1
|
Hadjiosif AM, Gibo TL, Smith MA. The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory. Proc Natl Acad Sci U S A 2024; 121:e2411459121. [PMID: 39374383 PMCID: PMC11494333 DOI: 10.1073/pnas.2411459121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/23/2024] [Indexed: 10/09/2024] Open
Abstract
The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that for declarative memories, medial temporal lobe (MTL) structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that for sensorimotor memories, the cerebellum may play an analogous role. Here, we studied the sensorimotor learning of individuals with severe ataxia from cerebellar degeneration. We dissected the memories they formed during sensorimotor learning into a short-term temporally-volatile component, that decays rapidly with a time constant of just 15 to 20 s and thus cannot lead to long-term retention, and a longer-term temporally-persistent component that is stable for 60 s or more and leads to long-term retention. Remarkably, we find that these individuals display dramatically reduced levels of temporally-persistent sensorimotor memory, despite spared and even elevated levels of temporally-volatile sensorimotor memory. In particular, we find both impairment that systematically worsens with memory window duration over shorter memory windows (<12 s) and near-complete impairment of memory maintenance over longer memory windows (>25 s). This dissociation uncovers a unique role for the cerebellum as a gateway for the formation of long-term but not short-term sensorimotor memories, mirroring the role of the MTL for declarative memories. It thus reveals the existence of distinct neural substrates for short-term and long-term sensorimotor memory, and it explains both the trial-to-trial differences identified in this study and long-standing study-to-study differences in the effects of cerebellar damage on sensorimotor learning ability.
Collapse
Affiliation(s)
- Alkis M. Hadjiosif
- John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA02138
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA02114
| | - Tricia L. Gibo
- Philips Medical Systems, Best, Noord-Brabant5684, The Netherlands
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Maurice A. Smith
- John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA02138
- Center for Brain Science, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Kim KS, Hinkley LB, Brent K, Gaines JL, Pongos AL, Gupta S, Dale CL, Nagarajan SS, Houde JF. Neurophysiological evidence of sensory prediction errors driving speech sensorimotor adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.22.563504. [PMID: 37961099 PMCID: PMC10634734 DOI: 10.1101/2023.10.22.563504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The human sensorimotor system has a remarkable ability to quickly and efficiently learn movements from sensory experience. A prominent example is sensorimotor adaptation, learning that characterizes the sensorimotor system's response to persistent sensory errors by adjusting future movements to compensate for those errors. Despite being essential for maintaining and fine-tuning motor control, mechanisms underlying sensorimotor adaptation remain unclear. A component of sensorimotor adaptation is implicit (i.e., the learner is unaware of the learning process) which has been suggested to result from sensory prediction errors-the discrepancies between predicted sensory consequences of motor commands and actual sensory feedback. However, to date no direct neurophysiological evidence that sensory prediction errors drive adaptation has been demonstrated. Here, we examined prediction errors via magnetoencephalography (MEG) imaging of the auditory cortex (n = 34) during sensorimotor adaptation of speech to altered auditory feedback, an entirely implicit adaptation task. Specifically, we measured how speaking-induced suppression (SIS)--a neural representation of auditory prediction errors--changed over the trials of the adaptation experiment. SIS refers to the suppression of auditory cortical response to speech onset (in particular, the M100 response) to self-produced speech when compared to the response to passive listening to identical playback of that speech. SIS was reduced (reflecting larger prediction errors) during the early learning phase compared to the initial unaltered feedback phase. Furthermore, reduction in SIS positively correlated with behavioral adaptation extents, suggesting that larger prediction errors were associated with more learning. In contrast, such a reduction in SIS was not found in a control experiment in which participants heard unaltered feedback and thus did not adapt. In addition, in some participants who reached a plateau in the late learning phase, SIS increased (reflecting smaller prediction errors), demonstrating that prediction errors were minimal when there was no further adaptation. Together, these findings provide the first neurophysiological evidence for the hypothesis that prediction errors drive human sensorimotor adaptation.
Collapse
Affiliation(s)
- Kwang S. Kim
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Leighton B. Hinkley
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Kurtis Brent
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Jessica L. Gaines
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Alvincé L. Pongos
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Saloni Gupta
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Corby L. Dale
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - John F. Houde
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Velázquez-Vargas CA, Daw ND, Taylor JA. The role of training variability for model-based and model-free learning of an arbitrary visuomotor mapping. PLoS Comput Biol 2024; 20:e1012471. [PMID: 39331685 PMCID: PMC11463753 DOI: 10.1371/journal.pcbi.1012471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/09/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
A fundamental feature of the human brain is its capacity to learn novel motor skills. This capacity requires the formation of vastly different visuomotor mappings. Using a grid navigation task, we investigated whether training variability would enhance the flexible use of a visuomotor mapping (key-to-direction rule), leading to better generalization performance. Experiments 1 and 2 show that participants trained to move between multiple start-target pairs exhibited greater generalization to both distal and proximal targets compared to participants trained to move between a single pair. This finding suggests that limited variability can impair decisions even in simple tasks without planning. In addition, during the training phase, participants exposed to higher variability were more inclined to choose options that, counterintuitively, moved the cursor away from the target while minimizing its actual distance under the constrained mapping, suggesting a greater engagement in model-based computations. In Experiments 3 and 4, we showed that the limited generalization performance in participants trained with a single pair can be enhanced by a short period of variability introduced early in learning or by incorporating stochasticity into the visuomotor mapping. Our computational modeling analyses revealed that a hybrid model between model-free and model-based computations with different mixing weights for the training and generalization phases, best described participants' data. Importantly, the differences in the model-based weights between our experimental groups, paralleled the behavioral findings during training and generalization. Taken together, our results suggest that training variability enables the flexible use of the visuomotor mapping, potentially by preventing the consolidation of habits due to the continuous demand to change responses.
Collapse
Affiliation(s)
| | - Nathaniel D. Daw
- Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Jordan A. Taylor
- Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
4
|
Leeuwis M, Asar Y, White JJ, Rasman BG, Forbes PA. Different mechanisms of contextual inference govern associatively learned and sensory-evoked postural responses. Proc Natl Acad Sci U S A 2024; 121:e2404909121. [PMID: 39093946 PMCID: PMC11317596 DOI: 10.1073/pnas.2404909121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/30/2024] [Indexed: 08/04/2024] Open
Abstract
Human standing balance relies on the continuous monitoring and integration of sensory signals to infer our body's motion and orientation within the environment. However, when sensory information is no longer contextually relevant to balancing the body (e.g., when sensory and motor signals are incongruent), sensory-evoked balance responses are rapidly suppressed, much earlier than any conscious perception of changes in balance control. Here, we used a robotic balance simulator to assess whether associatively learned postural responses are similarly modulated by sensorimotor incongruence and contextual relevance to postural control. Twenty-nine participants in three groups were classically conditioned to generate postural responses to whole-body perturbations when presented with an initially neutral sound cue. During catch and extinction trials, participants received only the auditory stimulus but in different sensorimotor states corresponding to their group: 1) during normal active balance, 2) while immobilized, and 3) throughout periods where the computer subtly removed active control over balance. In the balancing and immobilized states, conditioned responses were either evoked or suppressed, respectively, according to the (in)ability to control movement. Following the immobilized state, conditioned responses were renewed when balance was restored, indicating that conditioning was retained but only expressed when contextually relevant. In contrast, conditioned responses persisted in the computer-controlled state even though there was no causal relationship between motor and sensory signals. These findings suggest that mechanisms responsible for sensory-evoked and conditioned postural responses do not share a single, central contextual inference and assessment of their relevance to postural control, and may instead operate in parallel.
