in multiple brain areas and peripheral tissues previously implicated in migraine initiation and its many associated symptoms raises the possibility that humanized monoclonal anti-calcitonin gene-related peptide antibodies (CGRP-mAbs) can prevent migraine by modulating neuronal behavior inside and outside the brain. Critical to our ability to conduct a fair discussion over the mechanisms of action of CGRP-mAbs in migraine prevention is data generation that determines which of the many possible peripheral and central sites are accessible to these antibodies – a question raised frequently due to their large size. Material and methods Rats with uncompromised and compromised blood-brain barrier (BBB) were injected with Alexa Fluor 594-conjugated fremanezumab (Frema594), sacrificed 4 h or 7 d later, and relevant tissues were examined for the presence of Frema594. Results In rats with uncompromised BBB, Frema594 was similarly observed at 4 h and 7 d in the dura, dural blood vessels, trigeminal ganglion, C2 dorsal root ganglion, the parasympathetic sphenopalatine ganglion and the sympathetic superior cervical ganglion but not in the spinal trigeminal nucleus, thalamus, hypothalamus or cortex. In rats with compromised BBB, Frema594 was detected in the cortex (100 µm surrounding the compromised BBB site) 4 h but not 7 d after injections. Discussion Our inability to detect fluorescent (CGRP-mAbs) in the brain supports the conclusion that CGRP-mAbs prevent the headache phase of migraine by acting mostly, if not exclusively, outside the brain as the amount of CGRP-mAbs that enters the brain (if any) is too small to be physiologically meaningful.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Aaron J Schain
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | | | - Fanny Mai
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA
| | - Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Qin Z, He XW, Zhang J, Xu S, Li GF, Su J, Shi YH, Ban S, Hu Y, Liu YS, Zhuang MT, Zhao R, Shen XL, Li J, Liu JR, Du X. Structural changes of cerebellum and brainstem in migraine without aura. J Headache Pain 2019; 20:93. [PMID: 31477012 PMCID: PMC6734280 DOI: 10.1186/s10194-019-1045-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Increasing evidence has suggested that the cerebellum is associated with pain and migraine. In addition, the descending pain system of the brainstem is the major site of trigeminal pain processing and modulation and has been discussed as a main player in the pathophysiology of migraine. Cerebellar and brainstem structural changes associated with migraineurs remain to be further investigated. METHODS Voxel-based morphometry (VBM) (50 controls, 50 migraineurs without aura (MWoAs)) and diffusion tensor imaging (DTI) (46 controls, 46 MWoAs) were used to assess cerebellum and brainstem anatomical alterations associated with MWoAs. We utilized a spatially unbiased infratentorial template toolbox (SUIT) to perform cerebellum and brainstem optimized VBM and DTI analysis. We extracted the average diffusion values from a probabilistic cerebellar white matter atlas to investigate whether MWoAs exhibited microstructure alterations in the cerebellar peduncle tracts. RESULTS MWoAs showed decreased fractional anisotropy (FA) in the vermis VI extending to the bilateral lobules V and VI of the cerebellum. We also found higher axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) in the right inferior cerebellum peduncle tract in MWoAs. MWoAs exhibited both reduced gray matter volume and increased AD, MD and RD in the spinal trigeminal nucleus (SpV). CONCLUSION MWoAs exhibited microstructural changes in the cerebellum and the local brainstem. These structural differences might contribute to dysfunction of the transmission and modulation of noxious information, trigeminal nociception, and conduction and integration of multimodal information in MWoAs. These findings further suggest involvement of the cerebellum and the brainstem in the pathology of migraine without aura.
