1
|
Sidoryk-Węgrzynowicz M, Adamiak K, Strużyńska L. Astrocyte-Neuron Interaction via the Glutamate-Glutamine Cycle and Its Dysfunction in Tau-Dependent Neurodegeneration. Int J Mol Sci 2024; 25:3050. [PMID: 38474295 DOI: 10.3390/ijms25053050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Astroglia constitute the largest group of glial cells and are involved in numerous actions that are critical to neuronal development and functioning, such as maintaining the blood-brain barrier, forming synapses, supporting neurons with nutrients and trophic factors, and protecting them from injury. These properties are deeply affected in the course of many neurodegenerative diseases, including tauopathies, often before the onset of the disease. In this respect, the transfer of essential amino acids such as glutamate and glutamine between neurons and astrocytes in the glutamate-glutamine cycle (GGC) is one example. In this review, we focus on the GGC and the disruption of this cycle in tau-dependent neurodegeneration. A profound understanding of the complex functions of the GGC and, in the broader context, searching for dysfunctions in communication pathways between astrocytes and neurons via GGC in health and disease, is of critical significance for the development of novel mechanism-based therapies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Kamil Adamiak
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Velu L, Pellerin L, Julian A, Paccalin M, Giraud C, Fayolle P, Guillevin R, Guillevin C. Early rise of glutamate-glutamine levels in mild cognitive impairment: Evidence for emerging excitotoxicity. J Neuroradiol 2024; 51:168-175. [PMID: 37777087 DOI: 10.1016/j.neurad.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Use proton magnetic resonance spectroscopy (1H-MRS) non invasive technique to assess the modifications of glutamate-glutamine (Glx) and gammaaminobutyric acid (GABA) brain levels in patients reporting a cognitive complain METHODS: Posterior cingular cortex 1H-MRS spectra of 46 patients (19 male, 27 female) aged 57 to 87 years (mean : 73.32 ± 7.33 years) with a cognitive complaint were examined with a MEGA PRESS sequence at 3T, and compounds Glutamateglutamine (Glx), GABA, Creatine (Cr) and NAA were measured. From this data the metabolite ratios Glx/Cr, GABA/Cr and NAA/Cr were calculated. In addition, all patient performed the Mini Mental State Evaluation (MMSE) and 2 groups were realized with the clinical threshold of 24. RESULTS 16 patients with MMSE 〈 24 and 30 patients with MMSE 〉 24. Significant increase of Glx/Cr in PCC of patients with MMSE 〈 24 compared to patients with MMSE 〉 24. Moreover, GABA/Cr ratio exhibited a trend for a decrease in PCC between the two groups, while they showed a significant decrease NAA/Cr ratio. CONCLUSION Our results concerning Glx are in agreement with a physiopathological hypothesis involving a biphasic variation of glutamate levels associated with excitotoxicity, correlated with the clinical evolution of the disease. These observations suggest that MRS assessment of glutamate levels could be helpful for both diagnosis and classification of cognitive impairment in stage.
Collapse
Affiliation(s)
- Laura Velu
- University Hospital center of Poitiers, Department of Imaging, France
| | - Luc Pellerin
- University of Poitiers and University Hospital center of Poitiers, France
| | - Adrien Julian
- University Hospital Center of Poitiers, Department of neurology, France
| | - Marc Paccalin
- University Hospital Center of Poitiers, Department of neurology, France
| | - Clément Giraud
- University Hospital center of Poitiers, Department of Imaging, France
| | - Pierre Fayolle
- University Hospital center of Poitiers, Department of Imaging, France
| | - Rémy Guillevin
- University Hospital center of Poitiers, Department of Imaging, France
| | - Carole Guillevin
- University Hospital center of Poitiers, Department of Imaging, France.
| |
Collapse
|
3
|
Carello-Collar G, Bellaver B, Ferreira PCL, Ferrari-Souza JP, Ramos VG, Therriault J, Tissot C, De Bastiani MA, Soares C, Pascoal TA, Rosa-Neto P, Souza DO, Zimmer ER. The GABAergic system in Alzheimer's disease: a systematic review with meta-analysis. Mol Psychiatry 2023; 28:5025-5036. [PMID: 37419974 DOI: 10.1038/s41380-023-02140-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
The γ-aminobutyric acid (GABA)ergic system is the primary inhibitory neurotransmission system in the mammalian brain. Its dysregulation has been shown in multiple brain conditions, but in Alzheimer's disease (AD) studies have provided contradictory results. Here, we conducted a systematic review with meta-analysis to investigate whether the GABAergic system is altered in AD patients compared to healthy controls (HC), following the PRISMA 2020 Statement. We searched PubMed and Web of Science from database inception to March 18th, 2023 for studies reporting GABA, glutamate decarboxylase (GAD) 65/67, GABAA, GABAB, and GABAC receptors, GABA transporters (GAT) 1-3 and vesicular GAT in the brain, and GABA levels in the cerebrospinal fluid (CSF) and blood. Heterogeneity was estimated using the I2 index, and the risk of bias was assessed with an adapted questionnaire from the Joanna Briggs Institute Critical Appraisal Tools. The search identified 3631 articles, and 48 met the final inclusion criteria (518 HC, mean age 72.2, and 603 AD patients, mean age 75.6). Random-effects meta-analysis [standardized mean difference (SMD)] revealed that AD patients presented lower GABA levels in the brain (SMD = -0.48 [95% CI = -0.7, -0.27], adjusted p value (adj. p) < 0.001) and in the CSF (-0.41 [-0.72, -0.09], adj. p = 0.042), but not in the blood (-0.63 [-1.35, 0.1], adj. p = 0.176). In addition, GAD65/67 (-0.67 [-1.15, -0.2], adj. p = 0.006), GABAA receptor (-0.51 [-0.7, -0.33], adj. p < 0.001), and GABA transporters (-0.51 [-0.92, -0.09], adj. p = 0.016) were lower in the AD brain. Here, we showed a global reduction of GABAergic system components in the brain and lower GABA levels in the CSF of AD patients. Our findings suggest the GABAergic system is vulnerable to AD pathology and should be considered a potential target for developing pharmacological strategies and novel AD biomarkers.
Collapse
Affiliation(s)
- Giovanna Carello-Collar
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Pamela C L Ferreira
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - João Pedro Ferrari-Souza
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Vanessa G Ramos
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Joseph Therriault
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Cécile Tissot
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Marco A De Bastiani
- Department of Pharmacology, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Carolina Soares
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada.
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada.
