1
|
Beker MC, Altintas MO, Dogan E, Bayraktaroglu C, Balaban B, Ozpinar A, Sengun N, Altunay S, Kilic E. Inhibition of phosphodiesterase 10A mitigates neuronal injury by modulating apoptotic pathways in cold-induced traumatic brain injury. Mol Cell Neurosci 2024; 131:103977. [PMID: 39437931 DOI: 10.1016/j.mcn.2024.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Brain injury develops from a complex series of pathophysiological phases, resulting in acute necrotic or delayed apoptotic cell death after traumatic brain injury (TBI). Inhibition of apoptotic cell death is critical for the treatment of acute neurodegenerative disorders, such as TBI. Here, we investigated the role of phosphodiesterase 10A (PDE10A) in the development of neuronal injury, particularly in apoptotic cell death. Using the PDE10A inhibitor TAK-063, we found that PDE10A inhibition is associated with decreased brain injury, brain swelling, and blood brain barrier disruption 48 h after cold-induced TBI. Furthermore, a particularly notable result was observed with 3 mg/kg TAK-063, which reduced disseminated neuronal injury. Protein abundance analysis revealed that PDE10A inhibition activates survival kinases AKT and ERK-1/-2, which were associated with the decreased activation of MMP-9 and PTEN. Additionally, iNOS and nNOS levels significantly reduced in the TAK-063 group, playing roles in inflammation and apoptosis. A planar surface immunoassay was performed for in-depth analyses of the apoptotic signaling pathways. We observed that inhibition of PDE10A resulted in the decreased expression of TNFRSF1A, TNFRSF10B, and TNFRSF6 receptors, particularly inducing apoptotic cell death. Moreover, these findings correlated with reduced levels of pro-apoptotic proteins, including PTEN, p27, Cytochrome-c, cleaved Caspase-3, Bad, and p53. Interestingly, TAK-063 treatment reduced levels of anti-apoptotic proteins or enzymes, including XIAP, Claspin, and HIF1α, without affecting Bcl-x, MCL-1, SMAC, HO-1, HO-2, HSP27, HSP60, and HSP70. The findings suggest that PDE10A regulates cellular signaling predominantly pro-apoptotic pathways, and inhibition of this protein is a promising approach for the treatment of acute brain injury.
Collapse
Affiliation(s)
- Mustafa C Beker
- Department of Physiology, School of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye; Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye.
| | - Mehmet O Altintas
- Department of Physiology, School of Medicine, Ankara Medipol University, Ankara, Türkiye
| | - Enes Dogan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Cigdem Bayraktaroglu
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Buse Balaban
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye; Department of Medical Biology, Institute of Health Sciences, University of Health Sciences Turkey, Istanbul, Türkiye
| | - Aysenur Ozpinar
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Nursena Sengun
- Department of Physiology, School of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye
| | - Serdar Altunay
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| | - Ertugrul Kilic
- Department of Physiology, School of Medicine, Istanbul Medeniyet University, Istanbul, Türkiye; Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
2
|
Fischer QS, Kalikulov D, Viana Di Prisco G, Williams CA, Baldwin PR, Friedlander MJ. Synaptic Plasticity in the Injured Brain Depends on the Temporal Pattern of Stimulation. J Neurotrauma 2024; 41:2455-2477. [PMID: 38818799 DOI: 10.1089/neu.2024.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Neurostimulation protocols are increasingly used as therapeutic interventions, including for brain injury. In addition to the direct activation of neurons, these stimulation protocols are also likely to have downstream effects on those neurons' synaptic outputs. It is well known that alterations in the strength of synaptic connections (long-term potentiation, LTP; long-term depression, LTD) are sensitive to the frequency of stimulation used for induction; however, little is known about the contribution of the temporal pattern of stimulation to the downstream synaptic plasticity that may be induced by neurostimulation in the injured brain. We explored interactions of the temporal pattern and frequency of neurostimulation in the normal cerebral cortex and after mild traumatic brain injury (mTBI), to inform therapies to strengthen or weaken neural circuits in injured brains, as well as to better understand the role of these factors in normal brain plasticity. Whole-cell (WC) patch-clamp recordings of evoked postsynaptic potentials in individual neurons, as well as field potential (FP) recordings, were made from layer 2/3 of visual cortex in response to stimulation of layer 4, in acute slices from control (naive), sham operated, and mTBI rats. We compared synaptic plasticity induced by different stimulation protocols, each consisting of a specific frequency (1 Hz, 10 Hz, or 100 Hz), continuity (continuous or discontinuous), and temporal pattern (perfectly regular, slightly irregular, or highly irregular). At the individual neuron level, dramatic differences in plasticity outcome occurred when the highly irregular stimulation protocol was used at 1 Hz or 10 Hz, producing an overall LTD in controls and shams, but a robust overall LTP after mTBI. Consistent with the individual neuron results, the plasticity outcomes for simultaneous FP recordings were similar, indicative of our results generalizing to a larger scale synaptic network than can be sampled by individual WC recordings alone. In addition to the differences in plasticity outcome between control (naive or sham) and injured brains, the dynamics of the changes in synaptic responses that developed during stimulation were predictive of the final plasticity outcome. Our results demonstrate that the temporal pattern of stimulation plays a role in the polarity and magnitude of synaptic plasticity induced in the cerebral cortex while highlighting differences between normal and injured brain responses. Moreover, these results may be useful for optimization of neurostimulation therapies to treat mTBI and other brain disorders, in addition to providing new insights into downstream plasticity signaling mechanisms in the normal brain.