Collapse
Affiliation(s)
- Zhaoxia Qin
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, 3663 North Zhong-Shan Road, 200062, Shanghai, People's Republic of China
| | - Xin-Wei He
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, People's Republic of China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jilei Zhang
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, 3663 North Zhong-Shan Road, 200062, Shanghai, People's Republic of China
| | - Shuai Xu
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, 3663 North Zhong-Shan Road, 200062, Shanghai, People's Republic of China
| | - Ge-Fei Li
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, People's Republic of China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jingjing Su
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, People's Republic of China
| | - Yan-Hui Shi
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, People's Republic of China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shiyu Ban
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, 3663 North Zhong-Shan Road, 200062, Shanghai, People's Republic of China
| | - Yue Hu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, People's Republic of China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Sheng Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, People's Republic of China
| | - Mei-Ting Zhuang
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, People's Republic of China
| | - Rong Zhao
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, People's Republic of China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiao-Lei Shen
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, People's Republic of China
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, 3663 North Zhong-Shan Road, 200062, Shanghai, People's Republic of China
| | - Jian-Ren Liu
- Department of Neurology and Jiuyuan Municipal Stroke Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, People's Republic of China.
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Xiaoxia Du
- Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, School of Physics and Electronic Science, East China Normal University, 3663 North Zhong-Shan Road, 200062, Shanghai, People's Republic of China.
| |
Collapse
|
18
|
Abstract
OBJECTIVE The goal of this narrative review is to provide an overview of migraine pathophysiology, with an emphasis on the role of calcitonin gene-related peptide (CGRP) within the context of the trigeminovascular system. BACKGROUND Migraine is a prevalent and disabling neurological disease that is characterized in part by intense, throbbing, and unilateral headaches. Despite recent advances in understanding its pathophysiology, migraine still represents an unmet medical need, as it is often underrecognized and undertreated. Although CGRP has been known to play a pivotal role in migraine for the last 2 decades, this has now received more interest spurred by the early clinical successes of drugs that block CGRP signaling in the trigeminovascular system. DESIGN This narrative review presents an update on the role of CGRP within the trigeminovascular system. PubMed searches were used to find recent (ie, 2016 to November 2018) published articles presenting new study results. Review articles are also included not as primary references but to bring these to the attention of the reader. Original research is referenced in describing the core of the narrative, and review articles are used to support ancillary points. RESULTS The trigeminal ganglion neurons provide the connection between the periphery, stemming from the interface between the primary afferent fibers of the trigeminal ganglion and the meningeal vasculature and the central terminals in the trigeminal nucleus caudalis. The neuropeptide CGRP is abundant in trigeminal ganglion neurons, and is released from the peripheral nerve and central nerve terminals as well as being secreted within the trigeminal ganglion. Release of CGRP from the peripheral terminals initiates a cascade of events that include increased synthesis of nitric oxide and sensitization of the trigeminal nerves. Secreted CGRP in the trigeminal ganglion interacts with adjacent neurons and satellite glial cells to perpetuate peripheral sensitization, and can drive central sensitization of the second-order neurons. A shift in central sensitization from activity-dependent to activity-independent central sensitization may indicate a mechanism driving the progression of episodic migraine to chronic migraine. The pathophysiology of cluster headache is much more obscure than that of migraine, but emerging evidence suggests that it may also involve hypersensitivity of the trigeminovascular system. Ongoing clinical studies with therapies targeted at CGRP will provide additional, valuable insights into the pathophysiology of this disorder. CONCLUSIONS CGRP plays an essential role in the pathophysiology of migraine. Treatments that interfere with the functioning of CGRP in the peripheral trigeminal system are effective against migraine. Blocking sensitization of the trigeminal nerve by attenuating CGRP activity in the periphery may be sufficient to block a migraine attack. Additionally, the potential exists that this therapeutic strategy may also alleviate cluster headache as well.
Collapse
Affiliation(s)
- Smriti Iyengar
- Eli Lilly and CompanyIndianapolisINUSA
- Present address:
Indiana University School of MedicineIndianapolisINUSA
| | | | | | | |
Collapse
|
19
|
Abstract
The cerebellum plays an important role in pain processing but its function in headache and specifically in migraine is not known. We therefore compared 54 migraineurs with pairwise matched healthy controls in a magnetic resonance imaging study on neuronal cerebellar activity in response to nociceptive trigeminal sensation and also investigated possible structural alterations. Headache frequency, disease duration, and the proximity to a migraine attack were used as co-factors. Migraine patients showed functional and structural alterations in the posterior part of the cerebellum, namely crus I and crus II. Gray matter volume changes were seen on the right side whereas functional changes were ipsilateral to the stimulation, on the left side. Neuronal activity in the crus in response to trigeminal pain was modulated by migraine severity and the migraine phase. As the crus is strongly interconnected to higher cognitive areas in the temporal, frontal, and parietal part of the cortex our results suggest an specific cerebellar involvement in migraine. This is further supported by our finding of decreased connectivity from the crus to the thalamus and higher cortical areas in the patients. We therefore suggest an abnormally decreased inhibitory involvement of the migraine cerebellum on gating and nociceptive evaluation.