- Department of Pharmacology, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Department of Pharmacology, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
- Brain Institute of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
4
|
Sidoryk-Węgrzynowicz M, Dąbrowska-Bouta B, Sulkowski G, Strużyńska L. Mutant Tau protein-induced abnormalities in the Na +-dependent glutamine translocation and recycling and their impact on astrocyte-neuron integrity in vitro. Neurochem Int 2023; 168:105551. [PMID: 37295680 DOI: 10.1016/j.neuint.2023.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Tau-dependent neurodegeneration is accompanied by astrocytosis in a mouse trans-genic model, which replicates the neuropathological characteristic of tauopathy and other human neurodegenerative disorders where astrocyte activation precedes neuronal loss and is associated with disease progression. This indicates an important role of astrocytes in the development of the disease. Astrocytes derived from a transgenic mouse model expressing human Tau, exhibit changes in cellular markers of astrocyte neuroprotective function related to the glutamate-glutamine cycle (GGC), representing a key part of astrocyte-neuron integrity. Here, we focused on investigating the functional properties of key GGC components involved in the astrocyte-neuron network associated with Tau pathology in vitro. Mutant recombinant Tau (rTau) carrying the P301L mutation was added to the neuronal cultures, with or without control astrocyte-conditioned medium (ACM), to study glutamine translocation through the GGC. We demonstrated that mutant Tau in vitro induces neuronal degeneration, while control astrocytes response in neuroprotective way by preventing neurodegeneration. In parallel with this observation, we noticed the Tau-dependent decline of neuronal microtubule associated protein 2 (MAP2), followed by changes in glutamine (Gln) transport. Exposure to rTau decreases sodium-dependent Gln uptake in neurons and that effect was reversed when cells were co-incubated with control ACM after induction of rTau dependent pathology. Further, we found that neuronal Na+-dependent system A is the most specific system that is affected under rTau exposure. In addition, in rTau-treated astrocytes total Na+-dependent uptake of Gln, which is mediated by the N system, increases. Altogether, our study suggest mechanisms operating in Tau pathology may be related to the alterations in glutamine transport and recycling that affect neuronal-astrocytic integrity.
Collapse
Affiliation(s)
- Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland.
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego str, 02-106, Warsaw, Poland
| |
Collapse
|
5
|
Kiris I, Kukula-Koch W, Karayel-Basar M, Gurel B, Coskun J, Baykal AT. Proteomic alterations in the cerebellum and hippocampus in an Alzheimer's disease mouse model: Alleviating effect of palmatine. Biomed Pharmacother 2023; 158:114111. [PMID: 36502756 DOI: 10.1016/j.biopha.2022.114111] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent diseases that lead to memory deficiencies, severe behavioral abnormalities, and ultimately death. The need for more appropriate treatment of AD continues, and remains a sought-after goal. Previous studies showed palmatine (PAL), an isoquinoline alkaloid, might have the potential for combating AD because of its in vitro and in vivo activities. In this study, we aimed to assess PAL's therapeutic potential and gain insights into the working mechanism on protein level in the AD mouse model brain, for the first time. To this end, PAL was administered to 12-month-old 5xFAD mice at two doses after its successful isolation from the Siberian barberry shrub. PAL (10 mg/kg) showed statistically significant improvement in the memory and learning phase on the Morris water maze test. The PAL's ability to pass through the blood-brain barrier was verified via Multiple Reaction Monitoring (MRM). Label-free proteomics analysis revealed PAL administration led to changes most prominently in the cerebellum, followed by the hippocampus, but none in the cortex. Most of the differentially expressed proteins in PAL compared to the 5xFAD control group (ALZ) were the opposite of those in ALZ in comparison to healthy Alzheimer's littermates (ALM) group. HS105, HS12A, and RL12 were detected as hub proteins in the cerebellum. Collectively, here we present PAL as a potential therapeutic candidate owing to its alleviating effect in 5xFAD mice on not only cognitive impairment but also proteomes in the cerebellum and hippocampus.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Merve Karayel-Basar
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Busra Gurel
- Sabanci University Nanotechnology Research and Application Center, SUNUM, Istanbul, Turkey
| | - Julide Coskun
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
6
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
7
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
8
|
Fan S, Li L, Xian X, Liu L, Gao J, Li W. Ceftriaxone regulates glutamate production and vesicular assembly in presynaptic terminals through GLT-1 in APP/PS1 mice. Neurobiol Learn Mem 2021; 183:107480. [PMID: 34153453 DOI: 10.1016/j.nlm.2021.107480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
Perturbations in the glutamate-glutamine cycle and glutamate release from presynaptic terminals have been involved in the development of cognitive deficits in Alzheimer's disease (AD) patients and mouse models. Glutamate transporter-1 (GLT-1) removes glutamate from the synaptic cleft and transports it into astrocytes, where it is used as substrate for the glutamate-glutamine cycle. Ceftriaxone has been reported to improve cognitive deficits in AD mice by increasing GLT-1 expression, glutamate transformation to glutamine, and glutamine efflux from astrocytes. However, the impact of ceftriaxone on glutamine metabolism in neurons is unknown. The present study aimed to investigate whether ceftriaxone regulated the production and vesicular assembly of glutamate in the presynaptic terminals of neurons and to determine GLT-1 involvement in this process. We used the amyloid precursor protein (APP)/presenilin-1 (PS1) AD mouse model and GLT-1 knockdown APP/PS1 (GLT-1+/-/APP/PS1) mice. The expression levels of sodium-coupled neutral amino-acid transporter 1 (SNAT1) and vesicular glutamate transporters 1 and 2 (VGLUT1/2) were analyzed by immunofluorescence and immunohistochemistry staining as well as by Western blotting. Glutaminase activity was assayed by fluorometry. Ceftriaxone treatment significantly increased SNAT1 expression and glutaminase activity in neurons in APP/PS1 mice. Similarly, VGLUT1/2 levels were increased in the presynaptic terminals of APP/PS1 mice treated with ceftriaxone. The deletion of one GLT-1 allele in APP/PS1 mice prevented the ceftriaxone-induced upregulation of SNAT1 and VGLUT1/2 expression, indicating that GLT-1 played an important role in ceftriaxone effect. Based on the role of SNAT1, glutaminase, and VGLUT1/2 in the glutamate-glutamine cycle in neurons, the present results suggested that ceftriaxone improved the production and vesicular assembly of glutamate as a neurotransmitter in presynaptic terminals by acting on GLT-1 in APP/PS1 mice.