Collapse
Affiliation(s)
- Matto Leeuwis
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam3015 GD, The Netherlands
| | - Yomna Asar
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam3015 GD, The Netherlands
| | - Joshua J. White
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam3015 GD, The Netherlands
| | - Brandon G. Rasman
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam3015 GD, The Netherlands
- Department of Sensorimotor Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen6525 GD, The Netherlands
| | - Patrick A. Forbes
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam3015 GD, The Netherlands
| |
Collapse
|
5
|
Hadjiosif AM, Gibo TL, Smith MA. The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.11.553008. [PMID: 38645006 PMCID: PMC11030252 DOI: 10.1101/2023.08.11.553008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The cerebellum is critical for sensorimotor learning. The specific contribution that it makes, however, remains unclear. Inspired by the classic finding that, for declarative memories, medial temporal lobe structures provide a gateway to the formation of long-term memory but are not required for short-term memory, we hypothesized that, for sensorimotor memories, the cerebellum may play an analogous role. Here we studied the sensorimotor learning of individuals with severe ataxia from cerebellar degeneration. We dissected the memories they formed during sensorimotor learning into a short-term temporally-volatile component, that decays rapidly with a time constant of just 15-20sec and thus cannot lead to long-term retention, and a longer-term temporally-persistent component that is stable for 60 sec or more and leads to long-term retention. Remarkably, we find that these individuals display dramatically reduced levels of temporally-persistent sensorimotor memory, despite spared and even elevated levels of temporally-volatile sensorimotor memory. In particular, we find both impairment that systematically increases with memory window duration over shorter memory windows (<12 sec) and near-complete impairment of memory maintenance over longer memory windows (>25 sec). This dissociation uncovers a new role for the cerebellum as a gateway for the formation of long-term but not short-term sensorimotor memories, mirroring the role of the medial temporal lobe for declarative memories. It thus reveals the existence of distinct neural substrates for short-term and long-term sensorimotor memory, and it explains both newly-identified trial-to-trial differences and long-standing study-to-study differences in the effects of cerebellar damage on sensorimotor learning ability. Significance Statement A key discovery about the neural underpinnings of memory, made more than half a century ago, is that long-term, but not short-term, memory formation depends on neural structures in the brain's medial temporal lobe (MTL). However, this dichotomy holds only for declarative memories - memories for explicit facts such as names and dates - as long-term procedural memories - memories for implicit knowledge such as sensorimotor skills - are largely unaffected even with substantial MTL damage. Here we demonstrate that the formation of long-term, but not short-term, sensorimotor memory depends on a neural structure known as the cerebellum, and we show that this finding explains the variability previously reported in the extent to which cerebellar damage affects sensorimotor learning.
Collapse
|
6
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
7
|
Zhou W, Schneider DM. Learning within a sensory-motor circuit links action to expected outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579532. [PMID: 38370770 PMCID: PMC10871315 DOI: 10.1101/2024.02.08.579532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The cortex integrates sound- and movement-related signals to predict the acoustic consequences of behavior and detect violations from expectations. Although expectation- and prediction-related activity has been observed in the auditory cortex of humans, monkeys, and mice during vocal and non-vocal acoustic behaviors, the specific cortical circuitry required for forming memories, recalling expectations, and making predictions remains unknown. By combining closed-loop behavior, electrophysiological recordings, longitudinal pharmacology, and targeted optogenetic circuit activation, we identify a cortical locus for the emergence of expectation and error signals. Movement-related expectation signals and sound-related error signals emerge in parallel in the auditory cortex and are concentrated in largely distinct neurons, consistent with a compartmentalization of different prediction-related computations. On a trial-by-trial basis, expectation and error signals are correlated in auditory cortex, consistent with a local circuit implementation of an internal model. Silencing the auditory cortex during motor-sensory learning prevents the emergence of expectation signals and error signals, revealing the auditory cortex as a necessary node for learning to make predictions. Prediction-like signals can be experimentally induced in the auditory cortex, even in the absence of behavioral experience, by pairing optogenetic motor cortical activation with sound playback, indicating that cortical circuits are sufficient for movement-like predictive processing. Finally, motor-sensory experience realigns the manifold dimensions in which auditory cortical populations encode movement and sound, consistent with predictive processing. These findings show that prediction-related signals reshape auditory cortex dynamics during behavior and reveal a cortical locus for the emergence of expectation and error.
Collapse
Affiliation(s)
- WenXi Zhou
- Center for Neural Science, New York University, New York, NY, 10012
| | | |
Collapse
|
8
|
Wang Y, Huynh AT, Bao S, Buchanan JJ, Wright DL, Lei Y. Memory consolidation of sequence learning and dynamic adaptation during wakefulness. Cereb Cortex 2024; 34:bhad507. [PMID: 38185987 DOI: 10.1093/cercor/bhad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.
Collapse
Affiliation(s)
- Yiyu Wang
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Angelina T Huynh
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - John J Buchanan
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - David L Wright
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
9
|
Whittier TT, Patrick CM, Fling BW. Somatosensory Information in Skilled Motor Performance: A Narrative Review. J Mot Behav 2023; 55:453-474. [PMID: 37245865 DOI: 10.1080/00222895.2023.2213198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/30/2023]
Abstract
Historically, research aimed at improving motor performance has largely focused on the neural processes involved in motor execution due to their role in muscle activation. However, accompanying somatosensory and proprioceptive sensory information is also vitally involved in performing motor skills. Here we review research from interdisciplinary fields to provide a description for how somatosensation informs the successful performance of motor skills as well as emphasize the need for careful selection of study methods to isolate the neural processes involved in somatosensory perception. We also discuss upcoming strategies of intervention that have been used to improve performance via somatosensory targets. We believe that a greater appreciation for somatosensation's role in motor learning and control will enable researchers and practitioners to develop and apply methods for the enhancement of human performance that will benefit clinical, healthy, and elite populations alike.