Collapse
Affiliation(s)
- Jan Mehnert
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Abstract
Background A better understanding of the mechanisms underlying the migraine attack has reinforced the concept that migraine is a complex brain disease, and has paved the way for the development of new migraine specific acute treatments. In recent years, targeting the calcitonin gene-related peptide and its receptors has been one of the most promising pharmacological strategies for both acute and preventive treatment of migraine. Findings Randomized double-blind placebo-controlled trials have demonstrated the superiority of small molecule calcitonin gene-related peptide receptor antagonists (gepants) over placebo in treating acute migraine attacks measured as the two-hour pain free endpoint. Gepants also improved migraine associated symptoms, such as nausea, photophobia and phonophobia. Two of the class have had their development stopped because of hepatotoxicity, which is emerging as being due to metabolites. Gepants have a good tolerability and can be safely used in patients with stable cardiovascular disease. Conclusion Exciting results have been obtained targeting the calcitonin gene-related peptide pathway to abort acute migraine attacks, thus reinforcing the relevance of mechanism-based treatments specific for migraine.
Collapse
Affiliation(s)
- Roberta Messina
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Peter J Goadsby
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR-Wellcome Trust King’s Clinical Research Facility, King’s College Hospital, London, UK
| |
Collapse
|
21
|
Abstract
Migraine is a highly prevalent, severe, and disabling neurological condition with a significant unmet need for effective acute therapies. Patients (~50%) are dissatisfied with their currently available therapies. Calcitonin gene-related peptide (CGRP) has emerged as a key neuropeptide involved in the pathophysiology of migraines. As reviewed in this manuscript, a number of small molecule antagonists of the CGRP receptor have been developed for migraine therapy. Incredibly, the majority of the clinical trials conducted have proven positive, demonstrating the importance of this signalling pathway in migraine. Unfortunately, a number of these molecules raised liver toxicity concerns when used daily for as little as 7 days resulting in their discontinuation. Despite the clear safety concerns, clinical trial data suggests that their intermittent use remains a viable and safe alternative, with 2 molecules remaining in clinical development (ubrogepant and rimegepant). Further, these proofs of principle studies identifying CGRP as a viable clinical target have led to the development of several CGRP or CGRP receptor-targeted monoclonal antibodies that continue to show good clinical efficacy.
Collapse
Affiliation(s)
- Philip R Holland
- Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane, London, UK.
| | - Peter J Goadsby
- NIHR-Wellcome Trust, King's Clinical Research Facility, King's College Hospital, London, UK
| |
Collapse
|
22
|
Hendrikse ER, Bower RL, Hay DL, Walker CS. Molecular studies of CGRP and the CGRP family of peptides in the central nervous system. Cephalalgia 2018; 39:403-419. [PMID: 29566540 DOI: 10.1177/0333102418765787] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide is an important target for migraine and other painful neurovascular conditions. Understanding the normal biological functions of calcitonin gene-related peptide is critical to understand the mechanisms of calcitonin gene-related peptide-blocking therapies as well as engineering improvements to these medications. Calcitonin gene-related peptide is closely related to other peptides in the calcitonin gene-related peptide family of peptides, including amylin. Relatedness in peptide sequence and in receptor biology makes it difficult to tease apart the contributions that each peptide and receptor makes to physiological processes and to disorders. SUMMARY The focus of this review is the expression of calcitonin gene-related peptide, related peptides and their receptors in the central nervous system. Calcitonin gene-related peptide is expressed throughout the nervous system, whereas amylin and adrenomedullin have only limited expression at discrete sites in the brain. The components of two receptors that respond to calcitonin gene-related peptide, the calcitonin gene-related peptide receptor (calcitonin receptor-like receptor with receptor activity-modifying protein 1) and the AMY1 receptor (calcitonin receptor with receptor activity-modifying protein 1), are expressed throughout the nervous system. Understanding expression of the peptides and their receptors lays the foundation for more deeply understanding their physiology, pathophysiology and therapeutic use.