Collapse
Affiliation(s)
- ShuJuan Fan
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | - Li Li
- Central Laboratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, PR China
| | - XiaoHui Xian
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| | - LiRong Liu
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | - JunXia Gao
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, PR China
| | - WenBin Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, PR China.
| |
Collapse
|
9
|
Cerrah Gunes M, Gunes MS, Vural A, Aybuga F, Bayram A, Bayram KK, Sahin MI, Dogan ME, Ozdemir SY, Ozkul Y. Change in gene expression levels of GABA, glutamate and neurosteroid pathways due to acoustic trauma in the cochlea. J Neurogenet 2021; 35:45-57. [PMID: 33825593 DOI: 10.1080/01677063.2021.1904922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The characteristic feature of noise-induced hearing loss (NIHL) is the loss or malfunction of the outer hair cells (OHC) and the inner hair cells (IHC) of the cochlea. 90-95% of the spiral ganglion neurons, forming the cell bodies of cochlear nerve, synapse with the IHCs. Glutamate is the most potent excitatory neurotransmitter for IHC-auditory nerve synapses. Excessive release of glutamate in response to acoustic trauma (AT), may cause excitotoxicity by causing damage to the spiral ganglion neurons (SGN) or loss of the spiral ganglion dendrites, post-synaptic to the IHCs. Another neurotransmitter, GABA, plays an important role in the processing of acoustic stimuli and central regulation after peripheral injury, so it is potentially related to the regulation of hearing function and sensitivity after noise. The aim of this study is to evaluate the effect of AT on the expressions of glutamate excitotoxicity, GABA inhibition and neurosteroid synthesis genes.We exposed 24 BALB/c mice to AT. Controls were sacrificed without exposure to noise, Post-AT(1) and Post-AT(15) were sacrificed on the 1st and 15th day, respectively, after noise exposure. The expressions of various genes playing roles in glutamate, GABA and neurosteroid pathways were compared between groups by real-time PCR.Expressions of Cyp11a1, Gls, Gabra1, Grin2b, Sult1a1, Gad1, and Slc1a2 genes in Post-AT(15) mice were significantly decreased in comparison to control and Post-AT(1) mice. No significant differences in the expression of Slc6a1 and Slc17a8 genes was detected.These findings support the possible role of balance between glutamate excitotoxicity and GABA inhibition is disturbed during the post AT days and also the synthesis of some neurosteroids such as pregnenolone sulfate may be important in this balance.
Collapse
Affiliation(s)
- Meltem Cerrah Gunes
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Murat Salih Gunes
- Department of Otolaryngology, Izmit Seka State Hospital, Kocaeli, Turkey
| | - Alperen Vural
- Department of Otolaryngology, School of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Arslan Bayram
- Etlik Zübeyde Hanım Women's Diseases Education and Research Hospital, Health Sciences University, T.R. Ministry of Health, Ankara, Turkey
| | - Keziban Korkmaz Bayram
- Department of Medical Genetics, School of Medicine, Yıldirim Beyazit University, Ankara, Turkey
| | - Mehmet Ilhan Sahin
- Department of Otolaryngology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Muhammet Ensar Dogan
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Sevda Yesim Ozdemir
- Department of Medical Genetics, School of Medicine, Uskudar University, Istanbul, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey.,Center of Genome and Stem Cell, Kayseri, Turkey
| |
Collapse
|
10
|
Salazar AM, Leisgang AM, Ortiz AA, Murtishaw AS, Kinney JW. Alterations of GABA B receptors in the APP/PS1 mouse model of Alzheimer's disease. Neurobiol Aging 2020; 97:129-143. [PMID: 33232936 DOI: 10.1016/j.neurobiolaging.2020.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive decline of memory and cognitive function. The disease is characterized by the presence of amyloid plaques, tau tangles, altered inflammatory signaling, and alterations in numerous neurotransmitter signaling systems, including γ-aminobutyric acid (GABA). Given the extensive role of GABA in regulating neuronal activity, a careful investigation of GABA-related changes is needed. Further, given persistent inflammation has been demonstrated to drive AD pathology, the presence of GABA B receptor expressed on glia that serve a role regulation of the immune response adds to potential implications of altered GABA in AD. There has not previously been a systematic evaluation of GABA-related changes in an amyloid model of AD that specifically focuses on examining changes in GABA B receptors. In the present study, we examined alterations in several GABA-specific targets in the APP/PS1 mouse model at different ages. In the 4-month-old cohort, no significant deficits in spatial learning and memory or alterations in any of the GABAergic targets were observed compared with wild-type controls. However, we identified significant alterations in several GABA-related targets in the 6-month-old cohort that exhibited spatial learning deficits that include changes in glutamic acid decarboxylase 65, GABA transporter type 3, and GABA B receptors protein and mRNA levels. This was the same cohort at which learning and memory deficits and significant amyloid pathology was observed. Overall, our study provides evidence of altered GABAergic signaling in an amyloid model of AD at a time point consistent with AD-related deficits.