Collapse
Affiliation(s)
- Quentin S Fischer
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Djanenkhodja Kalikulov
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | | | - Carrie A Williams
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
| | - Philip R Baldwin
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Michael J Friedlander
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- FBRI Center for Neurobiology Research, Roanoke, Virginia, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Faculty of Health Sciences, Virginia Tech, Roanoke, Virginia, USA
| |
Collapse
|
3
|
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X, Liu W. Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide 2024; 152:48-57. [PMID: 39299647 DOI: 10.1016/j.niox.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Nitric oxide (NO) plays a crucial role as a messenger or effector in the body, yet it presents a dual impact on cardio-cerebrovascular health. Under normal physiological conditions, NO exhibits vasodilatory effects, regulates blood pressure, inhibits platelet aggregation, and offers neuroprotective actions. However, in pathological situations, excessive NO production contributes to or worsens inflammation within the body. Moreover, NO may combine with reactive oxygen species (ROS), generating harmful substances that intensify physical harm. This paper succinctly reviews pertinent literature to clarify the in vivo and in vitro origins of NO, its regulatory function in the cardio-cerebrovascular system, and the advantages and disadvantages associated with NO donor drugs, NO delivery systems, and vascular stent materials for treating cardio-cerebrovascular disease. The findings provide a theoretical foundation for the application of NO in cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaoming Fu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Haowei Lu
- Department of Pharmacy, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Meng Gao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Pinghe Li
- Lanzhou Foci Pharmaceutical Co., Ltd, Lanzhou, 730030, China
| | - Yan He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yu He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaojian Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Xiaoyong Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Wei Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
4
|
Ghannam A, Hahn V, Fan J, Tasevski S, Moughni S, Li G, Zhang Z. Sex-specific and cell-specific regulation of ER stress and neuroinflammation after traumatic brain injury in juvenile mice. Exp Neurol 2024; 377:114806. [PMID: 38701941 DOI: 10.1016/j.expneurol.2024.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Endoplasmic reticulum (ER) stress and neuroinflammation play an important role in secondary brain damage after traumatic brain injury (TBI). Due to the complex brain cytoarchitecture, multiple cell types are affected by TBI. However, cell type-specific and sex-specific responses to ER stress and neuroinflammation remain unclear. Here we investigated differential regulation of ER stress and neuroinflammatory pathways in neurons and microglia during the acute phase post-injury in a mouse model of impact acceleration TBI in both males and females. We found that TBI resulted in significant weight loss only in males, and sensorimotor impairment and depressive-like behaviors in both males and females at the acute phase post-injury. By concurrently isolating neurons and microglia from the same brain sample of the same animal, we were able to evaluate the simultaneous responses in neurons and microglia towards ER stress and neuroinflammation in both males and females. We discovered that the ER stress and anti-inflammatory responses were significantly stronger in microglia, especially in female microglia, compared with the male and female neurons. Whereas the degree of phosphorylated-tau (pTau) accumulation was significantly higher in neurons, compared with the microglia. In conclusion, TBI resulted in behavioral deficits and cell type-specific and sex-specific responses to ER stress and neuroinflammation, and abnormal protein accumulation at the acute phase after TBI in immature mice.