Collapse
Affiliation(s)
- Erica R Hendrikse
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Rebekah L Bower
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- 1 School of Biological Sciences, University of Auckland, Auckland, New Zealand.,2 Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
23
|
Edvinsson L, Warfvinge K. Recognizing the role of CGRP and CGRP receptors in migraine and its treatment. Cephalalgia 2017; 39:366-373. [DOI: 10.1177/0333102417736900] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Premise The brain and the sensory nervous system contain a rich supply of calcitonin gene-related peptide (CGRP) and CGRP receptor components. Clinical studies have demonstrated a correlation between CGRP release and acute migraine headache that led to the development of CGRP-specific drugs that either abort acute attacks of migraine (gepants) or are effective as prophylaxis (antibodies). However, there is still much discussion concerning the site of action of these drugs. Problem Here we describe the most recent data related to CGRP in the trigeminal ganglion and its connections to the CNS, putative key regions involved in migraine pathophysiology. Gepants are small molecules that have limited ability to cross the blood-brain barrier (BBB), whereas CGRP antibodies are 1500 times larger molecules, and are virtually excluded from the brain, with a BBB permeability of < 0.1%. Thus we propose that the primary site of action for the antimigraine drugs is outside the CNS in areas not limited by the BBB. Potential solution Therefore, it is reasonable to discuss the localization of CGRP and its receptor components in relation to the BBB. The trigeminovascular system, located outside the BBB, has a key role in migraine symptomatology, and it is likely targeted by the novel CGRP drugs that successfully terminate migraine headache.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
24
|
Warfvinge K, Edvinsson L. Distribution of CGRP and CGRP receptor components in the rat brain. Cephalalgia 2017; 39:342-353. [PMID: 28856910 DOI: 10.1177/0333102417728873] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide and its receptor, consisting of receptor activity-modifying protein 1 and calcitonin receptor-like receptor, are of considerable interest because of the role they play in migraine and recently developed migraine therapies. METHODS To better understand the function of this neuropeptide, we used immunohistochemistry to determine a detailed distribution of calcitonin gene-related peptide, receptor activity-modifying protein 1 and calcitonin receptor-like receptor in the rat brain in a region of 0.5-1.5 mm lateral to the midline. We found calcitonin gene-related peptide immunoreactivity in most of the neurons of the cerebral cortex, hippocampus, cerebellum, thalamic nuclei, hypothalamic nuclei and brainstem nuclei. In contrast, receptor activity-modifying protein 1 and calcitonin receptor-like receptor immunoreactivity were found almost exclusively in the neuronal processes in the investigated regions. CONCLUSION Overall, the degree of expression of calcitonin gene-related peptide and calcitonin gene-related peptide receptor components in the central nervous system is astonishingly complex and suggestive of many different brain functions, including a possible role in migraine. However, currently, the presence of calcitonin gene-related peptide and the nature of its receptors throughout the brain is an enigma yet to be solved.
Collapse
Affiliation(s)
- Karin Warfvinge
- 1 Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,2 Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Lars Edvinsson
- 1 Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark.,2 Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
25
|
Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 2017; 158:543-559. [PMID: 28301400 PMCID: PMC5359791 DOI: 10.1097/j.pain.0000000000000831] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/09/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide found primarily in the C and Aδ sensory fibers arising from the dorsal root and trigeminal ganglia, as well as the central nervous system. Calcitonin gene-related peptide was found to play important roles in cardiovascular, digestive, and sensory functions. Although the vasodilatory properties of CGRP are well documented, its somatosensory function regarding modulation of neuronal sensitization and of enhanced pain has received considerable attention recently. Growing evidence indicates that CGRP plays a key role in the development of peripheral sensitization and the associated enhanced pain. Calcitonin gene-related peptide is implicated in the development of neurogenic inflammation and it is upregulated in conditions of inflammatory and neuropathic pain. It is most likely that CGRP facilitates nociceptive transmission and contributes to the development and maintenance of a sensitized, hyperresponsive state not only of the primary afferent sensory neurons but also of the second-order pain transmission neurons within the central nervous system, thus contributing to central sensitization as well. The maintenance of a sensitized neuronal condition is believed to be an important factor underlying migraine. Recent successful clinical studies have shown that blocking the function of CGRP can alleviate migraine. However, the mechanisms through which CGRP may contribute to migraine are still not fully understood. We reviewed the role of CGRP in primary afferents, the dorsal root ganglion, and in the trigeminal system as well as its role in peripheral and central sensitization and its potential contribution to pain processing and to migraine.