Collapse
Affiliation(s)
- Arnold M Salazar
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Amanda M Leisgang
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Andrew A Ortiz
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Andrew S Murtishaw
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jefferson W Kinney
- Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
11
|
Koller EJ, Chakrabarty P. Tau-Mediated Dysregulation of Neuroplasticity and Glial Plasticity. Front Mol Neurosci 2020; 13:151. [PMID: 32973446 PMCID: PMC7472665 DOI: 10.3389/fnmol.2020.00151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 01/14/2023] Open
Abstract
The inability of individual neurons to compensate for aging-related damage leads to a gradual loss of functional plasticity in the brain accompanied by progressive impairment in learning and memory. Whereas this loss in neuroplasticity is gradual during normal aging, in neurodegenerative diseases such as Alzheimer’s disease (AD), this loss is accelerated dramatically, leading to the incapacitation of patients within a decade of onset of cognitive symptoms. The mechanisms that underlie this accelerated loss of neuroplasticity in AD are still not completely understood. While the progressively increasing proteinopathy burden, such as amyloid β (Aβ) plaques and tau tangles, definitely contribute directly to a neuron’s functional demise, the role of non-neuronal cells in controlling neuroplasticity is slowly being recognized as another major factor. These non-neuronal cells include astrocytes, microglia, and oligodendrocytes, which through regulating brain homeostasis, structural stability, and trophic support, play a key role in maintaining normal functioning and resilience of the neuronal network. It is believed that chronic signaling from these cells affects the homeostatic network of neuronal and non-neuronal cells to an extent to destabilize this harmonious milieu in neurodegenerative diseases like AD. Here, we will examine the experimental evidence regarding the direct and indirect pathways through which astrocytes and microglia can alter brain plasticity in AD, specifically as they relate to the development and progression of tauopathy. In this review article, we describe the concepts of neuroplasticity and glial plasticity in healthy aging, delineate possible mechanisms underlying tau-induced plasticity dysfunction, and discuss current clinical trials as well as future disease-modifying approaches.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Ciminelli BM, Menduti G, Benussi L, Ghidoni R, Binetti G, Squitti R, Rongioletti M, Nica S, Novelletto A, Rossi L, Malaspina P. Polymorphic Genetic Markers of the GABA Catabolism Pathway in Alzheimer's Disease. J Alzheimers Dis 2020; 77:301-311. [PMID: 32804142 DOI: 10.3233/jad-200429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The compilation of a list of genetic modifiers in Alzheimer's disease (AD) is an open research field. The GABAergic system is affected in several neurological disorders but its role in AD is largely understudied. OBJECTIVE/METHODS As an explorative study, we considered variants in genes of GABA catabolism (ABAT, ALDH5A1, AKR7A2), and APOE in 300 Italian patients and 299 controls. We introduce a recent multivariate method to take into account the individual APOE genotype, thus controlling for the effect of the discrepant allele distributions in cases versus controls. We add a genotype-phenotype analysis based on age at onset and the Mini-Mental State Evaluation score. RESULTS On the background of strongly divergent APOE allele distributions in AD versus controls, two genotypic interactions that represented a subtle but significant peculiarity of the AD cohort emerged. The first is between ABAT and APOE, and the second between some ALDH5A1 genotypes and APOE. Decreased SSADH activity is predicted in AD carriers of APOEɛ4, representing an additional suggestion for increased oxidative damage. CONCLUSION We identified a difference between AD and controls, not in a shift of the allele frequencies at genes of the GABA catabolism pathway, but rather in gene interactions peculiar of the AD cohort. The emerging view is that of a multifactorial contribution to the disease, with a main risk factor (APOE), and additional contributions by the variants here considered. We consider genes of the GABA degradation pathway good candidates as modifiers of AD, contributing to energy impairment in AD brain.
Collapse
Affiliation(s)
| | | | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Sabrina Nica
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | - Luisa Rossi
- Department of Biology, University of Rome Tor Vergata, Italy
| | | |
Collapse
|
13
|
Astroglial contribution to tau-dependent neurodegeneration. Biochem J 2020; 476:3493-3504. [PMID: 31774919 DOI: 10.1042/bcj20190506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/31/2023]
Abstract
Astrocytes, by maintaining an optimal environment for neuronal function, play a critical role in proper function of mammalian nervous system. They regulate synaptic transmission and plasticity and protect neurons against toxic insults. Astrocytes and neurons interact actively via glutamine-glutamate cycle (GGC) that supports neuronal metabolic demands and neurotransmission. GGC deficiency may be involved in different diseases of the brain, where impaired astrocytic control of glutamate homeostasis contributes to neuronal dysfunction. This includes tau-dependent neurodegeneration, where astrocytes lose key molecules involved in regulation of glutamate/glutamine homeostasis, neuronal survival and synaptogenesis. Astrocytic dysfunction in tauopathy appears to precede neurodegeneration and overt tau neuropathology such as phosphorylation, aggregation and formation of neurofibrillary tangles. In this review, we summarize recent studies demonstrating that activation of astrocytes is strictly associated with neurodegenerative processes including those involved in tau related pathology. We propose that astrocytic dysfunction, by disrupting the proper neuron-glia signalling early in the disease, significantly contributes to tauopathy pathogenesis.
Collapse
|
14
|
Bai H, Sun K, Wu JH, Zhong ZH, Xu SL, Zhang HR, Gu YH, Lu SF. Proteomic and metabolomic characterization of cardiac tissue in acute myocardial ischemia injury rats. PLoS One 2020; 15:e0231797. [PMID: 32365112 PMCID: PMC7197859 DOI: 10.1371/journal.pone.0231797] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
The pathological process and mechanism of myocardial ischemia (MI) is very complicated, and remains unclear. An integrated proteomic-metabolomics analysis was applied to comprehensively understand the pathological changes and mechanism of MI. Male Sprague-Dawley rats were randomly divided into a mock surgery (MS) group and an MI group. The MI model was made by ligating the left anterior descending coronary artery, twenty-four hours after which, echocardiography was employed to assess left ventricular (LV) function variables. Blood samples and left ventricular tissues were collected for ELISA, metabolomics and proteomics analysis. The results showed that LV function, including ejection fraction (EF) and fractional shortening (FS), was significantly reduced and the level of cTnT in the serum increased after MI. iTRAQ proteomics showed that a total of 169 proteins were altered including 52 and 117 proteins with increased and decreased expression, respectively, which were mainly involved in the following activities: complement and coagulation cascades, tight junction, regulation of actin cytoskeleton, MAPK signaling pathway, endocytosis, NOD-like receptor signaling pathway, as well as phagosome coupled with vitamin digestion and absorption. Altered metabolomic profiling of this transition was mostly enriched in pathways including ABC transporters, glycerophospholipid metabolism, protein digestion and absorption and aminoacyl-tRNA biosynthesis. The integrated metabolomics and proteomics analysis indicated that myocardial injury after MI is closely related to several metabolic pathways, especially energy metabolism, amino acid metabolism, vascular smooth muscle contraction, gap junction and neuroactive ligand-receptor interaction. These findings may contribute to understanding the mechanism of MI and have implication for new therapeutic targets.
Collapse
Affiliation(s)
- Hua Bai
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Sun
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Hong Wu
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ze-Hao Zhong
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen-Lei Xu
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Ru Zhang
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Huang Gu
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
- * E-mail: (SFL); (YHG)
| | - Sheng-Feng Lu
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
- * E-mail: (SFL); (YHG)
| |
Collapse
|
15
|
Gao G, Zhao S, Xia X, Li C, Li C, Ji C, Sheng S, Tang Y, Zhu J, Wang Y, Huang Y, Zheng JC. Glutaminase C Regulates Microglial Activation and Pro-inflammatory Exosome Release: Relevance to the Pathogenesis of Alzheimer's Disease. Front Cell Neurosci 2019; 13:264. [PMID: 31316350 PMCID: PMC6611423 DOI: 10.3389/fncel.2019.00264] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023] Open
Abstract
Microglial activation is a key pathogenic process at the onset of Alzheimer’s disease (AD). Identifying regulators of microglial activation bears great potential in elucidating causes and mechanisms of AD and determining candidates for early intervention. Previous studies demonstrate abnormal elevation of glutaminase C (GAC) in HIV-infected or immune-activated microglia. However, whether GAC elevation causes microglial activation remains unknown. In this study, we found heightened expression levels of GAC in early AD mouse brain tissues compared with those in control littermates. Investigations on an in vitro neuroinflammation model revealed that GAC is increased in primary mouse microglia following pro-inflammatory stimulation. To model GAC elevation we overexpressed GAC by plasmid transfection and observed that GAC-overexpression shift the microglial phenotype to a pro-inflammatory state. Treatment with BPTES, a glutaminase inhibitor, reversed LPS-induced microglial activation and inflammation. Furthermore, we discovered that GAC overexpression in mouse microglia increased exosome release and changed exosome content, which includes specific packaging of pro-inflammatory miRNAs that activate microglia. Together, our results demonstrate a causal effect of GAC elevation on microglial activation and exosome release, both of which promote the establishment of a pro-inflammatory microenvironment. Therefore, GAC may have important relevance to the pathogenesis of AD.