Collapse
Affiliation(s)
- Amanda Ghannam
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Victoria Hahn
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Jie Fan
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Stefanie Tasevski
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Sara Moughni
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Gengxin Li
- Statistics, Department of Mathematics and Statistics, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| |
Collapse
|
5
|
Ozkizilcik A, Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Nanowired delivery of antibodies to tau and neuronal nitric oxide synthase together with cerebrolysin attenuates traumatic brain injury induced exacerbation of brain pathology in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 171:83-121. [PMID: 37783564 DOI: 10.1016/bs.irn.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Concussive head injury (CHI) is one of the major risk factors for developing Parkinson's disease in later life of military personnel affecting lifetime functional and cognitive disturbances. Till date no suitable therapies are available to attenuate CHI or PD induced brain pathology. Thus, further exploration of novel therapeutic agents are highly warranted using nanomedicine in enhancing the quality of life of veterans or service members of US military. Since PD or CHI induces oxidative stress and perturbs neurotrophic factors regulation associated with phosphorylated tau (p-tau) deposition, a possibility exists that nanodelivery of agents that could enhance neurotrophic factors balance and attenuate oxidative stress could be neuroprotective in nature. In this review, nanowired delivery of cerebrolysin-a balanced composition of several neurotrophic factors and active peptide fragments together with monoclonal antibodies to neuronal nitric oxide synthase (nNOS) with p-tau antibodies was examined in PD following CHI in model experiments. Our results suggest that combined administration of nanowired antibodies to nNOS and p-tau together with cerebrolysin significantly attenuated CHI induced exacerbation of PD brain pathology. This combined treatment also has beneficial effects in CHI or PD alone, not reported earlier.
Collapse
Affiliation(s)
- Asya Ozkizilcik
- Dept. Biomedical Engineering, University of Arkansas, Fayetteville, AR, United Staes
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, United States
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Lin J, Chen P, Tan Z, Sun Y, Tam WK, Ao D, Shen W, Leung VYL, Cheung KMC, To MKT. Application of silver nanoparticles for improving motor recovery after spinal cord injury via reduction of pro-inflammatory M1 macrophages. Heliyon 2023; 9:e15689. [PMID: 37234658 PMCID: PMC10205515 DOI: 10.1016/j.heliyon.2023.e15689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Silver nanoparticles (AgNPs) possess anti-inflammatory activities and have been widely deployed for promoting tissue repair. Here we explored the efficacy of AgNPs on functional recovery after spinal cord injury (SCI). Our data indicated that, in a SCI rat model, local AgNPs delivery could significantly recover locomotor function and exert neuroprotection through reducing of pro-inflammatory M1 survival. Furthermore, in comparison with Raw 264.7-derived M0 and M2, a higher level of AgNPs uptake and more pronounced cytotoxicity were detected in M1. RNA-seq analysis revealed the apoptotic genes in M1 were upregulated by AgNPs, whereas in M0 and M2, pro-apoptotic genes were downregulated and PI3k-Akt pathway signaling pathway was upregulated. Moreover, AgNPs treatment preferentially reduced cell viability of human monocyte-derived M1 comparing to M2, supporting its effect on M1 in human. Overall, our findings reveal AgNPs could suppress M1 activity and imply its therapeutic potential in promoting post-SCI motor recovery.
Collapse
Affiliation(s)
- Jie Lin
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Peikai Chen
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
| | - Zhijia Tan
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
| | - Yi Sun
- Department of Sports Medicine, Peking University-Shenzhen Hospital, Shenzhen, Guangdong, 518034, China
| | - Wai Kit Tam
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Di Ao
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Wei Shen
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Victor Yu-Leong Leung
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Michael Kai Tsun To
- Department of Orthopaedics & Traumatology, The University of Hong Kong Shenzhen Hospital, School of Clinical Medicine, The University of Hong Kong, Shenzhen, Guangdong, 518053, China
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
7
|
Garay JA, Silva JE, Di Genaro MS, Davicino RC. The Multiple Faces of Nitric Oxide in Chronic Granulomatous Disease: A Comprehensive Update. Biomedicines 2022; 10:biomedicines10102570. [PMID: 36289832 PMCID: PMC9599698 DOI: 10.3390/biomedicines10102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide (NO), a signaling molecule, regulates multiple biological functions, including a variety of physiological and pathological processes. In this regard, NO participates in cutaneous inflammations, modulation of mitochondrial functions, vascular diseases, COVID-19, neurologic diseases, and obesity. It also mediates changes in the skeletal muscle function. Chronic granulomatous disease (CGD) is a primary immunodeficiency disorder characterized by the malfunction of phagocytes caused by mutations in some of the genes encoding subunits of the superoxide-generating phagocyte NADPH (NOX). The literature consulted shows that there is a relationship between the production of NO and the NADPH oxidase system, which regulates the persistence of NO in the medium. Nevertheless, the underlying mechanisms of the effects of NO on CGD remain unknown. In this paper, we briefly review the regulatory role of NO in CGD and its potential underlying mechanisms.