Collapse
Affiliation(s)
- Tyler T Whittier
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Christopher M Patrick
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, USA
| | - Brett W Fling
- Sensorimotor Neuroimaging Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
10
|
Retention Effects of Long-Term Balance Training with Vibrotactile Sensory Augmentation in Healthy Older Adults. SENSORS 2022; 22:s22083014. [PMID: 35459000 PMCID: PMC9027305 DOI: 10.3390/s22083014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023]
Abstract
Vibrotactile sensory augmentation (SA) decreases postural sway during real-time use; however, limited studies have investigated the long-term effects of training with SA. This study assessed the retention effects of long-term balance training with and without vibrotactile SA among community-dwelling healthy older adults, and explored brain-related changes due to training with SA. Sixteen participants were randomly assigned to the experimental group (EG) or control group (CG), and trained in their homes for eight weeks using smart-phone balance trainers. The EG received vibrotactile SA. Balance performance was assessed before, and one week, one month, and six months after training. Functional MRI (fMRI) was recorded before and one week after training for four participants who received vestibular stimulation. Both groups demonstrated significant improvement of SOT composite and MiniBESTest scores, and increased vestibular reliance. Only the EG maintained a minimal detectable change of 8 points in SOT scores six months post-training and greater improvements than the CG in MiniBESTest scores one month post-training. The fMRI results revealed a shift from activation in the vestibular cortex pre-training to increased activity in the brainstem and cerebellum post-training. These findings showed that additional balance improvements were maintained for up to six months post-training with vibrotactile SA for community-dwelling healthy older adults.
Collapse
|
11
|
Rothwell J, Antal A, Burke D, Carlsen A, Georgiev D, Jahanshahi M, Sternad D, Valls-Solé J, Ziemann U. Central nervous system physiology. Clin Neurophysiol 2021; 132:3043-3083. [PMID: 34717225 PMCID: PMC8863401 DOI: 10.1016/j.clinph.2021.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
This is the second chapter of the series on the use of clinical neurophysiology for the study of movement disorders. It focusses on methods that can be used to probe neural circuits in brain and spinal cord. These include use of spinal and supraspinal reflexes to probe the integrity of transmission in specific pathways; transcranial methods of brain stimulation such as transcranial magnetic stimulation and transcranial direct current stimulation, which activate or modulate (respectively) the activity of populations of central neurones; EEG methods, both in conjunction with brain stimulation or with behavioural measures that record the activity of populations of central neurones; and pure behavioural measures that allow us to build conceptual models of motor control. The methods are discussed mainly in relation to work on healthy individuals. Later chapters will focus specifically on changes caused by pathology.
Collapse
Affiliation(s)
- John Rothwell
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK,Corresponding author at: Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK, (J. Rothwell)
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Germany
| | - David Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney 2050, Australia
| | - Antony Carlsen
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Slovenia
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Dagmar Sternad
- Departments of Biology, Electrical & Computer Engineering, and Physics, Northeastern University, Boston, MA 02115, USA
| | - Josep Valls-Solé
- Institut d’Investigació Biomèdica August Pi I Sunyer, Villarroel, 170, Barcelona, Spain
| | - Ulf Ziemann
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
12
|
Carriot J, Mackrous I, Cullen KE. Challenges to the Vestibular System in Space: How the Brain Responds and Adapts to Microgravity. Front Neural Circuits 2021; 15:760313. [PMID: 34803615 PMCID: PMC8595211 DOI: 10.3389/fncir.2021.760313] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
In the next century, flying civilians to space or humans to Mars will no longer be a subject of science fiction. The altered gravitational environment experienced during space flight, as well as that experienced following landing, results in impaired perceptual and motor performance-particularly in the first days of the new environmental challenge. Notably, the absence of gravity unloads the vestibular otolith organs such that they are no longer stimulated as they would be on earth. Understanding how the brain responds initially and then adapts to altered sensory input has important implications for understanding the inherent abilities as well as limitations of human performance. Space-based experiments have shown that altered gravity causes structural and functional changes at multiple stages of vestibular processing, spanning from the hair cells of its sensory organs to the Purkinje cells of the vestibular cerebellum. Furthermore, ground-based experiments have established the adaptive capacity of vestibular pathways and neural mechanism that likely underlie this adaptation. We review these studies and suggest that the brain likely uses two key strategies to adapt to changes in gravity: (i) the updating of a cerebellum-based internal model of the sensory consequences of gravity; and (ii) the re-weighting of extra-vestibular information as the vestibular system becomes less (i.e., entering microgravity) and then again more reliable (i.e., return to earth).
Collapse
Affiliation(s)
- Jérome Carriot
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | - Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
13
|
Kelly E, Escamilla CO, Tsai PT. Cerebellar Dysfunction in Autism Spectrum Disorders: Deriving Mechanistic Insights from an Internal Model Framework. Neuroscience 2021; 462:274-287. [PMID: 33253824 PMCID: PMC8076058 DOI: 10.1016/j.neuroscience.2020.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/28/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASD) are highly prevalent neurodevelopmental disorders; however, the neurobiological mechanisms underlying disordered behavior in ASD remain poorly understood. Notably, individuals with ASD have demonstrated difficulties generating implicitly derived behavioral predictions and adaptations. Although many brain regions are involved in these processes, the cerebellum contributes an outsized role to these behavioral functions. Consistent with this prominent role, cerebellar dysfunction has been increasingly implicated in ASD. In this review, we will utilize the foundational, theoretical contributions of the late neuroscientist Masao Ito to establish an internal model framework for the cerebellar contribution to ASD-relevant behavioral predictions and adaptations. Additionally, we will also explore and then apply his key experimental contributions towards an improved, mechanistic understanding of the contribution of cerebellar dysfunction to ASD.
Collapse
Affiliation(s)
- Elyza Kelly
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Peter T Tsai
- Departments of Pediatrics and Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
14
|
Sohn H, Meirhaeghe N, Rajalingham R, Jazayeri M. A Network Perspective on Sensorimotor Learning. Trends Neurosci 2021; 44:170-181. [PMID: 33349476 PMCID: PMC9744184 DOI: 10.1016/j.tins.2020.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/11/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
What happens in the brain when we learn? Ever since the foundational work of Cajal, the field has made numerous discoveries as to how experience could change the structure and function of individual synapses. However, more recent advances have highlighted the need for understanding learning in terms of complex interactions between populations of neurons and synapses. How should one think about learning at such a macroscopic level? Here, we develop a conceptual framework to bridge the gap between the different scales at which learning operates, from synapses to neurons to behavior. Using this framework, we explore the principles that guide sensorimotor learning across these scales, and set the stage for future experimental and theoretical work in the field.
