1
|
Uslu A, Çekmen N, Torgay A, Haberal M. Perioperative management in pediatric domino liver transplantation for metabolic disorders: A narrative review. Paediatr Anaesth 2024; 34:1107-1118. [PMID: 38980227 DOI: 10.1111/pan.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Domino liver transplantation and domino-auxiliary partial orthotopic liver transplantation are emerging techniques that can expand the liver donor pool and provide hope for children with liver disease. The innovative technique of domino liver transplantation has emerged as a pioneering strategy, capitalizing on structurally preserved livers from donors exhibiting single enzymatic defects within a morphologically normal context, effectively broadening the donor pool. Concurrently, the increasingly prevalent domino-auxiliary partial orthotopic liver transplantation method assumes a critical role in bolstering available donor resources. These advanced transplantation methods present a unique opportunity for pediatric patients who, despite having structurally and functionally intact livers and lacking early signs of portal hypertension or extrahepatic involvement, do not attain priority on conventional transplant lists. Utilizing optimal clinical conditions enhances posttransplant outcomes, benefiting patients who would otherwise endure extended waiting periods for traditional transplantation. The perioperative management of children undergoing these procedures is complex and requires careful consideration of some factors, including clinical and metabolic conditions of the specific metabolic disorder, and the need for tailored perioperative management planning. Furthermore, the prudent consideration of de novo disease development in the recipient assumes paramount significance when selecting suitable donors for domino liver transplantation, as it profoundly influences prognosis, mortality, and morbidity. This narrative review of domino liver transplantation will discuss the pathophysiology, clinical evaluation, perioperative management, and prognostic expectations, focusing on perioperative anesthetic considerations for children undergoing domino liver transplantation.
Collapse
Affiliation(s)
- Ahmed Uslu
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Başkent University, Ankara, Türkiye
| | - Nedim Çekmen
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Başkent University, Ankara, Türkiye
| | - Adnan Torgay
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Başkent University, Ankara, Türkiye
| | - Mehmet Haberal
- Department of Surgical Sciences, Organ and Tissue Transplantation Center, Başkent University, Ankara, Türkiye
| |
Collapse
|
2
|
Lin D, Lu Y, Qiu B, Feng M, Luo Y, Xue F, Zhou T, Zhu J, Zhang J, Wang L, Xia Q, Wan P. The therapeutic effect of liver transplantation in 14 children with homozygous familial hypercholesterolemia: a prospective cohort: Liver transplant for familial hypercholesterolemia. J Clin Lipidol 2024:S1933-2874(24)00235-6. [PMID: 39294020 DOI: 10.1016/j.jacl.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/19/2024] [Accepted: 08/23/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Homozygous familial hypercholesterolemia (HoFH) is characterized by elevated low-density lipoprotein cholesterol (LDL-C) and early-onset cardiovascular disease. To assess the therapeutic effects of liver transplantation (LT) on HoFH patients, we observed and analyzed the outcomes of HoFH children after LT. STUDY DESIGN This prospective cohort study included all LT candidates under 18 years old diagnosed with HoFH at Ren Ji Hospital between November 2017 and July 2021. The patients were followed until October 2023. They were treated according to the standard protocol at our center. We collected data on changes in lipid profiles, clinical manifestations, and cardiovascular complications at different time points, and recorded postoperative recipient and graft survival. RESULTS Fourteen HoFH patients with a median age of 7 (2-12) years were included. Preoperatively, xanthomas and arcus corneas occurred in 14 and 3 patients, respectively, with 10 patients showing mild cardiovascular disease. All patients underwent LT. Recipient and graft survival rates were 100 % over a median follow-up duration of 35 (27-71) months. Median LDL-C levels dropped from 11.83 (7.99-26.14) mmol/L preoperatively to 2.3 (1.49-3.39) mmol/L postoperative at the last measurement. Thirteen patients discontinued lipid-lowering treatment after LT, while only one patient resumed statins 6 months post-operation. Xanthomas and arcus corneas significantly improved. Cardiovascular complications regressed in five patients, with no progression observed in the others. CONCLUSIONS LT is a safe and effective treatment for severe HoFH patients beyond lipid-lowering control. Early LT improves prognosis and quality of life while minimizing the risk of cardiovascular complications.