Collapse
Affiliation(s)
- Juan Agustín Garay
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
| | - Juan Eduardo Silva
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis 5700, Argentina
| | - María Silvia Di Genaro
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis 5700, Argentina
| | - Roberto Carlos Davicino
- División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis 5700, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis 5700, Argentina
- Correspondence:
| |
Collapse
|
8
|
Research Progress on the Role of Inflammatory Mechanisms in the Development of Postoperative Cognitive Dysfunction. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3883204. [PMID: 34869762 PMCID: PMC8642009 DOI: 10.1155/2021/3883204] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/19/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Postoperative cognitive dysfunction (POCD), as one of the common postoperative complications, mainly occurs after surgery and anesthesia, especially in the elderly. It refers to cognitive function changes such as decreased learning and memory ability and inability to concentrate. In severe cases, there could be personality changes and a decline in social behavior. At present, a great deal of research had been carried out on POCD, but its specific mechanism remains unclear. The release of peripheral inflammation-related factors, the degradation and destruction of the blood-brain barrier, the occurrence of central inflammation, and the neuronal apoptosis and synaptic loss could be promoted by neuroinflammation indicating that inflammatory mechanisms may play key roles in the occurrence of POCD.
Collapse
|
9
|
Li C, Shah KA, Powell K, Wu YC, Chaung W, Sonti AN, White TG, Doobay M, Yang WL, Wang P, Becker LB, Narayan RK. CBF oscillations induced by trigeminal nerve stimulation protect the pericontusional penumbra in traumatic brain injury complicated by hemorrhagic shock. Sci Rep 2021; 11:19652. [PMID: 34608241 PMCID: PMC8490389 DOI: 10.1038/s41598-021-99234-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Traumatic peri-contusional penumbra represents crucial targets for therapeutic interventions after traumatic brain injury (TBI). Current resuscitative approaches may not adequately alleviate impaired cerebral microcirculation and, hence, compromise oxygen delivery to peri-contusional areas. Low-frequency oscillations in cerebral blood flow (CBF) may improve cerebral oxygenation in the setting of oxygen deprivation. However, no method has been reported to induce controllable oscillations in CBF and it hasn't been applied as a therapeutic strategy. Electrical stimulation of the trigeminal nerve (TNS) plays a pivotal role in modulating cerebrovascular tone and cerebral perfusion. We hypothesized that TNS can modulate CBF at the targeted frequency band via the trigemino-cerebrovascular network, and TNS-induced CBF oscillations would improve cerebral oxygenation in peri-contusional areas. In a rat model of TBI complicated by hemorrhagic shock, TNS-induced CBF oscillations conferred significant preservation of peri-contusional tissues leading to reduced lesion volume, attenuated hypoxic injury and neuroinflammation, increased eNOS expression, improved neurological recovery and better 10-day survival rate, despite not significantly increasing CBF as compared with those in immediate and delayed resuscitation animals. Our findings indicate that low-frequency CBF oscillations enhance cerebral oxygenation in peri-contusional areas, and play a more significant protective role than improvements in non-oscillatory cerebral perfusion or volume expansion alone.
Collapse
Affiliation(s)
- Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Kevin A Shah
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yi-Chen Wu
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Wayne Chaung
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Anup N Sonti
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Mohini Doobay
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Lance B Becker
- Department of Emergency Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.,Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
10
|
Zhu HY, Hong FF, Yang SL. The Roles of Nitric Oxide Synthase/Nitric Oxide Pathway in the Pathology of Vascular Dementia and Related Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22094540. [PMID: 33926146 PMCID: PMC8123648 DOI: 10.3390/ijms22094540] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Vascular dementia (VaD) is the second most common form of dementia worldwide. It is caused by cerebrovascular disease, and patients often show severe impairments of advanced cognitive abilities. Nitric oxide synthase (NOS) and nitric oxide (NO) play vital roles in the pathogenesis of VaD. The functions of NO are determined by its concentration and bioavailability, which are regulated by NOS activity. The activities of different NOS subtypes in the brain are partitioned. Pathologically, endothelial NOS is inactivated, which causes insufficient NO production and aggravates oxidative stress before inducing cerebrovascular endothelial dysfunction, while neuronal NOS is overactive and can produce excessive NO to cause neurotoxicity. Meanwhile, inflammation stimulates the massive expression of inducible NOS, which also produces excessive NO and then induces neuroinflammation. The vicious circle of these kinds of damage having impacts on each other finally leads to VaD. This review summarizes the roles of the NOS/NO pathway in the pathology of VaD and also proposes some potential therapeutic methods that target this pathway in the hope of inspiring novel ideas for VaD therapeutic approaches.
Collapse
Affiliation(s)
- Han-Yan Zhu
- Department of Physiology, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China;
- Queen Marry College, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China
| | - Fen-Fang Hong
- Teaching Center, Department of Experimental, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China
- Correspondence: (F.-F.H.); (S.-L.Y.)