Collapse
Affiliation(s)
| | - Nicolas Meirhaeghe
- Harvard-MIT Division of Health Sciences & Technology, Massachusetts Institute of Technology,Corresponding authors: Nicolas Meirhaeghe, , Mehrdad Jazayeri, Ph.D.,
| | | | - Mehrdad Jazayeri
- McGovern Institute for Brain Research,,Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology,Corresponding authors: Nicolas Meirhaeghe, , Mehrdad Jazayeri, Ph.D.,
| |
Collapse
|
15
|
Abstract
As we actively explore the environment, our motion relative to the world stimulates numerous sensory systems. Notably, proprioceptors provide feedback about body and limb position, while the vestibular system detects and encodes head motion. When the vestibular system is functioning normally, we are unaware of a distinct sensation because vestibular information is integrated with proprioceptive and other sensory inputs to generate our sense of motion. However, patients with vestibular sensory loss experience impairments that provide important insights into the function of this essential sensory system. For these patients, everyday activities such as walking become difficult because even small head movements can produce postural and perceptual instability. This review describes recent research demonstrating how the proprioceptive and vestibular systems effectively work together to provide us with our “6th sense” during everyday activities, and in particular considers the neural computations underlying the brain’s predictive sensing of head movement during voluntary self-motion.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montréal, Canada
| |
Collapse
|
16
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
17
|
Mechanistic determinants of effector-independent motor memory encoding. Proc Natl Acad Sci U S A 2020; 117:17338-17347. [PMID: 32647057 DOI: 10.1073/pnas.2001179117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coordinated, purposeful movements learned with one effector generalize to another effector, a finding that has important implications for tool use, sports, performing arts, and rehabilitation. This occurs because the motor memory acquired through learning comprises representations that are effector-independent. Despite knowing this for decades, the neural mechanisms and substrates that are causally associated with the encoding of effector-independent motor memories remain poorly understood. Here we exploit intereffector generalization, the behavioral signature of effector-independent representations, to address this crucial gap. We first show in healthy human participants that postlearning generalization across effectors is principally predicted by the level of an implicit mechanism that evolves gradually during learning to produce a temporally stable memory. We then demonstrate that interfering with left but not right posterior parietal cortex (PPC) using high-definition cathodal transcranial direct current stimulation impedes learning mediated by this mechanism, thus potentially preventing the encoding of effector-independent memory components. We confirm this in our final experiment in which we show that disrupting left PPC but not primary motor cortex after learning has been allowed to occur blocks intereffector generalization. Collectively, our results reveal the key mechanism that encodes an effector-independent memory trace and uncover a central role for the PPC in its representation. The encoding of such motor memory components outside primary sensorimotor regions likely underlies a parsimonious neural organization that enables more efficient movement planning in the brain, independent of the effector used to act.
Collapse
|
18
|
van Kemenade BM, Arikan BE, Podranski K, Steinsträter O, Kircher T, Straube B. Distinct Roles for the Cerebellum, Angular Gyrus, and Middle Temporal Gyrus in Action-Feedback Monitoring. Cereb Cortex 2020; 29:1520-1531. [PMID: 29912297 DOI: 10.1093/cercor/bhy048] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 01/29/2018] [Accepted: 02/14/2018] [Indexed: 12/27/2022] Open
Abstract
Action-feedback monitoring is essential to ensure meaningful interactions with the external world. This process involves generating efference copy-based sensory predictions and comparing these with the actual action-feedback. As neural correlates of comparator processes, previous fMRI studies have provided heterogeneous results, including the cerebellum, angular and middle temporal gyrus. However, these studies usually comprised only self-generated actions. Therefore, they might have induced not only action-based prediction errors, but also general sensory mismatch errors. Here, we aimed to disentangle these processes using a custom-made fMRI-compatible movement device, generating active and passive hand movements with identical sensory feedback. Online visual feedback of the hand was presented with a variable delay. Participants had to judge whether the feedback was delayed. Activity in the right cerebellum correlated more positively with delay in active than in passive trials. Interestingly, we also observed activation in the angular and middle temporal gyri, but across both active and passive conditions. This suggests that the cerebellum is a comparator area specific to voluntary action, whereas angular and middle temporal gyri seem to detect more general intersensory conflict. Correlations with behavior and cerebellar activity nevertheless suggest involvement of these temporoparietal areas in processing and awareness of temporal discrepancies in action-feedback monitoring.
Collapse
Affiliation(s)
- Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Straße 8, Marburg, Germany
| | - B Ezgi Arikan
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Straße 8, Marburg, Germany
| | - Kornelius Podranski
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Straße 8, Marburg, Germany
- Technische Hochschule Mittelhessen, Wiesenstraße 14, Gießen, Germany
| | - Olaf Steinsträter
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Straße 8, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Straße 8, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Rudolf-Bultmann-Straße 8, Marburg, Germany
| |
Collapse
|
19
|
Stirling L, Kelty-Stephen D, Fineman R, Jones MLH, Daniel Park BK, Reed MP, Parham J, Choi HJ. Static, Dynamic, and Cognitive Fit of Exosystems for the Human Operator. HUMAN FACTORS 2020; 62:424-440. [PMID: 32004106 DOI: 10.1177/0018720819896898] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To define static, dynamic, and cognitive fit and their interactions as they pertain to exosystems and to document open research needs in using these fit characteristics to inform exosystem design. BACKGROUND Initial exosystem sizing and fit evaluations are currently based on scalar anthropometric dimensions and subjective assessments. As fit depends on ongoing interactions related to task setting and user, attempts to tailor equipment have limitations when optimizing for this limited fit definition. METHOD A targeted literature review was conducted to inform a conceptual framework defining three characteristics of exosystem fit: static, dynamic, and cognitive. Details are provided on the importance of differentiating fit characteristics for developing exosystems. RESULTS Static fit considers alignment between human and equipment and requires understanding anthropometric characteristics of target users and geometric equipment features. Dynamic fit assesses how the human and equipment move and interact with each other, with a focus on the relative alignment between the two systems. Cognitive fit considers the stages of human-information processing, including somatosensation, executive function, and motor selection. Human cognitive capabilities should remain available to process task- and stimulus-related information in the presence of an exosystem. Dynamic and cognitive fit are operationalized in a task-specific manner, while static fit can be considered for predefined postures. CONCLUSION A deeper understanding of how an exosystem fits an individual is needed to ensure good human-system performance. Development of methods for evaluating different fit characteristics is necessary. APPLICATION Methods are presented to inform exosystem evaluation across physical and cognitive characteristics.
Collapse
Affiliation(s)
| | | | - Richard Fineman
- 2167 Harvard-MIT Health Science and Technology Program, Cambridge, MA, USA
| | - Monica L H Jones
- 1259 University of Michigan Transportation Research Institute, Ann Arbor, USA
| | | | - Matthew P Reed
- 1259 University of Michigan Transportation Research Institute, Ann Arbor, USA
| | - Joseph Parham
- 155353 U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Hyeg Joo Choi
- 155353 U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| |
Collapse
|
20
|
Dale A, Cullen KE. The Ventral Posterior Lateral Thalamus Preferentially Encodes Externally Applied Versus Active Movement: Implications for Self-Motion Perception. Cereb Cortex 2020; 29:305-318. [PMID: 29190334 DOI: 10.1093/cercor/bhx325] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/07/2017] [Indexed: 11/15/2022] Open
Abstract
Successful interaction with our environment requires that voluntary behaviors be precisely coordinated with our perception of self-motion. The vestibular sensors in the inner ear detect self-motion and in turn send projections via the vestibular nuclei to multiple cortical areas through 2 principal thalamocortical pathways, 1 anterior and 1 posterior. While the anterior pathway has been extensively studied, the role of the posterior pathway is not well understood. Accordingly, here we recorded responses from individual neurons in the ventral posterior lateral thalamus of macaque monkeys during externally applied (passive) and actively generated self-motion. The sensory responses of neurons that robustly encoded passive rotations and translations were canceled during comparable voluntary movement (~80% reduction). Moreover, when both passive and active self-motion were experienced simultaneously, neurons selectively encoded the detailed time course of the passive component. To examine the mechanism underlying the selective elimination of vestibular sensitivity to active motion, we experimentally controlled correspondence between intended and actual head movement. We found that suppression only occurred if the actual sensory consequences of motion matched the motor-based expectation. Together, our findings demonstrate that the posterior thalamocortical vestibular pathway selectively encodes unexpected motion, thereby providing a neural correlate for ensuring perceptual stability during active versus externally generated motion.