Collapse
Affiliation(s)
- Ge Gao
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Shu Zhao
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Chunhong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Congcong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Chenhui Ji
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shiyang Sheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yalin Tang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Hoxha E, Lippiello P, Zurlo F, Balbo I, Santamaria R, Tempia F, Miniaci MC. The Emerging Role of Altered Cerebellar Synaptic Processing in Alzheimer's Disease. Front Aging Neurosci 2018; 10:396. [PMID: 30542279 PMCID: PMC6278174 DOI: 10.3389/fnagi.2018.00396] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
The role of the cerebellum in Alzheimer's disease (AD) has been neglected for a long time. Recent studies carried out using transgenic mouse models have demonstrated that amyloid-β (Aβ) is deposited in the cerebellum and affects synaptic transmission and plasticity, sometimes before plaque formation. A wide variability of motor phenotype has been observed in the different murine models of AD, without a consistent correlation with the extent of cerebellar histopathological changes or with cognitive deficits. The loss of noradrenergic drive may contribute to the impairment of cerebellar synaptic function and motor learning observed in these mice. Furthermore, cerebellar neurons, particularly granule cells, have been used as in vitro model of Aβ-induced neuronal damage. An unexpected conclusion is that the cerebellum, for a long time thought to be somehow protected from AD pathology, is actually considered as a region vulnerable to Aβ toxic damage, even at the early stage of the disease, with consequences on motor performance.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Pellegrino Lippiello
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Fabio Zurlo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Rita Santamaria
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Griffin JWD, Liu Y, Bradshaw PC, Wang K. In Silico Preliminary Association of Ammonia Metabolism Genes GLS, CPS1, and GLUL with Risk of Alzheimer's Disease, Major Depressive Disorder, and Type 2 Diabetes. J Mol Neurosci 2018; 64:385-396. [PMID: 29441491 DOI: 10.1007/s12031-018-1035-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/31/2018] [Indexed: 12/28/2022]
Abstract
Ammonia is a toxic by-product of protein catabolism and is involved in changes in glutamate metabolism. Therefore, ammonia metabolism genes may link a range of diseases involving glutamate signaling such as Alzheimer's disease (AD), major depressive disorder (MDD), and type 2 diabetes (T2D). We analyzed data from a National Institute on Aging study with a family-based design to determine if 45 single nucleotide polymorphisms (SNPs) in glutaminase (GLS), carbamoyl phosphate synthetase 1 (CPS1), or glutamate-ammonia ligase (GLUL) genes were associated with AD, MDD, or T2D using PLINK software. HAPLOVIEW software was used to calculate linkage disequilibrium measures for the SNPs. Next, we analyzed the associated variations for potential effects on transcriptional control sites to identify possible functional effects of the SNPs. Of the SNPs that passed the quality control tests, four SNPs in the GLS gene were significantly associated with AD, two SNPs in the GLS gene were associated with T2D, and one SNP in the GLUL gene and three SNPs in the CPS1 gene were associated with MDD before Bonferroni correction. The in silico bioinformatic analysis suggested probable functional roles for six associated SNPs. Glutamate signaling pathways have been implicated in all these diseases, and other studies have detected similar brain pathologies such as cortical thinning in AD, MDD, and T2D. Taken together, these data potentially link GLS with AD, GLS with T2D, and CPS1 and GLUL with MDD and stimulate the generation of testable hypotheses that may help explain the molecular basis of pathologies shared by these disorders.
Collapse
Affiliation(s)
- Jeddidiah W D Griffin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| | - Ying Liu
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Patrick C Bradshaw
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
18
|
Tereshkina EB, Prokhorova TA, Boksha IS, Savushkina OK, Vorobyeva EA, Burbaeva GS. [Comparative study of glutamate dehydrogenase in the brain of patients with schizophrenia and mentally healthy people]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:101-107. [PMID: 29265094 DOI: 10.17116/jnevro2017117111101-107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To compare the glutamate dehydrogenase (GDH) activity and amounts of GDHI, GDHII, and GDHIII immunoreactive forms in prefrontal, anterior and posterior cingulate cortex and cerebellar cortex of patients with schizophrenia and control subjects. MATERIAL AND METHODS GDH enzymatic activity was measured and levels of GDH immunoreactive forms were determined in extracts of autopsied samples of prefrontal, anterior and posterior cingulate cortex (areas 10, 24, and 23 by Brodmann), and cerebellar cortex of patients with schizophrenia (n=8) and controls (n=9). RESULTS AND CONCLUSION GDH enzymatic activity was significantly increased in the prefrontal cortex (area 10) (p<0.004), the posterior cingulate cortex (area 23) (p<0.05) and the cerebellar cortex (p<0.002) and was unchanged in the anterior cingulate cortex (area 24) in patients with schizophrenia compared to controls. The levels of immunoreactive GDH I, GDH II and GDH III were significantly higher in the prefrontal cortex of patients with schizophrenia than in controls (p<0.008, p<0.003, and p<0.0001, respectively). Levels of all three immunoreactive GDH forms were unchanged in the anterior cingulate cortex (area 24), but they were increased in the posterior cingulate cortex (area 23) (p<0.004, p<0.001 and p<0.02, respectively). The levels of immunoreactive GDH II and GDH III, but not GDH I, were significantly increased in the cerebellar cortex of patients with schizophrenia compared with the control group (p<0.02 and p<0.001, respectively). The alteration in the levels of GDH immunoreactive forms in the brain of patients with schizophrenia is one of the causes of impaired brain glutamate metabolism and an important aspect of schizophrenia pathogenesis.