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, 461 Bayi Avenue, Nanchang 330006, China;
- Correspondence: (F.-F.H.); (S.-L.Y.)
| |
Collapse
|
11
|
Alqahtani F, Assiri MA, Mohany M, Imran I, Javaid S, Rasool MF, Shakeel W, Sivandzade F, Alanazi AZ, Al-Rejaie SS, Alshammari MA, Alasmari F, Alanazi MM, Alamri FF. Coadministration of Ketamine and Perampanel Improves Behavioral Function and Reduces Inflammation in Acute Traumatic Brain Injury Mouse Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3193725. [PMID: 33381547 PMCID: PMC7749776 DOI: 10.1155/2020/3193725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is among the most debilitating neurological disorders with inadequate therapeutic options. It affects all age groups globally leading to post-TBI behavioral challenges and life-long disabilities requiring interventions for these health issues. In the current study, C57BL/6J mice were induced with TBI through the weight-drop method, and outcomes of acutely administered ketamine alone and in combination with perampanel were observed. The impact of test drugs was evaluated for post-TBI behavioral changes by employing the open field test (OFT), Y-maze test, and novel object recognition test (NOR). After that, isolated plasma and brain homogenates were analyzed for inflammatory modulators, i.e., NF-κB and iNOS, through ELISA. Moreover, metabolomic studies were carried out to further authenticate the TBI rescuing potential of drugs. The animals treated with ketamine-perampanel combination demonstrated improved exploratory behavior in OFT (P < 0.05), while ketamine alone as well as in combination yielded anxiolytic effect (P < 0.05-0.001) in posttraumatic mice. Similarly, the % spontaneous alternation and % discrimination index were increased after the administration of ketamine alone (P < 0.05) and ketamine-perampanel combination (P < 0.01-0.001) in the Y-maze test and NOR test, respectively. ELISA demonstrated the reduced central and peripheral expression of NF-κB (P < 0.05) and iNOS (P < 0.01-0.0001) after ketamine-perampanel polypharmacy. The TBI-imparted alteration in plasma metabolites was restored by drug combination as evidenced by metabolomic studies. The outcomes were fruitful with ketamine, but the combination therapy proved more significant in improving all studied parameters. The benefits of this new investigated polypharmacy might be due to their antiglutamatergic, antioxidant, and neuroprotective capacity.
Collapse
Affiliation(s)
- Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Waleed Shakeel
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ahmed Z. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faisal F. Alamri
- College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. Neurosci Biobehav Rev 2020; 120:372-386. [PMID: 33171143 DOI: 10.1016/j.neubiorev.2020.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
L.P. Li, J.W. Liang and H.J. Fu. An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. NEUROSCI BIOBEHAV REVXXX-XXX,2020.-Traumatic brain injury (TBI) and Alzheimer's disease (AD) are devastating conditions that have long-term consequences on individual's cognitive functions. Although TBI has been considered a risk factor for the development of AD, the link between TBI and AD is still in debate. Aggregation of hyperphosphorylated tau and intercorrelated synaptic dysfunction, two key pathological elements in both TBI and AD, play a pivotal role in mediating neurodegeneration and cognitive deficits, providing a mechanistic link between these two diseases. In the first part of this review, we analyze the experimental literatures on tau pathology in various TBI models and review the distribution, biological features and mechanisms of tau pathology following TBI with implications in AD pathogenesis. In the second part, we review evidences of TBI-mediated structural and functional impairments in synapses, with a focus on the overlapped mechanisms underlying synaptic abnormalities in both TBI and AD. Finally, future perspectives are proposed for uncovering the complex relationship between TBI and neurodegeneration, and developing potential therapeutic avenues for alleviating cognitive deficits after TBI.