Collapse
Affiliation(s)
- Alexis Dale
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Zhou Y, Liu Y, Wu S, Zhang M. Neuronal Representation of the Saccadic Timing Signals in Macaque Lateral Intraparietal Area. Cereb Cortex 2019; 28:2887-2900. [PMID: 28968649 DOI: 10.1093/cercor/bhx166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/15/2017] [Indexed: 11/13/2022] Open
Abstract
Primates frequently make saccades direct fovea on interesting objects to receive acute visual information. However, saccade displaces the images on retina and disrupts the visual constancy. One possible mechanism to retain visual constancy is by integrating the presaccadic and postsaccadic visual information right at the time of saccade, which makes the timing of saccade crucial. So far, the saccadic timing signals have been found only in the subcortical regions, for example, the cerebellum and superior colliculus, but not in the neocortex. Here we report 2 types of saccadic timing signals in macaque lateral intraparietal area (LIP). First, many presaccadic response neurons started to decline activity either right around the start (saccade-on-decay) or the end (saccade-off-decay) of saccades. Notably, the time difference between saccade-off-decay and saccade-on-decay was highly correlated with the mean duration of saccades but not with the individual ones, and both saccade-off-decay and saccade-on-decay were better aligned with saccade end than saccade start-reflecting prediction. Second, the peak activity plateau of a group of postsaccadic response neurons was highly correlated with the actual duration of saccade-reflecting reality. While the predicted timing signals might facilitate the integration of visual information across saccades in LIP, the actual duration signals might calibrate the prediction errors.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China.,Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Yining Liu
- The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Si Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Mingsha Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
22
|
Mackrous I, Carriot J, Jamali M, Cullen KE. Cerebellar Prediction of the Dynamic Sensory Consequences of Gravity. Curr Biol 2019; 29:2698-2710.e4. [PMID: 31378613 DOI: 10.1016/j.cub.2019.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
As we go about our everyday activities, our brain computes accurate estimates of both our motion relative to the world and our orientation relative to gravity. However, how the brain then accounts for gravity as we actively move and interact with our environment is not yet known. Here, we provide evidence that, although during passive movements, individual cerebellar output neurons encode representations of head motion and orientation relative to gravity, these gravity-driven responses are cancelled when head movement is a consequence of voluntary generated movement. In contrast, the gravity-driven responses of primary otolith and semicircular canal afferents remain intact during both active and passive self-motion, indicating the attenuated responses of central neurons are not inherited from afferent inputs. Taken together, our results are consistent with the view that the cerebellum builds a dynamic prediction (e.g., internal model) of the sensory consequences of gravity during active self-motion, which in turn enables the preferential encoding of unexpected motion to ensure postural and perceptual stability.
Collapse
Affiliation(s)
- Isabelle Mackrous
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Jerome Carriot
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Mohsen Jamali
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | - Kathleen E Cullen
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada; Department of Biomedical Engineering, Johns Hopkins University, Rm. 720, Ross Building, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Sensori-motor adaptation to novel limb dynamics influences the representation of peripersonal space. Neuropsychologia 2019; 131:193-204. [PMID: 31091426 DOI: 10.1016/j.neuropsychologia.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 11/24/2022]
Abstract
Peripersonal space can be considered as the interface between the body and the environment, where objects can be reached and which may serve as a reference for the central nervous system with regard to possible actions. Peripersonal space can be studied by assessing the perception of the reachable space, which depends on the body's physical characteristics (i.e., arm length) since their modifications have been shown to be associated with a change in peripersonal space representation. However, it remains unclear whether the representation of limb dynamics also influences the representation of peripersonal space. The present study investigated this issue by perturbing the force-field environment. A novel force field was created by rotating an experimental platform where participants were seated while they reached towards visual targets. Manual reaching performance was assessed before, during and after platform rotation. Crucially, perception of peripersonal space was also assessed, with reachability judgments, before and after platform rotation. As expected, sensori-motor adaptation to the perturbed force field was observed. Our principal finding is that peripersonal space was systematically perceived as closer to the body after force-field adaptation. Two control experiments showed no significant difference in reachability judgments when no reaching movements were performed during platform rotation or when reaching movements were performed without platform rotation, suggesting that the change in perceived peripersonal space resulted from exposure to new limb dynamics. Overall, our findings show that sensori-motor adaptation of reaching movements to a new force field, which does not directly influence arm length but results in the updating of the arm's internal model of limb dynamics, interacts with the perceptual categorisation of space, supporting a motor contribution to the representation of peripersonal space.
Collapse
|
24
|
|
25
|
French CA, Vinueza Veloz MF, Zhou K, Peter S, Fisher SE, Costa RM, De Zeeuw CI. Differential effects of Foxp2 disruption in distinct motor circuits. Mol Psychiatry 2019; 24:447-462. [PMID: 30108312 PMCID: PMC6514880 DOI: 10.1038/s41380-018-0199-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/17/2018] [Accepted: 06/08/2018] [Indexed: 01/27/2023]
Abstract
Disruptions of the FOXP2 gene cause a speech and language disorder involving difficulties in sequencing orofacial movements. FOXP2 is expressed in cortico-striatal and cortico-cerebellar circuits important for fine motor skills, and affected individuals show abnormalities in these brain regions. We selectively disrupted Foxp2 in the cerebellar Purkinje cells, striatum or cortex of mice and assessed the effects on skilled motor behaviour using an operant lever-pressing task. Foxp2 loss in each region impacted behaviour differently, with striatal and Purkinje cell disruptions affecting the variability and the speed of lever-press sequences, respectively. Mice lacking Foxp2 in Purkinje cells showed a prominent phenotype involving slowed lever pressing as well as deficits in skilled locomotion. In vivo recordings from Purkinje cells uncovered an increased simple spike firing rate and decreased modulation of firing during limb movements. This was caused by increased intrinsic excitability rather than changes in excitatory or inhibitory inputs. Our findings show that Foxp2 can modulate different aspects of motor behaviour in distinct brain regions, and uncover an unknown role for Foxp2 in the modulation of Purkinje cell activity that severely impacts skilled movements.