Collapse
|
26
|
Hay DL, Walker CS. CGRP and its receptors. Headache 2017; 57:625-636. [PMID: 28233915 DOI: 10.1111/head.13064] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 02/01/2023]
Abstract
The calcitonin gene-related peptide (CGRP) neuropeptide system is an important but still evolving target for migraine. A fundamental consideration for all of the current drugs in clinical trials and for ongoing development in this area is the identity, expression pattern, and function of CGRP receptors because this knowledge informs safety and efficacy considerations. In recent years, only the calcitonin receptor-like receptor/receptor activity-modifying protein 1 (RAMP1) complex, known as the CGRP receptor, has generally been considered relevant. However, CGRP is capable of activating multiple receptors and could have more than one endogenous receptor. The recent identification of the CGRP-responsive calcitonin receptor/RAMP1 complex (AMY1 receptor - amylin subtype 1 receptor) in the trigeminovascular system warrants a deeper consideration of the molecular identity of CGRP receptor(s) involved in the pathophysiology, and thus potential treatment of migraine. This perspective considers some of the issues and implications.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Miller S, Liu H, Warfvinge K, Shi L, Dovlatyan M, Xu C, Edvinsson L. Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies. Neuroscience 2016; 328:165-83. [PMID: 27155150 DOI: 10.1016/j.neuroscience.2016.04.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/25/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a potent vasodilator and a neuromodulator implicated in the pathophysiology of migraine. It binds to the extracellular domains of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP) 1 that together form the CGRP receptor. Antagonist antibodies against CGRP and its binding site at the receptor are clinically effective in preventing migraine attacks. The blood-brain barrier penetration of these antagonist antibodies is limited, suggesting that a potential peripheral site of action is sufficient to prevent migraine attacks. To further understand the sites of CGRP-mediated signaling in migraine, we used immunohistochemical staining with recently developed antagonist antibodies specifically recognizing a fusion protein of the extracellular domains of RAMP1 and CLR that comprise the CGRP binding pocket at the CGRP receptor in monkey and man. We confirmed binding of the antagonist antibodies to human vascular smooth muscle cells (VSMCs) of dural meningeal arteries and neurons in the trigeminal ganglion, both of which are likely sites of action for therapeutic antibodies in migraine patients. We further used one of these antibodies for detailed mapping on cynomolgus monkey tissue and found antagonist antibody binding sites at multiple levels in the trigeminovascular system: in the dura mater VSMCs, in neurons and satellite glial cells in the trigeminal ganglion, and in neurons in the spinal trigeminal nucleus caudalis. These data reinforce and clarify our understanding of CGRP receptor localization in a pattern consistent with a role for CGRP receptors in trigeminal sensitization and migraine pathology.
Collapse
Affiliation(s)
- Silke Miller
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 and 360 Binney Street, Cambridge, MA 02142, USA.