Collapse
|
13
|
Li R, Huang Z, Luo J, Luo H, Wang W. Downregulation of the CB1-Mediated Endocannabinoid Signaling Underlies D-Galactose-Induced Memory Impairment. Front Mol Neurosci 2020; 13:130. [PMID: 32848596 PMCID: PMC7399637 DOI: 10.3389/fnmol.2020.00130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Imbalance in redox homeostasis is a major cause of age-related cognitive impairment. The endocannabinoid system (ECS) is a key player in regulating synaptic transmission, plasticity and memory. Increasing evidence indicates an important interplay between the two systems. However, how excessive oxidative stress could alter ECS and that, in turn, impairs its modulatory role in synaptic plasticity and cognitive function remains elusive. In the present study, we examined this causal link in D-galactose-induced oxidative rats. First, the reactive oxygen species generating enzymes, especially nitric oxide synthase (NOS), indeed show an elevated expression in D-galactose-treated rats, and this was correlated to an impaired hippocampal long-term potentiation (LTP) and spatial memory loss in animal behavioral tests. Second, the cannabinoid receptor type I (CB1)-mediated signaling is known to regulate synaptic plasticity. We show that a decrease in CB1 and increase in degradation enzymes for CB1 ligand endocannabinoid anandamide all occurred to D-galactose-treated rats. Surprisingly, application of low-dose anandamide, known to reduce LTP under physiological condition, now acted to enhance LTP in D-galactose-treated rats, most likely resulted from the inhibition of GABAergic synapses. Furthermore, this reversal behavior of CB1-signaling could be fully simulated by a NOS inhibitor, diphenyleneiodonium. These observations suggest that interaction between redox dysfunction and ECS should contribute significantly to the impaired synaptic plasticity and memory loss in D-galactose-treated rats. Therefore, therapies focusing on the balance of these two systems may shed lights on the treatment of age-related cognitive impairment in the future.
Collapse
Affiliation(s)
- Ranran Li
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Huang
- Department of Anesthesia, Wuhan Fourth Hospital and Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Luo
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Luo
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Yin L, Gao S, Li C. Exogenous hydrogen sulfide alleviates surgery-induced neuroinflammatory cognitive impairment in adult mice by inhibiting NO signaling. BMC Anesthesiol 2020; 20:12. [PMID: 31918664 PMCID: PMC6953271 DOI: 10.1186/s12871-019-0927-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/30/2019] [Indexed: 01/04/2023] Open
Abstract
Background To investigate the effect and mechanisms of exogenous hydrogen sulfide in surgery-induced neuroinflammatory cognitive dysfunction. Methods C57BL/6 J male mice (n = 140) were used and randomly divided into seven groups: the sham group, surgery group, GYY4137 group, L-NAME group, surgery+GYY4137 group, surgery +L-NAME group, and surgery+GYY4137 + L-NAME group. After the interventions, open field tests (OFT) and the Morris water maze (MWM) test were conducted to evaluate learning and memory abilities in the mice. ELISAs, nitrate reductase assays, and Western blots (WB) were conducted to evaluate interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), nitric oxide (NO), inducible nitric oxide synthase (iNOS), malondialdehyde (MDA), and antioxidant enzyme superoxide dismutase (SOD) levels. Furthermore, the expression level of microglial marker ionized calcium binding adaptor molecule 1 (IBA) in the hippocampal CA1 and CA3 areas was detected by an immunohistochemical (IHC) assay and apoptotic cells were observed using terminal deoxynucleotidyl transferase dUTP end-labeling (TUNEL) staining kits. Results We found that surgery induced neuroinflammatory cognitive dysfunction, oxidative stress, microglial activation, and cell apoptosis in the hippocampus. Moreover, following surgery, NO and iNOS levels were elevated in the hippocampus. Notably, all the effects caused by surgery were reversed by the H2S donor GYY4137 or the iNOS inhibitor N(gamma)-nitro-L-arginine methyl ester (L-NAME). However, the combined application of GYY4137 and L-NAME was not superior to treatment with either agent alone and the effect of GYY4137 was similar to that of L-NAME. Conclusion The long-acting hydrogen sulfide donor GYY4137 had an ability to reversed the cognitive deficits and inflammation caused by carotid artery exposure surgery. This implies that NO signaling pathways might participate in this process. These results indicate that exogenous H2S may be a promising therapy for POCD.
Collapse
Affiliation(s)
- Lijun Yin
- Department of Anesthesiology, Baodi Clinical College of Tianjin Medical University, No.8 Guangchuan Road, Baodi District, Tianjin, 301800, China
| | - Shunli Gao
- Department of Anesthesiology, Baodi Clinical College of Tianjin Medical University, No.8 Guangchuan Road, Baodi District, Tianjin, 301800, China
| | - Changkun Li
- Department of Anesthesiology, Baodi Clinical College of Tianjin Medical University, No.8 Guangchuan Road, Baodi District, Tianjin, 301800, China.