Collapse
Affiliation(s)
- Catherine A. French
- 0000 0004 0453 9636grid.421010.6Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - María F. Vinueza Veloz
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands ,grid.442230.3School of Medicine, Escuela Superior Politécnica de Chimborazo, Riobamba, Ecuador
| | - Kuikui Zhou
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands ,0000000119573309grid.9227.eThe Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Saša Peter
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Simon E. Fisher
- 0000 0004 0501 3839grid.419550.cLanguage and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands ,0000000122931605grid.5590.9Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rui M. Costa
- 0000 0004 0453 9636grid.421010.6Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal ,0000000419368729grid.21729.3fDepartment of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Chris I. De Zeeuw
- 000000040459992Xgrid.5645.2Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands ,0000 0001 2153 6865grid.418101.dNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| |
Collapse
|
26
|
Mazurek KA, Berger M, Bollu T, Chowdhury RH, Elangovan N, Kuling IA, Sohn MH. Highlights from the 28th Annual Meeting of the Society for the Neural Control of Movement. J Neurophysiol 2018; 120:1671-1679. [PMID: 30020841 PMCID: PMC6230782 DOI: 10.1152/jn.00475.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Kevin A Mazurek
- Department of Neuroscience, University of Rochester , Rochester, New York
- Del Monte Institute for Neuroscience, University of Rochester , Rochester, New York
| | - Michael Berger
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz-Institute for Primate Research, Göttingen , Germany
- Faculty of Biology and Psychology, University of Göttingen , Göttingen , Germany
| | - Tejapratap Bollu
- Department of Neurobiology and Behavior, Cornell University , Ithaca, New York
| | - Raeed H Chowdhury
- Department of Biomedical Engineering, Northwestern University , Evanston, Illinois
- Department of Physiology, Northwestern University , Chicago, Illinois
| | - Naveen Elangovan
- Human Sensorimotor Control Lab, University of Minnesota , Minneapolis, Minnesota
| | - Irene A Kuling
- Department of Human Movement Sciences, VU University , Amsterdam , The Netherlands
| | - M Hongchul Sohn
- Department of Biomedical Engineering, Northwestern University , Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
| |
Collapse
|
27
|
Frank SM, Greenlee MW. The parieto-insular vestibular cortex in humans: more than a single area? J Neurophysiol 2018; 120:1438-1450. [DOI: 10.1152/jn.00907.2017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we review the structure and function of a core region in the vestibular cortex of humans that is located in the midposterior Sylvian fissure and referred to as the parieto-insular vestibular cortex (PIVC). Previous studies have investigated PIVC by using vestibular or visual motion stimuli and have observed activations that were distributed across multiple anatomical structures, including the temporo-parietal junction, retroinsula, parietal operculum, and posterior insula. However, it has remained unclear whether all of these anatomical areas correspond to PIVC and whether PIVC responds to both vestibular and visual stimuli. Recent results suggest that the region that has been referred to as PIVC in previous studies consists of multiple areas with different anatomical correlates and different functional specializations. Specifically, a vestibular but not visual area is located in the parietal operculum, close to the posterior insula, and likely corresponds to the nonhuman primate PIVC, while a visual-vestibular area is located in the retroinsular cortex and is referred to, for historical reasons, as the posterior insular cortex area (PIC). In this article, we review the anatomy, connectivity, and function of PIVC and PIC and propose that the core of the human vestibular cortex consists of at least two separate areas, which we refer to together as PIVC+. We also review the organization in the nonhuman primate brain and show that there are parallels to the proposed organization in humans.
Collapse
Affiliation(s)
- Sebastian M. Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
| | - Mark W. Greenlee
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
28
|
Mildren RL, Zaback M, Adkin AL, Bent LR, Frank JS. Learning to balance on a slackline: Development of coordinated multi-joint synergies. Scand J Med Sci Sports 2018; 28:1996-2008. [PMID: 29727499 DOI: 10.1111/sms.13208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 11/30/2022]
Abstract
Previous research has investigated synergies involved in locomotion and balance reactions; however, there is limited insight into the emergence of skilled balance control with practice of challenging tasks. We explored motor learning of tandem and single leg stance on an unstable surface-a slackline. Balance was tested in 10 naïve healthy adults at four time points: baseline, after one slackline practice session, after 1 week of practice, and 1 week following the final practice session. We recorded kinematics of the upper and lower arms bilaterally, trunk, and thigh and foot unilaterally while participants balanced in tandem and single leg stance on a slackline and narrow rigid beam (transfer task). When participants first attempted to stand on the slackline, they exhibited fast and frequent movements across all joints with actions along the frontal plane (particularly the hip) and fell after a short period (~3 seconds). Performance improved rapidly (fewer falls), and this was accompanied by dampened trunk and foot oscillations and the development of coordinated movement patterns with a progressive emphasis on more distal upper body segments. Continuous relative phase angles between joint pairs began to cluster around either 0° (indicating in-phase movement) or 180° (indicating anti-phase movement). Participants also began to demonstrate coordinated upper body synergies and performance improvements (fewer falls) on the transfer task, while a control group (n = 10) did not exhibit similar synergies or performance improvements. Our findings describe the emergence of coordinated movement synergies involving the upper body as healthy adults learn a challenging balance task.
Collapse
Affiliation(s)
- R L Mildren
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - M Zaback
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.,Department of Kinesiology, Brock University, St Catharines, ON, Canada
| | - A L Adkin
- Department of Kinesiology, Brock University, St Catharines, ON, Canada
| | - L R Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - J S Frank
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
29
|
Cullen KE, Taube JS. Our sense of direction: progress, controversies and challenges. Nat Neurosci 2017; 20:1465-1473. [PMID: 29073639 PMCID: PMC10278035 DOI: 10.1038/nn.4658] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/14/2017] [Indexed: 12/16/2022]
Abstract
In this Perspective, we evaluate current progress in understanding how the brain encodes our sense of direction, within the context of parallel work focused on how early vestibular pathways encode self-motion. In particular, we discuss how these systems work together and provide evidence that they involve common mechanisms. We first consider the classic view of the head direction cell and results of recent experiments in rodents and primates indicating that inputs to these neurons encode multimodal information during self-motion, such as proprioceptive and motor efference copy signals, including gaze-related information. We also consider the paradox that, while the head-direction network is generally assumed to generate a fixed representation of perceived directional heading, this computation would need to be dynamically updated when the relationship between voluntary motor command and its sensory consequences changes. Such situations include navigation in virtual reality and head-restricted conditions, since the natural relationship between visual and extravisual cues is altered.