Collapse
Affiliation(s)
- Dongni Lin
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127, China
| | - Yefeng Lu
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127, China
| | - Bijun Qiu
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127, China
| | - Mingxuan Feng
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127, China
| | - Yi Luo
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127, China
| | - Feng Xue
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127, China
| | - Tao Zhou
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127, China
| | - Jianjun Zhu
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127, China
| | - Jianjun Zhang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127, China
| | - Lvya Wang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Department of Cardiology, Beijing Anzhen Hospital Affiliated with Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127, China; Shanghai Institute of Organ Transplantation, 1630 Dongfang Road, Shanghai, 200127, China; Shanghai Research Center of Organ Transplantation & Immune Engineering Technology, 1630 Dongfang Road, Shanghai, 200127, China.
| | - Ping Wan
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
3
|
Alonso R, Arroyo-Olivares R, Díaz-Díaz JL, Fuentes-Jiménez F, Arrieta F, de Andrés R, Gonzalez-Bustos P, Argueso R, Martin-Ordiales M, Martinez-Faedo C, Illán F, Saenz P, Donate JM, Sanchez Muñoz-Torrero JF, Martinez-Hervas S, Mata P. Improved lipid-lowering treatment and reduction in cardiovascular disease burden in homozygous familial hypercholesterolemia: The SAFEHEART follow-up study. Atherosclerosis 2024; 393:117516. [PMID: 38523000 DOI: 10.1016/j.atherosclerosis.2024.117516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
AIM We aimed to describe clinical and genetic characteristics, lipid-lowering treatment and atherosclerotic cardiovascular disease (ASCVD) outcomes over a long-term follow-up in homozygous familial hypercholesterolemia (HoFH). METHODS SAFEHEART (Spanish Familial Hypercholesterolaemia Cohort Study) is a long-term study in molecularly diagnosed FH. Data analyzed in HoFH were prospectively obtained from 2004 until 2022. ASCVD events, lipid profile and lipid-lowering treatment were determined. RESULTS Thirty-nine HoFH patients were analyzed. The mean age was 42 ± 20 years and nineteen (49%) were women. Median follow-up was 11 years (IQR 6,18). Median age at genetic diagnosis was 24 years (IQR 8,42). At enrolment, 33% had ASCVD and 18% had aortic valve disease. Patients with new ASCVD events and aortic valve disease at follow-up were six (15%), and one (3%), respectively. Median untreated LDL-C levels were 555 mg/dL (IQ 413,800), and median LDL-C levels at last follow-up was 122 mg/dL (IQR 91,172). Most patients (92%) were on high intensity statins and ezetimibe, 28% with PCSK9i, 26% with lomitapide, and 23% with lipoprotein-apheresis. Fourteen patients (36%) attained an LDL-C level below 100 mg/dL, and 10% attained an LDL-C below 70 mg/dL in secondary prevention. Patients with null/null variants were youngers, had higher untreated LDL-C and had the first ASCVD event earlier. Free-event survival is longer in patients with defective variant compared with those patients with at least one null variant (p=0.02). CONCLUSIONS HoFH is a severe life threating disease with a high genetic and phenotypic variability. The improvement in lipid-lowering treatment and LDL-C levels have contributed to reduce ASCVD events.
Collapse
Affiliation(s)
- Rodrigo Alonso
- Fundación Hipercolesterolemia Familiar, Madrid, Spain; Center for Advanced Metabolic Medicine and Nutrition, Santiago, Chile.
| | | | | | - Francisco Fuentes-Jiménez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Cordoba, Reina Sofia University Hospital, CIBERObn, Córdoba, Spain
| | | | | | - Pablo Gonzalez-Bustos
- Department of Internal Medicine, Hospital Universitario Virgen de Las Nieves, Granada, Spain
| | - Rosa Argueso
- Department of Endocrinology, Hospital Universitario de Lugo, Lugo, Spain
| | | | | | - Fátima Illán
- Department of Endocrinology, Hospital Morales Meseguer, Murcia, Spain
| | - Pedro Saenz
- Department of Internal Medicine, Hospital de Mérida, Mérida, Spain
| | - José María Donate
- Department of Pediatric Endocrinology, Hospital General Universitario Santa Lucía, Murcia, Spain
| | | | - Sergio Martinez-Hervas
- Department of Endocrinology, Hospital Clínico Universitario de Valencia INCLIVA, CIBER de Diabetes, Spain
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain.