| |
Collapse
|
15
|
Birla H, Minocha T, Kumar G, Misra A, Singh SK. Role of Oxidative Stress and Metal Toxicity in the Progression of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:552-562. [PMID: 31969104 PMCID: PMC7457422 DOI: 10.2174/1570159x18666200122122512] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the life-threatening neurodegenerative disorders in the elderly (>60 years) and incurable across the globe to date. AD is caused by the involvement of various genetic, environmental and lifestyle factors that affect neuronal cells to degenerate over the period of time. The oxidative stress is engaged in the pathogenesis of various disorders and its key role is also linked to the etiology of AD. AD is attributed by neuronal loss, abnormal accumulation of Amyloid-β (Aβ) and neurofibrillary tangles (NFTs) with severe memory impairments and other cognitive dysfunctions which lead to the loss of synapses and neuronal death and eventual demise of the individual. Increased production of reactive oxygen species (ROS), loss of mitochondrial function, altered metal homeostasis, aberrant accumulation of senile plaque and mitigated antioxidant defense mechanism all are indulged in the progression of AD. In spite of recent advances in biomedical research, the underlying mechanism of disruption of redox balance and the actual source of oxidative stress is still obscure. This review highlights the generation of ROS through different mechanisms, the role of some important metals in the progression of AD and free radical scavenging by endogenous molecule and supplementation of nutrients in AD.
Collapse
Affiliation(s)
| | | | | | | | - Sandeep Kumar Singh
- Address correspondence to this author at the Indian Scientific Education and Technology Foundation, Lucknow-226002, India;E-mails: ;
| |
Collapse
|
16
|
Pinho V, Fernandes M, da Costa A, Machado R, Gomes AC. Leukemia inhibitory factor: Recent advances and implications in biotechnology. Cytokine Growth Factor Rev 2019; 52:25-33. [PMID: 31870618 DOI: 10.1016/j.cytogfr.2019.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Leukemia inhibitory factor (LIF) is a pleiotropic cytokine with several functions in health and disease ranging from inflammation to cancer. LIF is also a potential target and/or therapeutic agent for diseases such as multiple sclerosis, stroke and even psychological disorders, where the function of LIF as a neurotrophic factor has only recently been explored. In recent years, a limited number of LIF clinical trials have been completed, which partially explains the shortage of effective applications as a therapeutic agent. With the increasing interest from biotechnology companies producing recombinant LIF, this status quo will certainly change, and the potential impact of LIF in terms of disease diagnosis, treatment and management will be realized.
Collapse
Affiliation(s)
- Vanessa Pinho
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Mário Fernandes
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - André da Costa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Raúl Machado
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal
| | - Andreia C Gomes
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal; IB-S Institute of Science and Innovation for Sustainability, University of Minho, Campus of Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
17
|
Wang YS, Hsieh W, Chung JR, Lan TH, Wang Y. Repetitive mild traumatic brain injury alters diurnal locomotor activity and response to the light change in mice. Sci Rep 2019; 9:14067. [PMID: 31575951 PMCID: PMC6773703 DOI: 10.1038/s41598-019-50513-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is a common cause of brain damage with a high incidence of multiple mTBIs found among athletes and soldiers. The purpose of this study is to examine the diurnal behavioral changes after multiple mTBIs. Adult mice were anesthetized; mTBI was conducted by dropping a 30-g weight to the right temporal skull once (mTBI1) or three times (mTBI3) over 3-week. Open-field motor behavior was recorded for 3 days after the last mTBI. In the first 4-hour exploratory phase, mTBI1 or mTBI3 equally reduced locomotor activity. A significant reduction of locomotor activity was found in the dark cycle between 4–72 hour in mTBI1 or mTBI3 mice; higher motor activity was seen after mTBI3 compared to mTBI1. In the light cycle, mTBI3 mice demonstrated an earlier immobilization followed by hyperactivity. The response to light change significantly correlated with the number of impacts. The IBA1 and BAX protein levels were equally increased in the lesioned cortex after mTBI1 and mTBI3. mTBI3 selectively upregulated the expression of circadian clock gene Per1 in hypothalamus and hippocampus as well as iNOS expression in the lesioned side cortex. Our data suggest multiple mTBIs alter diurnal locomotor activity and response to the change of light, which may involve Per1 expression in the lesioned brain.