Collapse
Affiliation(s)
- Kathleen E Cullen
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey S Taube
- Department of Psychological & Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
30
|
Riva G. The neuroscience of body memory: From the self through the space to the others. Cortex 2017; 104:241-260. [PMID: 28826604 DOI: 10.1016/j.cortex.2017.07.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/30/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
Our experience of the body is not direct; rather, it is mediated by perceptual information, influenced by internal information, and recalibrated through stored implicit and explicit body representation (body memory). This paper presents an overview of the current investigations related to body memory by bringing together recent studies from neuropsychology, neuroscience, and evolutionary and cognitive psychology. To do so, in the paper, I explore the origin of representations of human body to elucidate their developmental process and, in particular, their relationship with more explicit concepts of self. First, it is suggested that our bodily experience is constructed from early development through the continuous integration of sensory and cultural data from six different representations of the body, i.e., the Sentient Body (Minimal Selfhood), the Spatial Body (Self Location), the Active Body (Agency), the Personal Body (Whole Body Ownership - Me); the Objectified Body (Objectified Self - Mine), and the Social Body (Body Satisfaction - Ideal Me). Then, it is suggested that these six representations can be combined in a coherent supramodal representation, i.e. the "body matrix", through a predictive, multisensory processing activated by central, top-down, attentional processes. From an evolutionary perspective, the main goal of the body matrix is to allow the self to protect and extend its boundaries at both the homeostatic and psychological levels. From one perspective, the self extends its boundaries (peripersonal space) through the enactment and recognition of motor schemas. From another perspective, the body matrix, by defining the boundaries of the body, also defines where the self is present, i.e., in the body that is processed by the body matrix as the most likely to be its one, and in the space surrounding it. In the paper I also introduce and discuss the concept of "embodied medicine": the use of advanced technology for altering the body matrix with the goal of improving our health and well-being.
Collapse
Affiliation(s)
- Giuseppe Riva
- Centro Studi e Ricerche di Psicologia Della Comunicazione, Università Cattolica Del Sacro Cuore, Milan, Italy; Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
31
|
Dugué GP, Tihy M, Gourévitch B, Léna C. Cerebellar re-encoding of self-generated head movements. eLife 2017; 6:e26179. [PMID: 28608779 PMCID: PMC5489315 DOI: 10.7554/elife.26179] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/09/2017] [Indexed: 02/01/2023] Open
Abstract
Head movements are primarily sensed in a reference frame tied to the head, yet they are used to calculate self-orientation relative to the world. This requires to re-encode head kinematic signals into a reference frame anchored to earth-centered landmarks such as gravity, through computations whose neuronal substrate remains to be determined. Here, we studied the encoding of self-generated head movements in the rat caudal cerebellar vermis, an area essential for graviceptive functions. We found that, contrarily to peripheral vestibular inputs, most Purkinje cells exhibited a mixed sensitivity to head rotational and gravitational information and were differentially modulated by active and passive movements. In a subpopulation of cells, this mixed sensitivity underlay a tuning to rotations about an axis defined relative to gravity. Therefore, we show that the caudal vermis hosts a re-encoded, gravitationally polarized representation of self-generated head kinematics in freely moving rats.
Collapse
Affiliation(s)
- Guillaume P Dugué
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'École Normale Supérieure, Inserm U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Matthieu Tihy
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'École Normale Supérieure, Inserm U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| | - Boris Gourévitch
- Genetics and Physiology of Hearing Laboratory, Inserm UMR1120, University Paris 6, Institut Pasteur, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de Biologie de l'École Normale Supérieure, Inserm U1024, CNRS UMR8197, École Normale Supérieure, PSL Research University, Paris, France
| |
Collapse
|
32
|
MacNeilage PR, Glasauer S. Quantification of Head Movement Predictability and Implications for Suppression of Vestibular Input during Locomotion. Front Comput Neurosci 2017. [PMID: 28638335 PMCID: PMC5461342 DOI: 10.3389/fncom.2017.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Achieved motor movement can be estimated using both sensory and motor signals. The value of motor signals for estimating movement should depend critically on the stereotypy or predictability of the resulting actions. As predictability increases, motor signals become more reliable indicators of achieved movement, so weight attributed to sensory signals should decrease accordingly. Here we describe a method to quantify this predictability for head movement during human locomotion by measuring head motion with an inertial measurement unit (IMU), and calculating the variance explained by the mean movement over one stride, i.e., a metric similar to the coefficient of determination. Predictability exhibits differences across activities, being most predictable during running, and changes over the course of a stride, being least predictable around the time of heel-strike and toe-off. In addition to quantifying predictability, we relate this metric to sensory-motor weighting via a statistically optimal model based on two key assumptions: (1) average head movement provides a conservative estimate of the efference copy prediction, and (2) noise on sensory signals scales with signal magnitude. The model suggests that differences in predictability should lead to changes in the weight attributed to vestibular sensory signals for estimating head movement. In agreement with the model, prior research reports that vestibular perturbations have greatest impact at the time points and during activities where high vestibular weight is predicted. Thus, we propose a unified explanation for time-and activity-dependent modulation of vestibular effects that was lacking previously. Furthermore, the proposed predictability metric constitutes a convenient general method for quantifying any kind of kinematic variability. The probabilistic model is also general; it applies to any situation in which achieved movement is estimated from both motor signals and zero-mean sensory signals with signal-dependent noise.
Collapse
Affiliation(s)
- Paul R MacNeilage
- German Center for Vertigo and Balance Disorders, University Hospital of MunichMunich, Germany
| | - Stefan Glasauer
- German Center for Vertigo and Balance Disorders, University Hospital of MunichMunich, Germany.,Center for Sensorimotor Research and Department of Neurology, Ludwig-Maximilian-University MunichMunich, Germany
| |
Collapse
|
33
|
Mouchnino L, Lhomond O, Morant C, Chavet P. Plantar Sole Unweighting Alters the Sensory Transmission to the Cortical Areas. Front Hum Neurosci 2017; 11:220. [PMID: 28539876 PMCID: PMC5423901 DOI: 10.3389/fnhum.2017.00220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/18/2017] [Indexed: 11/23/2022] Open
Abstract
It is well established that somatosensory inputs to the cortex undergo an early and a later stage of processing. The later has been shown to be enhanced when the earlier transmission decreased. In this framework, mechanical factors such as the mechanical stress to which sensors are subjected when wearing a loaded vest are associated with a decrease in sensory transmission. This decrease is in turn associated with an increase in the late sensory processes originating from cortical areas. We hypothesized that unweighting the plantar sole should lead to a facilitation of the sensory transmission. To test this hypothesis, we recorded cortical somatosensory evoked potentials (SEPs) of individuals following cutaneous stimulation (by mean of an electrical stimulation of the foot sole) in different conditions of unweighting when standing still with eyes closed. To this end, the effective bodyweight (BW) was reduced from 100% BW to 40% BW. Contrary to what was expected, we found an attenuation of sensory information when the BW was unweighted to 41% which was not compensated by an increase of the late SEP component. Overall these results suggested that the attenuation of sensory transmission observed in 40 BW condition was not solely due to the absence of forces acting on the sole of the feet but rather to the current relevance of the afferent signals related to the balance constraints of the task.