| |
Collapse
|
4
|
Reijman MD, Kusters DM, Groothoff JW, Arbeiter K, Dann EJ, de Boer LM, de Ferranti SD, Gallo A, Greber-Platzer S, Hartz J, Hudgins LC, Ibarretxe D, Kayikcioglu M, Klingel R, Kolovou GD, Oh J, Planken RN, Stefanutti C, Taylan C, Wiegman A, Schmitt CP. Clinical practice recommendations on lipoprotein apheresis for children with homozygous familial hypercholesterolaemia: An expert consensus statement from ERKNet and ESPN. Atherosclerosis 2024; 392:117525. [PMID: 38598969 DOI: 10.1016/j.atherosclerosis.2024.117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024]
Abstract
Homozygous familial hypercholesterolaemia is a life-threatening genetic condition, which causes extremely elevated LDL-C levels and atherosclerotic cardiovascular disease very early in life. It is vital to start effective lipid-lowering treatment from diagnosis onwards. Even with dietary and current multimodal pharmaceutical lipid-lowering therapies, LDL-C treatment goals cannot be achieved in many children. Lipoprotein apheresis is an extracorporeal lipid-lowering treatment, which is used for decades, lowering serum LDL-C levels by more than 70% directly after the treatment. Data on the use of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia mainly consists of case-reports and case-series, precluding strong evidence-based guidelines. We present a consensus statement on lipoprotein apheresis in children based on the current available evidence and opinions from experts in lipoprotein apheresis from over the world. It comprises practical statements regarding the indication, methods, treatment goals and follow-up of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia and on the role of lipoprotein(a) and liver transplantation.
Collapse
Affiliation(s)
- M Doortje Reijman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - D Meeike Kusters
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Jaap W Groothoff
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Klaus Arbeiter
- Division of Paediatric Nephrology and Gastroenterology, Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Eldad J Dann
- Blood Bank and Apheresis Unit Rambam Health Care Campus, Haifa, Israel
| | - Lotte M de Boer
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Sarah D de Ferranti
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Antonio Gallo
- Sorbonne Université, INSERM, UMR 1166, Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpêtrière, F-75013, Paris, France
| | - Susanne Greber-Platzer
- Clinical Division of Paediatric Pulmonology, Allergology and Endocrinology, Department of Paediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Jacob Hartz
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lisa C Hudgins
- The Rogosin Institute, Weill Cornell Medical College, New York, NY, USA
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit (UVASMET), Hospital Universitari Sant Joan, Spain; Universitat Rovira i Virgili, Spain; Institut Investigació Sanitària Pere Virgili (IISPV)-CERCA, Spain; Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Meral Kayikcioglu
- Department of Cardiology, Medical Faculty, Ege University, 35100, Izmir, Turkey
| | - Reinhard Klingel
- Apheresis Research Institute, Stadtwaldguertel 77, 50935, Cologne, Germany(†)
| | - Genovefa D Kolovou
- Metropolitan Hospital, Department of Preventive Cardiology, 9, Ethn. Makariou & 1, El. Venizelou, N. Faliro, 185 47, Athens, Greece
| | - Jun Oh
- University Medical Center Hamburg/Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - R Nils Planken
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| | - Claudia Stefanutti
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, 'Umberto I' Hospital 'Sapienza' University of Rome, I-00161, Rome, Italy
| | - Christina Taylan
- Paediatric Nephrology, Children's and Adolescents' Hospital, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Albert Wiegman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Claus Peter Schmitt
- Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, Germany
| |
Collapse
|
5
|