| | - Hantao Liu
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 and 360 Binney Street, Cambridge, MA 02142, USA
| | - Karin Warfvinge
- University of Lund, Institute of Clinical Sciences at Lund University Hospital, House A13, Sölvegatan, Lund 22184, Sweden
| | - Licheng Shi
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 and 360 Binney Street, Cambridge, MA 02142, USA
| | - Mary Dovlatyan
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 and 360 Binney Street, Cambridge, MA 02142, USA
| | - Cen Xu
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320 and 360 Binney Street, Cambridge, MA 02142, USA
| | - Lars Edvinsson
- University of Lund, Institute of Clinical Sciences at Lund University Hospital, House A13, Sölvegatan, Lund 22184, Sweden
| |
Collapse
|
28
|
Edvinsson L. The Journey to Establish CGRP as a Migraine Target: A Retrospective View. Headache 2015; 55:1249-55. [PMID: 26368117 DOI: 10.1111/head.12656] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2015] [Indexed: 11/28/2022]
Abstract
In this retrospective, Dr. Lars Edvinsson recounts early steps and milestones in our understanding of the neuropeptide calcitonin gene-related peptide (CGRP) in the trigeminovascular system and its role in migraine. The discovery of the presence and function of CGRP and other neuropeptides in the cerebral vasculature and its sensory innervation is described. He relates the seminal finding that CGRP is uniquely released during migraine and the journey to develop blockers of CGRP effects. Now, over 30 years since its discovery, CGRP has become the target for a number of promising novel treatments for migraine patients.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Medicine, Institute of Clinical Sciences, Lund University and Lund University Hospital, Lund, Sweden
| |
Collapse
|
29
|
Eftekhari S, Gaspar RC, Roberts R, Chen TB, Zeng Z, Villarreal S, Edvinsson L, Salvatore CA. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: A detailed study using in situ hybridization, immunofluorescence, and autoradiography. J Comp Neurol 2015; 524:90-118. [PMID: 26105175 DOI: 10.1002/cne.23828] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 03/11/2015] [Accepted: 06/04/2015] [Indexed: 11/05/2022]
Abstract
Functional imaging studies have revealed that certain brainstem areas are activated during migraine attacks. The neuropeptide calcitonin gene-related peptide (CGRP) is associated with activation of the trigeminovascular system and transmission of nociceptive information and plays a key role in migraine pathophysiology. Therefore, to elucidate the role of CGRP, it is critical to identify the regions within the brainstem that process CGRP signaling. In situ hybridization and immunofluorescence were performed to detect mRNA expression and define cellular localization of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [(3)H]MK-3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary nucleus, median eminence, infundibular stem, periaqueductal gray, area postrema, pontine raphe nucleus, gracile nucleus, spinal trigeminal nucleus, and spinal cord. RAMP1 mRNA expression was also detected in the posterior hypothalamic area, trochlear nucleus, dorsal raphe nucleus, medial lemniscus, pontine nuclei, vagus nerve, inferior olive, abducens nucleus, and motor trigeminal nucleus; protein coexpression of CLR and RAMP1 was observed in these areas via immunofluorescence. [(3)H]MK-3207 showed high binding densities concordant with mRNA and protein expression. The present study suggests that several regions in the brainstem may be involved in CGRP signaling. Interestingly, we found receptor expression and antagonist binding in some areas that are not protected by the blood-brain barrier, which suggests that drugs inhibiting CGRP signaling may not be able to penetrate the central nervous system to antagonize receptors in these brain regions.
Collapse
Affiliation(s)
- Sajedeh Eftekhari
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, SE-22184, Lund, Sweden
| | - Renee C Gaspar
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Rhonda Roberts
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Tsing-Bau Chen
- Department of Imaging, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Zhizhen Zeng
- Department of Imaging, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Stephanie Villarreal
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania, 19486
| | - Lars Edvinsson
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, SE-22184, Lund, Sweden
| | - Christopher A Salvatore
- Department of Pain and Migraine Research, Merck Research Laboratories, West Point, Pennsylvania, 19486
| |
Collapse
|
30
|
Tajti J, Szok D, Majláth Z, Tuka B, Csáti A, Vécsei L. Migraine and neuropeptides. Neuropeptides 2015; 52:19-30. [PMID: 26094101 DOI: 10.1016/j.npep.2015.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 12/25/2022]
Abstract
Migraine is a common disabling neurovascular primary headache disorder. The pathomechanism is not clear, but extensive preclinical and clinical studies are ongoing. The structural basis of the leading hypothesis is the trigeminovascular system, which includes the trigeminal ganglion, the meningeal vasculature, and the distinct nuclei of the brainstem, the thalamus and the somatosensory cortex. This review covers the effects of sensory (calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide and substance P), sympathetic (neuropeptide Y) and parasympathetic (vasoactive intestinal peptide) migraine-related neuropeptides and the functions of somatostatin, nociceptin and the orexins in the trigeminovascular system. These neuropeptides may take part in neurogenic inflammation (plasma protein extravasation and vasodilatation) of the intracranial vasculature and peripheral and central sensitization of the trigeminal system. The results of human clinical studies are discussed with regard to the alterations in these neuropeptides in the plasma, saliva and cerebrospinal fluid during or between migraine attacks, and the therapeutic possibilities involving migraine-related neuropeptides in the acute and prophylactic treatment of migraine headache are surveyed.