Collapse
Affiliation(s)
- Laurence Mouchnino
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3CMarseille, France
| | - Olivia Lhomond
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3CMarseille, France
| | - Clément Morant
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3CMarseille, France.,Aix-Marseille Université, CNRS, Institut des Sciences du MouvementMarseille, France
| | - Pascale Chavet
- Aix-Marseille Université, CNRS, Institut des Sciences du MouvementMarseille, France
| |
Collapse
|
34
|
Colagiorgio P, Versino M, Colnaghi S, Quaglieri S, Manfrin M, Zamaro E, Mantokoudis G, Zee DS, Ramat S. New insights into vestibular-saccade interaction based on covert corrective saccades in patients with unilateral vestibular deficits. J Neurophysiol 2017; 117:2324-2338. [PMID: 28404827 DOI: 10.1152/jn.00864.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 11/22/2022] Open
Abstract
In response to passive high-acceleration head impulses, patients with low vestibulo-ocular reflex (VOR) gains often produce covert (executed while the head is still moving) corrective saccades in the direction of deficient slow phases. Here we examined 23 patients using passive, and 9 also active, head impulses with acute (< 10 days from onset) unilateral vestibular neuritis and low VOR gains. We found that when corrective saccades are larger than 10°, the slow-phase component of the VOR is inhibited, even though inhibition increases further the time to reacquire the fixation target. We also found that 1) saccades are faster and more accurate if the residual VOR gain is higher, 2) saccades also compensate for the head displacement that occurs during the saccade, and 3) the amplitude-peak velocity relationship of the larger corrective saccades deviates from that of head-fixed saccades of the same size. We propose a mathematical model to account for these findings hypothesizing that covert saccades are driven by a desired gaze position signal based on a prediction of head displacement using vestibular and extravestibular signals, covert saccades are controlled by a gaze feedback loop, and the VOR command is modulated according to predicted saccade amplitude. A central and novel feature of the model is that the brain develops two separate estimates of head rotation, one for generating saccades while the head is moving and the other for generating slow phases. Furthermore, while the model was developed for gaze-stabilizing behavior during passively induced head impulses, it also simulates both active gaze-stabilizing and active gaze-shifting eye movements.NEW & NOTEWORTHY During active or passive head impulses while fixating stationary targets, low vestibulo-ocular gain subjects produce corrective saccades when the head is still moving. The mechanisms driving these covert saccades are poorly understood. We propose a mathematical model showing that the brain develops two separate estimates of head rotation: a lower level one, presumably in the vestibular nuclei, used to generate the slow-phase component of the response, and a higher level one, within a gaze feedback loop, used to drive corrective saccades.
Collapse
Affiliation(s)
- Paolo Colagiorgio
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Maurizio Versino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Laboratory of Neuro-otology and Neuro-ophthalmology, C. Mondino National Neurological Institute, Pavia, Italy
| | - Silvia Colnaghi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.,Inter-Department Multiple Sclerosis Research Centre, C. Mondino National Neurological Institute, Pavia, Italy
| | - Silvia Quaglieri
- UOC Otorinolaringoiatria, Fondazione IRCCS San Matteo and University of Pavia, Pavia, Italy
| | - Marco Manfrin
- UOC Otorinolaringoiatria, Fondazione IRCCS San Matteo and University of Pavia, Pavia, Italy
| | - Ewa Zamaro
- Department of Otorhinolaryngology, Head and Neck Surgery, lnselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and
| | - Georgios Mantokoudis
- Department of Otorhinolaryngology, Head and Neck Surgery, lnselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and
| | - David S Zee
- Department of Neurology, Otolaryngology-Head and Neck Surgery, Neuroscience, Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefano Ramat
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy;
| |
Collapse
|
35
|
Melendez-Calderon A, Tan M, Bittmann MF, Burdet E, Patton JL. Transfer of dynamic motor skills acquired during isometric training to free motion. J Neurophysiol 2017; 118:219-233. [PMID: 28356476 DOI: 10.1152/jn.00614.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 11/22/2022] Open
Abstract
Recent studies have explored the prospects of learning to move without moving, by displaying virtual arm movement related to exerted force. However, it has yet to be tested whether learning the dynamics of moving can transfer to the corresponding movement. Here we present a series of experiments that investigate this isometric training paradigm. Subjects were asked to hold a handle and generate forces as their arms were constrained to a static position. A precise simulation of reaching was used to make a graphic rendering of an arm moving realistically in response to the measured interaction forces and simulated environmental forces. Such graphic rendering was displayed on a horizontal display that blocked their view to their actual (statically constrained) arm and encouraged them to believe they were moving. We studied adaptation of horizontal, planar, goal-directed arm movements in a velocity-dependent force field. Our results show that individuals can learn to compensate for such a force field in a virtual environment and transfer their new skills to the actual free motion condition, with performance comparable to practice while moving. Such nonmoving techniques should impact various training conditions when moving may not be possible.NEW & NOTEWORTHY This study provided early evidence supporting that training movement skills without moving is possible. In contrast to previous studies, our study involves 1) exploiting cross-modal sensory interactions between vision and proprioception in a motionless setting to teach motor skills that could be transferable to a corresponding physical task, and 2) evaluates the movement skill of controlling muscle-generated forces to execute arm movements in the presence of external forces that were only virtually present during training.
Collapse
Affiliation(s)
- Alejandro Melendez-Calderon
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois; .,Rehabilitation Institute of Chicago, Chicago, Illinois
| | - Michael Tan
- Rehabilitation Institute of Chicago, Chicago, Illinois.,University of Illinois at Chicago, Chicago, Illinois; and
| | - Moria Fisher Bittmann
- Rehabilitation Institute of Chicago, Chicago, Illinois.,University of Illinois at Chicago, Chicago, Illinois; and
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, UK
| | - James L Patton
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois.,Rehabilitation Institute of Chicago, Chicago, Illinois.,University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
36
|
Bui TV, Stifani N, Akay T, Brownstone RM. Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection. eLife 2016; 5. [PMID: 27977000 PMCID: PMC5218533 DOI: 10.7554/elife.21715] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/12/2016] [Indexed: 01/09/2023] Open
Abstract
The spinal cord has the capacity to coordinate motor activities such as locomotion. Following spinal transection, functional activity can be regained, to a degree, following motor training. To identify microcircuits involved in this recovery, we studied a population of mouse spinal interneurons known to receive direct afferent inputs and project to intermediate and ventral regions of the spinal cord. We demonstrate that while dI3 interneurons are not necessary for normal locomotor activity, locomotor circuits rhythmically inhibit them and dI3 interneurons can activate these circuits. Removing dI3 interneurons from spinal microcircuits by eliminating their synaptic transmission left locomotion more or less unchanged, but abolished functional recovery, indicating that dI3 interneurons are a necessary cellular substrate for motor system plasticity following transection. We suggest that dI3 interneurons compare inputs from locomotor circuits with sensory afferent inputs to compute sensory prediction errors that then modify locomotor circuits to effect motor recovery.
Collapse
Affiliation(s)
- Tuan V Bui
- Department of Biology, Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Nicolas Stifani
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada
| | - Robert M Brownstone
- Department of Medical Neuroscience, Dalhousie University, Halifax, Canada.,Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, Canada.,Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|