Collapse
Affiliation(s)
| | | | - I S Boksha
- Mental Health Research Centre, Moscow, Russia
| | | | | | | |
Collapse
|
19
|
Forgacsova A, Galba J, Garruto RM, Majerova P, Katina S, Kovac A. A novel liquid chromatography/mass spectrometry method for determination of neurotransmitters in brain tissue: Application to human tauopathies. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1073:154-162. [PMID: 29275172 DOI: 10.1016/j.jchromb.2017.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 12/29/2022]
Abstract
Neurotransmitters, small molecules widely distributed in the central nervous system are essential in transmitting electrical signals across neurons via chemical communication. Dysregulation of these chemical signaling molecules is linked to numerous neurological diseases including tauopathies. In this study, a precise and reliable liquid chromatography method was established with tandem mass spectrometry detection for the simultaneous determination of aspartic acid, asparagine, glutamic acid, glutamine, γ-aminobutyric acid, N-acetyl-l-aspartic acid, pyroglutamic acid, acetylcholine and choline in human brain tissue. The method was successfully applied to the analysis of human brain tissues from three different tauopathies; corticobasal degeneration, progressive supranuclear palsy and parkinsonism-dementia complex of Guam. Neurotransmitters were analyzed on ultra-high performance chromatography (UHPLC) using an ethylene bridged hybrid amide column coupled with tandem mass spectrometry (MS/MS). Identification and quantification of neurotransmitters was carried out by ESI+ mass spectrometry detection. We optimized sample preparation to achieve simple and fast extraction of all nine analytes. Our method exhibited an excellent linearity for all analytes (all coefficients of determination >0.99), with inter-day and intra-day precision yielding relative standard deviations 3.2%-11.2% and an accuracy was in range of 92.6%-104.3%. The present study, using the above method, is the first to demonstrate significant alterations of brain neurotransmitters caused by pathological processes in the brain tissues of patient with three different tauopathies.
Collapse
Affiliation(s)
- Andrea Forgacsova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy of Comenius University, Odbojarov 10, 832 32, Bratislava, Slovak Republic.
| | - Jaroslav Galba
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy of Comenius University, Odbojarov 10, 832 32, Bratislava, Slovak Republic; AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovak Republic
| | - Ralph M Garruto
- Graduate Program in Biomedical Anthropology, Departments of Anthropology and Biological Sciences, Binghamton University, Binghamton, NY, USA; Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510, Bratislava, Slovak Republic; AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovak Republic
| | - Stanislav Katina
- Institute of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 84510, Bratislava, Slovak Republic; Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181, Kosice, Slovak Republic; AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovak Republic
| |
Collapse
|
20
|
Sidoryk-Wegrzynowicz M, Gerber YN, Ries M, Sastre M, Tolkovsky AM, Spillantini MG. Astrocytes in mouse models of tauopathies acquire early deficits and lose neurosupportive functions. Acta Neuropathol Commun 2017; 5:89. [PMID: 29187256 PMCID: PMC6389177 DOI: 10.1186/s40478-017-0478-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023] Open
Abstract
Microtubule-associated protein tau aggregates constitute the characteristic neuropathological features of several neurodegenerative diseases grouped under the name of tauopathies. It is now clear that the process of tau aggregation is associated with neurodegeneration. Several transgenic tau mouse models have been developed where tau progressively aggregates, causing neuronal death. Previously we have shown that transplantation of astrocytes in P301S tau transgenic mice rescues cortical neuron death, implying that the endogenous astrocytes are deficient in survival support. We now show that the gliosis markers Glial fibrillary acidic protein (GFAP) and S100 calcium-binding protein B (S100β) are elevated in brains from P301S tau mice compared to control C57Bl/6 mice whereas the expression of proteins involved in glutamine/glutamate metabolism are reduced, pointing to a functional deficit. To test whether astrocytes from P301S mice are intrinsically deficient, we co-cultured astrocytes and neurons from control and P301S mice. Significantly more C57-derived and P301S-derived neurons survived when cells were cultured with C57-derived astrocytes or astrocyte conditioned medium (C57ACM) than with P301S-derived astrocytes or astrocyte conditioned medium (P301SACM), or ACM from P301L tau mice, where the transgene is also specifically expressed in neurons. The astrocytic alterations developed in mice during the first postnatal week of life. In addition, P301SACM significantly decreased presynaptic (synaptophysin, SNP) and postsynaptic (postsynaptic density protein 95, PSD95) protein expression in cortical neuron cultures whereas C57ACM enhanced these markers. Since thrombospondin 1 (TSP-1) is a major survival and synaptogenic factor, we examined whether TSP-1 is deficient in P301S mouse brains and ACM. Significantly less TSP-1 was expressed in the brains of P301S tau mice or produced by P301S-derived astrocytes, whereas supplementation of P301SACM with TSP-1 increased its neurosupportive capacity. Our results demonstrate that P301S-derived astrocytes acquire an early functional deficiency that may explain in part the loss of cortical neurons in the P301S tau mice.
Collapse
|
21
|
Glutaminase C overexpression in the brain induces learning deficits, synaptic dysfunctions, and neuroinflammation in mice. Brain Behav Immun 2017. [PMID: 28624534 PMCID: PMC5650935 DOI: 10.1016/j.bbi.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glutaminolysis, a metabolic process that converts glutamine to glutamate, is particularly important for the central nervous system since glutamate is the major transmitter of excitatory synapses. Glutaminase is the mitochondrial enzyme that catalyzes the first step of glutaminolysis. Two genes encode at least four isoforms of glutaminase in humans. Gls1 gene encodes isoforms kidney-type glutaminase (KGA) and glutaminase C (GAC) through alternative splicing, whereas Gls2 gene encodes liver-type glutaminase isoforms. KGA and GAC have been associated with several neurological diseases. However, it remains unclear whether changes in their expressions can directly cause brain abnormalities. Using a transgenic approach, we generated mice that overexpressed GAC in the brain. The resulting transgenic mice had severe impairments in spatial and fear learning compared with littermate controls. The learning deficits were consistent with diminished hippocampal long-term potentiation in the hippocampal slices of the GAC transgenic mice. Furthermore, we found increases in astrocyte and microglia markers, inflammatory factors, and a decrease in synapse marker synaptophysin, suggesting neuroinflammation and synaptic changes in the GAC transgenic mouse brains. In conclusion, these findings provide the first evidence that GAC overexpression in the brain has deleterious effects on learning and synaptic integrity in vivo.