Collapse
Affiliation(s)
- János Tajti
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary.
| | - Délia Szok
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Zsófia Majláth
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Bernadett Tuka
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - Anett Csáti
- MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged H-6725, Hungary; MTA - SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged H-6725, Hungary
| |
Collapse
|
31
|
Vermeersch S, Benschop RJ, Van Hecken A, Monteith D, Wroblewski VJ, Grayzel D, de Hoon J, Collins EC. Translational Pharmacodynamics of Calcitonin Gene-Related Peptide Monoclonal Antibody LY2951742 in a Capsaicin-Induced Dermal Blood Flow Model. J Pharmacol Exp Ther 2015; 354:350-7. [PMID: 26116630 DOI: 10.1124/jpet.115.224212] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/26/2015] [Indexed: 01/06/2023] Open
Abstract
LY2951742, a monoclonal antibody targeting calcitonin gene-related peptide (CGRP), is being developed for migraine prevention and osteoarthritis pain. To support the clinical development of LY2951742, capsaicin-induced dermal blood flow (DBF) was used as a target engagement biomarker to assess CGRP activity in nonhuman primates and healthy volunteers. Inhibition of capsaicin-induced DBF in nonhuman primates, measured with laser Doppler imaging, was dose dependent and sustained for at least 29 days after a single intravenous injection of the CGRP antibody. This information was used to generate a pharmacokinetic/pharmacodynamic model, which correctly predicted inhibition of capsaicin-induced DBF in humans starting at a single subcutaneous 5-mg dose. As expected, the degree of inhibition in capsaicin-induced DBF increased with higher LY2951742 plasma concentrations. Utilization of this pharmacodynamic biomarker with pharmacokinetic data collected in phase I studies provided the dose-response relationship that assisted in dose selection for the phase II clinical development of LY2951742.
Collapse
Affiliation(s)
- Steve Vermeersch
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Robert J Benschop
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Anne Van Hecken
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - David Monteith
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Victor J Wroblewski
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - David Grayzel
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Jan de Hoon
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| | - Emily C Collins
- Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven and University Hospitals Leuven, Campus Gasthuisberg, Leuven, Belgium (S.V., A.V.H., J.d.H.); Eli Lilly and Company, Indianapolis, Indiana (R.J.B., D.M., V.J.W., E.C.C.); and Atlas Venture, Cambridge, Massachusetts (D.G.)
| |
Collapse
|
32
|
The PDE10A inhibitor MP-10 and haloperidol produce distinct gene expression profiles in the striatum and influence cataleptic behavior in rodents. Neuropharmacology 2015; 99:256-63. [PMID: 26044638 DOI: 10.1016/j.neuropharm.2015.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022]
Abstract
Phosphodiesterase 10A (PDE10A) has garnered attention as a potential therapeutic target for schizophrenia due to its prominent striatal expression and ability to modulate striatal signaling. The present study used the selective PDE10A inhibitor MP-10 and the dopamine D2 antagonist haloperidol to compare effects of PDE10A inhibition and dopamine D2 blockade on striatopallidal (D2) and striatonigral (D1) pathway activation. Our studies confirmed that administration of MP-10 significantly elevates expression of the immediate early genes (IEG) c-fos, egr-1, and arc in rat striatum. Furthermore, we demonstrated that MP-10 induced egr-1 expression was distributed evenly between enkephalin-containing D2-neurons and substance P-containing D1-neurons. In contrast, haloperidol (3 mg/kg) selectively activated egr-1 expression in enkephalin neurons. Co-administration of MP-10 and haloperidol (0.5 mg/kg) increased IEG expression to a greater extent than either compound alone. Similarly, in a rat catalepsy assay, administration of haloperidol (0.5 mg/kg) or MP-10 (3-30 mg/kg) did not produce cataleptic behavior when dosed alone, but co-administration of haloperidol with MP-10 (3 and 10 mg/kg) induced cataleptic behaviors. Interestingly, co-administration of haloperidol with a high dose of MP-10 (30 mg/kg) failed to produce cataleptic behavior. These findings are important for understanding the neural circuits involved in catalepsy and suggest that the behavioral effects produced by PDE10A inhibitors may be influenced by concomitant medication and the level of PDE10A inhibition achieved by the dose of the inhibitor.