Collapse
Affiliation(s)
- Yu-Syuan Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wei Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Jia-Ru Chung
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tsuo-Hung Lan
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan.,Department of Psychiatry, Taichung Veteran General Hospital, Taichung, Taiwan.,Department of Psychiatry, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
18
|
Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H. Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci 2018; 10:376. [PMID: 30505270 PMCID: PMC6250852 DOI: 10.3389/fnagi.2018.00376] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Vascular dementia (VaD) is the second most common type of dementia after Alzheimer's disease (AD), characterized by progressive cognitive impairment, memory loss, and thinking or speech problems. VaD is usually caused by cerebrovascular disease, during which, cerebrovascular endothelial cells (CECs) are vulnerable. CEC dysfunction occurs before the onset of VaD and can eventually lead to dysregulation of cerebral blood flow and blood-brain barrier damage, followed by the activation of glia and inflammatory environment in the brain. White matter, neuronal axons, and synapses are compromised in this process, leading to cognitive impairment. The present review summarizes the mechanisms underlying CEC impairment during hypoperfusion and pathological role of CECs in VaD. Through the comprehensive examination and summarization, endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway, Ras homolog gene family member A (RhoA) signaling pathway, and CEC-derived caveolin-1 (CAV-1) are proposed to serve as targets of new drugs for the treatment of VaD.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf Dieter Rausch
- Department for Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Madathil SK, Wilfred BS, Urankar SE, Yang W, Leung LY, Gilsdorf JS, Shear DA. Early Microglial Activation Following Closed-Head Concussive Injury Is Dominated by Pro-Inflammatory M-1 Type. Front Neurol 2018; 9:964. [PMID: 30498469 PMCID: PMC6249371 DOI: 10.3389/fneur.2018.00964] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
Microglial activation is a pathological hallmark of traumatic brain injury (TBI). Following brain injury, activated microglia/macrophages adopt different phenotypes, generally categorized as M-1, or classically activated, and M-2, or alternatively activated. While the M-1, or pro-inflammatory phenotype is detrimental to recovery, M-2, or the anti-inflammatory phenotype, aids in brain repair. Recent findings also suggest the existence of mixed phenotype following brain injury, where activated microglia simultaneously express both M-1 and M-2 markers. The present study sought to determine microglial activation states at early time points (6-72 h) following single or repeated concussive injury in rats. Closed-head concussive injury was modeled in rats using projectile concussive impact injury, with either single or repeated impacts (4 impacts, 1 h apart). Brain samples were examined using immunohistochemical staining, inflammatory gene profiling and real-time polymerase chain reaction analyses to detect concussive injury induced changes in microglial activation and phenotype in cortex and hippocampal regions. Our findings demonstrate robust microglial activation following concussive brain injury. Moreover, we show that multiple concussions induced a unique rod-shaped microglial morphology that was also observed in other diffuse brain injury models. Histological studies revealed a predominance of MHC-II positive M-1 phenotype in the post-concussive microglial milieu following multiple impacts. Although there was simultaneous expression of M-1 and M-2 markers, gene expression results indicate a clear dominance in M-1 pro-inflammatory markers following both single and repeated concussions. While the increase in M-1 markers quickly resolved after a single concussion, they persisted following repeated concussions, indicating a pro-inflammatory environment induced by multiple concussions that may delay recovery and contribute to long-lasting consequences of concussion.
Collapse
Affiliation(s)
- Sindhu K Madathil
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard S Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sarah E Urankar
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Weihong Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
20
|
Madathil SK, Wilfred BS, Urankar SE, Yang W, Leung LY, Gilsdorf JS, Shear DA. Early Microglial Activation Following Closed-Head Concussive Injury Is Dominated by Pro-Inflammatory M-1 Type. Front Neurol 2018. [PMID: 30498469 DOI: 10.3389/fneur.2018.00964/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Microglial activation is a pathological hallmark of traumatic brain injury (TBI). Following brain injury, activated microglia/macrophages adopt different phenotypes, generally categorized as M-1, or classically activated, and M-2, or alternatively activated. While the M-1, or pro-inflammatory phenotype is detrimental to recovery, M-2, or the anti-inflammatory phenotype, aids in brain repair. Recent findings also suggest the existence of mixed phenotype following brain injury, where activated microglia simultaneously express both M-1 and M-2 markers. The present study sought to determine microglial activation states at early time points (6-72 h) following single or repeated concussive injury in rats. Closed-head concussive injury was modeled in rats using projectile concussive impact injury, with either single or repeated impacts (4 impacts, 1 h apart). Brain samples were examined using immunohistochemical staining, inflammatory gene profiling and real-time polymerase chain reaction analyses to detect concussive injury induced changes in microglial activation and phenotype in cortex and hippocampal regions. Our findings demonstrate robust microglial activation following concussive brain injury. Moreover, we show that multiple concussions induced a unique rod-shaped microglial morphology that was also observed in other diffuse brain injury models. Histological studies revealed a predominance of MHC-II positive M-1 phenotype in the post-concussive microglial milieu following multiple impacts. Although there was simultaneous expression of M-1 and M-2 markers, gene expression results indicate a clear dominance in M-1 pro-inflammatory markers following both single and repeated concussions. While the increase in M-1 markers quickly resolved after a single concussion, they persisted following repeated concussions, indicating a pro-inflammatory environment induced by multiple concussions that may delay recovery and contribute to long-lasting consequences of concussion.
Collapse
Affiliation(s)
- Sindhu K Madathil
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard S Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sarah E Urankar
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Weihong Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|