Collapse
|
22
|
Wang J, Zheng H, Wang K, Wang Z, Ding Y. Population pharmacokinetics of arginine glutamate in healthy Chinese volunteers. Xenobiotica 2017; 48:809-817. [PMID: 28925806 DOI: 10.1080/00498254.2017.1370745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. The present study developed population pharmacokinetic models of arginine and glutamate in healthy Chinese volunteers. Two nonlinear mixed-effect models were developed using NONMEM® software (ICON Development Solutions, Ellicott City, MD) to describe the pharmacokinetic properties and to assess the relevant parameters as well as the inter-individual variability. The potential covariates were screened using stepwise approach and the stability and predictive capability of the models were performed using bootstrap and visual predictive check. 2. The concentration time curves of arginine and glutamate were best described by a first-order elimination two-compartment model and a nonlinear elimination one-compartment model, respectively. The final parameter estimation of arginine for CL was 44.1 L/h. Q, V1 and V2 were 23 L/h, 20.3 L and 46 L, respectively. The final parameter estimation of glutamate for Vmax and Km were 18.8 mg/h and 77.2 mg/L, respectively. V for low dose and high dose was 23.1 L and 36.3 L, respectively. 3. For arginine, weight was significant covariate on the apparent distribution volume of peripheral compartment. The gain in weight remarkably increases V2. For glutamate, dose as a significant covariate on the apparent distribution volume was included, subjects received high dose (20 g) have remarkably higher V compared to subjects received low dose (10 g).
Collapse
Affiliation(s)
- Jing Wang
- a Department of Pharmacy , Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China and
| | - Heng Zheng
- a Department of Pharmacy , Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China and
| | - Kun Wang
- b Department of Pharmacometrics , Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Zheng Wang
- a Department of Pharmacy , Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China and
| | - Yufeng Ding
- a Department of Pharmacy , Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China and
| |
Collapse
|
23
|
Li Y, Peer J, Zhao R, Xu Y, Wu B, Wang Y, Tian C, Huang Y, Zheng J. Serial deletion reveals structural basis and stability for the core enzyme activity of human glutaminase 1 isoforms: relevance to excitotoxic neurodegeneration. Transl Neurodegener 2017; 6:10. [PMID: 28439409 PMCID: PMC5399437 DOI: 10.1186/s40035-017-0080-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/06/2017] [Indexed: 12/16/2022] Open
Abstract
Background Glutaminase 1 is a phosphate-activated metabolic enzyme that catalyzes the first step of glutaminolysis, which converts glutamine into glutamate. Glutamate is the major neurotransmitter of excitatory synapses, executing important physiological functions in the central nervous system. There are two isoforms of glutaminase 1, KGA and GAC, both of which are generated through alternative splicing from the same gene. KGA and GAC both transcribe 1–14 exons in the N-terminal, but each has its unique C-terminal in the coding sequence. We have previously identified that KGA and GAC are differentially regulated during inflammatory stimulation and HIV infection. Furthermore, glutaminase 1 has been linked to brain diseases such as amyotrophic lateral sclerosis, Alzheimer’s disease, and hepatic encephalopathy. Core enzyme structure of KGA and GAC has been published recently. However, how other coding sequences affect their functional enzyme activity remains unclear. Methods We cloned and performed serial deletions of human full-length KGA and GAC from the N-terminal and the C-terminal at an interval of approximately 100 amino acids (AAs). Prokaryotic expressions of the mutant glutaminase 1 protein and a glutaminase enzyme activity assay were used to determine if KGA and GAC have similar efficiency and efficacy to convert glutamine into glutamate. Results When 110 AAs or 218 AAs were deleted from the N-terminal or when the unique portions of KGA and GAC that are beyond the 550 AA were deleted from the C-terminal, KGA and GAC retained enzyme activity comparable to the full length proteins. In contrast, deletion of 310 AAs or more from N-terminal or deletion of 450 AAs or more from C-terminal resulted in complete loss of enzyme activity for KGA/GAC. Consistently, when both N- and C-terminal of the KGA and GAC were removed, creating a truncated protein that expressed the central 219 AA - 550 AA, the protein retained enzyme activity. Furthermore, expression of the core 219 AA - 550 AA coding sequence in cells increased extracellular glutamate concentrations to levels comparable to those of full-length KGA and GAC expressions, suggesting that the core enzyme activity of the protein lies within the central 219 AA - 550 AA. Full-length KGA and GAC retained enzyme activities when kept at 4 °C. In contrast, 219 AA - 550 AA truncated protein lost glutaminase activities more readily compared with full-length KGA and GAC, suggesting that the N-terminal and C-terminal coding regions are required for the stability KGA and GAC. Conclusions Glutaminase isoforms KGA and GAC have similar efficacy to catalyze the conversion of glutamine to glutamate. The core enzyme activity of glutaminase 1 protein is within the central 219 AA - 550 AA. The N-terminal and C-terminal coding regions of KGA and GAC help maintain the long-term activities of the enzymes.