Collapse
|
33
|
Abstract
Migraine is a highly prevalent headache disease that typically affects patients during their most productive years. Despite significant progress in understanding the underlying pathophysiology of this disorder, its treatment so far continues to depend on drugs that, in their majority, were not specifically designed for this purpose. The neuropeptide calcitonin gene-related peptide (CGRP) has been indicated as playing a critical role in the central and peripheral pathways leading to a migraine attack. It is not surprising that drugs designed to specifically block its action are gaining remarkable attention from researchers in the field with, at least so far, a safe risk profile. In this article, we highlight the evolution from older traditional treatments to the innovative CGRP target drugs that are revolutionizing the way to approach this debilitating neurological disease. We provide a brief introduction on pathophysiology of migraine and details on the characteristic, function, and localization of CGRP to then focus on CGRP receptor antagonists (CGRP-RAs) and CGRP monoclonal antibodies (CGRP mAbs).
Collapse
Affiliation(s)
- Stephanie Wrobel Goldberg
- Department of Neurology, Jefferson Headache Center, Thomas Jefferson University, 900 Walnut Street, Suite 200, Philadelphia, PA, 19107, USA,
| | | |
Collapse
|
34
|
Edvinsson L. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. Br J Clin Pharmacol 2015; 80:193-9. [PMID: 25731075 DOI: 10.1111/bcp.12618] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/15/2015] [Accepted: 02/25/2015] [Indexed: 01/16/2023] Open
Abstract
Recently developed calcitonin gene-related peptide (CGRP) receptor antagonistic molecules have shown promising results in clinical trials for acute treatment of migraine attacks. Drugs from the gepant class of CGRP receptor antagonists are effective and do not cause vasoconstriction, one of the major limitations in the use of triptans. However their use had to be discontinued because of risk of liver toxicity after continuous exposure. As an alternative approach to block CGRP transmission, fully humanized monoclonal antibodies towards CGRP and the CGRP receptor have been developed for treatment of chronic migraine (attacks >15 days/month). Initial results from phase I and II clinical trials have revealed promising results with minimal side effects and significant relief from chronic migraine as compared with placebo. The effectiveness of these various molecules raises the question of where is the target site(s) for antimigraine action. The gepants are small molecules that can partially pass the blood-brain barrier (BBB) and therefore, might have effects in the CNS. However, antibodies are large molecules and have limited possibility to pass the BBB, thus effectively excluding them from having a major site of action within the CNS. It is suggested that the antimigraine site should reside in areas not limited by the BBB such as intra- and extracranial vessels, dural mast cells and the trigeminal system. In order to clarify this topic and surrounding questions, it is important to understand the localization of CGRP and the CGRP receptor components in these possible sites of migraine-related regions and their relation to the BBB.
Collapse
|
35
|
Eftekhari S, Salvatore CA, Johansson S, Chen TB, Zeng Z, Edvinsson L. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood–brain barrier. Brain Res 2015; 1600:93-109. [DOI: 10.1016/j.brainres.2014.11.031] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 01/06/2023]
|
36
|
Vécsei L, Szok D, Csáti A, Tajti J. CGRP antagonists and antibodies for the treatment of migraine. Expert Opin Investig Drugs 2014; 24:31-41. [DOI: 10.1517/13543784.2015.960921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|