Collapse
Affiliation(s)
- Yuju Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Justin Peer
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Runze Zhao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Yinghua Xu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Beiqing Wu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Yi Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Changhai Tian
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA.,Shanghai Tenth People's Hospital affiliated with Tongji University School of Medicine, Shanghai, 200072 China.,Laboratory of Neuroimmunology and Regenerative Therapy, Departments of Pharmacology and Experimental Neuroscience and Pathology and Microbiology, 985930 Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE USA.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE USA.,Shanghai Tenth People's Hospital affiliated with Tongji University School of Medicine, Shanghai, 200072 China.,Laboratory of Neuroimmunology and Regenerative Therapy, Departments of Pharmacology and Experimental Neuroscience and Pathology and Microbiology, 985930 Nebraska Medical Center, Omaha, NE 68198-5930 USA
| |
Collapse
|
24
|
Savushkina OK, Tereshkina EB, Prokhorova TA, Vorobyeva EА, Boksha IS, Burbaeva GS. [Creatine kinase isoform B distribution in the brain in schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:62-68. [PMID: 27735901 DOI: 10.17116/jnevro20161169162-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To compare patterns of brain isoform creatine phosphokinase (CPK B) distributions in post-mortem brain from patients with schizophrenia (Sch) and patients with somatic diseases (controls). MATERIAL AND METHODS Extracts of readily soluble and membrane-associated proteins were prepared from post-mortem samples of prefrontal cortex (Brodmann area 10), anterior (area 24) and posterior (area 23) cingulate cortex, hippocampus and cerebellum cortex from patients with Sch and control group (the samples were matched by age and postmortem interval). CPK enzymatic activity was measured by determination of inorganic phosphate, amounts of immunoreative CPK В were estimated by ECL-Western blotting using monoclonal antibodies. RESULTS A significant decrease in CPK activity and amounts of immunoreative CPK В was observed in fractions of readily soluble proteins in all studied brain structures of patients with Sch compared to controls (p<0.01). Significant differences in CPK activity were found in membrane-associated protein fractions from the hippocampus (p<0.01), but not from the cingulate cortex (areas 23 and 24), of Sch patients compared with controls, whereas no difference between groups was found in levels of immunoreactive CPK B in membrane-associated protein fractions from the cingulate cortex (areas 23 and 24) and hippocampus. The decrease in the amount of CPK B in the frontal cortex of patients with Sch was confirmed by purification of CPK B active dimer from brain samples of patients with Sch and controls. CONCLUSION Changes in the levels of CPK brain isoform in the brain of patients with Sch (the decrease in CPK activity and amounts in various brain structures at different extents) lead to the substantial alteration of CPK distribution pattern among the brain areas studied, result in the disturbance of the brain energy metabolism and contribute to Sch pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - I S Boksha
- Mental Health Research Centre, Moscow, Russia
| | | |
Collapse
|
25
|
Andersen JV, Christensen SK, Aldana BI, Nissen JD, Tanila H, Waagepetersen HS. Alterations in Cerebral Cortical Glucose and Glutamine Metabolism Precedes Amyloid Plaques in the APPswe/PSEN1dE9 Mouse Model of Alzheimer's Disease. Neurochem Res 2016; 42:1589-1598. [PMID: 27686658 DOI: 10.1007/s11064-016-2070-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Abstract
Alterations in brain energy metabolism have been suggested to be of fundamental importance for the development of Alzheimer's disease (AD). However, specific changes in brain energetics in the early stages of AD are poorly known. The aim of this study was to investigate cerebral energy metabolism in the APPswe/PSEN1dE9 mouse prior to amyloid plaque formation. Acutely isolated cerebral cortical and hippocampal slices of 3-month-old APPswe/PSEN1dE9 and wild-type control mice were incubated in media containing [U-13C]glucose, [1,2-13C]acetate or [U-13C]glutamine, and tissue extracts were analyzed by mass spectrometry. The ATP synthesis rate of isolated whole-brain mitochondria was assessed by an on-line luciferin-luciferase assay. Significantly increased 13C labeling of intracellular lactate and alanine and decreased tricarboxylic acid (TCA) cycle activity were observed from cerebral cortical slices of APPswe/PSEN1dE9 mice incubated in media containing [U-13C]glucose. No changes in glial [1,2-13C]acetate metabolism were observed. Cerebral cortical slices from APPswe/PSEN1dE9 mice exhibited a reduced capacity for uptake and oxidative metabolism of glutamine. Furthermore, the ATP synthesis rate tended to be decreased in isolated whole-brain mitochondria of APPswe/PSEN1dE9 mice. Thus, several cerebral metabolic changes are evident in the APPswe/PSEN1dE9 mouse prior to amyloid plaque deposition, including altered glucose metabolism, hampered glutamine processing and mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie K Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob D Nissen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Du J, Li XH, Li YJ. Glutamate in peripheral organs: Biology and pharmacology. Eur J Pharmacol 2016; 784:42-8. [PMID: 27164423 DOI: 10.1016/j.ejphar.2016.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 01/28/2023]
Abstract
Glutamate is a versatile molecule existing in both the central nervous system and peripheral organs. Previous studies have mainly focussed on the biological effect of glutamate in the brain. Recently, abundant evidence has demonstrated that glutamate also participates in the regulation of physiopathological functions in peripheral tissues, including the lung, kidney, liver, heart, stomach and immune system, where the glutamate/glutamate receptor/glutamate transporter system plays an important role in the pathogenesis of certain diseases, such as myocardial ischaemia/reperfusion injury and acute gastric mucosa injury. All these findings provide new insight into the biology and pharmacology of glutamate and suggest a potential therapeutic role of glutamate in non-neurological diseases.
Collapse
Affiliation(s)
- Jie Du
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiao-Hui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
27
|
Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016; 63:1-28. [PMID: 26814961 DOI: 10.1016/j.neubiorev.2016.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
Abstract
Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations.
Collapse
|
28
|
Bernstein HG, Meyer-Lotz G, Dobrowolny H, Bannier J, Steiner J, Walter M, Bogerts B. Reduced density of glutamine synthetase immunoreactive astrocytes in different cortical areas in major depression but not in bipolar I disorder. Front Cell Neurosci 2015; 9:273. [PMID: 26321908 PMCID: PMC4530620 DOI: 10.3389/fncel.2015.00273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/03/2015] [Indexed: 01/26/2023] Open
Abstract
There is increasing evidence for disturbances within the glutamate system in patients with affective disorders, which involve disruptions of the glutamate–glutamine-cycle. The mainly astroglia-located enzyme glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to form glutamine, thus playing a central role in glutamate and glutamine homoeostasis. However, GS is also expressed in numerous oligodendrocytes (OLs), another class of glial cells implicated in mood disorder pathology. To learn more about the role of glia-associated GS in mental illnesses, we decided to find out if numerical densities of glial cells immunostained for the enzyme protein differ between subjects with major depressive disorder, bipolar disorder (BD), and psychically healthy control cases. Counting of GS expressing astrocytes (ACs) and OLs in eight cortical and two subcortical brain regions of subjects with mood disorder (N = 14), BD (N = 15), and controls (N = 16) revealed that in major depression the densities of ACs were significantly reduced in some cortical but not subcortical gray matter areas, whereas no changes were found for OLs. In BD no alterations of GS-immunoreactive glia were found. From our findings we conclude that (1) GS expressing ACs are prominently involved in glutamate-related disturbances in major depression, but not in BD and (2) GS expressing OLs, though being present in significant numbers in prefrontal cortical areas, play a minor (if any) role in mood disorder pathology. The latter assumption is supported by findings of others showing that – at least in the mouse brain cortex – GS immunoreactive oligodendroglial cells are unable to contribute to the glutamate–glutamine-cycle due to the complete lack of amino acid transporters (Takasaki et al., 2010).
Collapse
Affiliation(s)
| | | | - Henrik Dobrowolny
- Department of Psychiatry, University of Magdeburg Magdeburg, Germany
| | - Jana Bannier
- Department of Psychiatry, University of Magdeburg Magdeburg, Germany
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry, University of Magdeburg Magdeburg, Germany ; Clinical Affective Neuroimaging Laboratory, University of Magdeburg Magdeburg, Germany
| | - Bernhard Bogerts
- Department of Psychiatry, University of Magdeburg Magdeburg, Germany
| |
Collapse
|