Al-Ashwal A, Alsagheir A, Al Dubayee M, Al-Khnifsawi M, Al-Sarraf A, Awan Z, Ben-Omran T, Al-Yaarubi S, Almutair A, Habeb A, Maatouk F, Alshareef M, Kholaif N, Blom D. Modern approaches to the management of homozygous familial hypercholesterolemia in the Middle East and North Africa. J Clin Lipidol 2024; 18:e132-e141. [PMID: 38158247 DOI: 10.1016/j.jacl.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Homozygous familial hypercholesterolaemia (HoFH) is a severe form of FH in which inheritance of two defective or null mutations in genes associated with metabolism of low-density lipoprotein cholesterol (LDL-C) results in extremely high LDL-C, premature atherosclerotic cardiovascular disease (ASCVD) and mortality. Treatment of HoFH comprises a multi-modal approach of statins, ezetimibe, lipoprotein apheresis; and inhibitors of proprotein convertase subtilisin/kexin type, angiopoietin-like protein 3 (ANGPTL3) and microsomal triglyceride transfer protein. These treatments are generally costly, and patients also often require treatment for ASCVD consequent to HoFH. Therefore, in the interests of both economics and preservation of life, disease prevention via genetic screening and counselling is rapidly becoming a key element in the overall management of HoFH. Guidelines are available to assist diagnosis and treatment of HoFH; however, while advancements have been made in the management of the disease, there has been little systematic attention paid to prevention. Additionally, the Middle East/North Africa (MENA) region has a higher prevalence of HoFH than most other regions - chiefly due to consanguinity. This has led to the establishment of regional lipid clinics and awareness programs that have thrown education and awareness of HoFH into sharp focus. Incorporation of principles of prevention, education, awareness, and data from real-world use of existing therapeutics will significantly enhance the effectiveness of future guidelines for the management of HoFH, particularly in the MENA region.
Collapse
Affiliation(s)
- Abdullah Al-Ashwal
- Medical & Clinical Affairs, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia (Dr Al-Ashwal)
| | - Afaf Alsagheir
- Pediatrics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia (Dr Alsagheir)
| | - Mohammed Al Dubayee
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11426, Saudi Arabia (Dr Al Dubayee)
| | | | - Ahmed Al-Sarraf
- Sabah Al Ahmad Cardiac Center, Department Cardiology, Ministry of Health, Kuwait (Dr Al-Sarraf)
| | - Zuhier Awan
- Division of Clinical Biochemistry, King Abdulaziz University, Abdullah Sulayman, Jeddah, Saudi Arabia (Dr Awan)
| | - Tawfeg Ben-Omran
- Division of Genetics and Genomic Medicine, Sidra Medicine and Hamad Medical Corporation, Doha, Qatar (Dr Ben-Omran)
| | - Saif Al-Yaarubi
- Oman Medical Specialty Board, Muscat, Sultanate of Oman (Dr Al-Yaarubi)
| | - Angham Almutair
- King Abdullah Specialised Children's Hospital, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia (Dr Almutair)
| | - Abdelhadi Habeb
- Pediatric Department, Prince Mohamed Bin Abdulaziz Hospital, Madinah, Saudi Arabia (Dr Habeb)
| | - Faouzi Maatouk
- Division of Cardiology, Department of Medicine, Fattouma Bourguiba University Hospital, Tunisia (Dr Maatouk)
| | - Manal Alshareef
- National Guard Hospital, Prince Mutib Ibn Abdullah Rd, National Guard District, Riyadh, Saudi Arabia (Dr Alshareef)
| | - Naji Kholaif
- Heart Centre Cardiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia (Dr Kholaif); Alfaisal University College of Medicine, Riyadh, Saudi Arabia (Dr Kholaif)
| | - Dirk Blom
- Division of Lipidology, Department of Medicine and Cape Heart Institute, University of Cape Town, Cape Town, South Africa (Dr Blom)
| |
Collapse
|
6
|
Anderson S, Botti C. The genetics of autosomal dominant familial hypercholesterolemia. J Am Assoc Nurse Pract 2024; 36:136-142. [PMID: 37624754 DOI: 10.1097/jxx.0000000000000930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/23/2023] [Indexed: 08/27/2023]
Abstract
ABSTRACT Familial hypercholesterolemia (FH) is one of the most common genetic conditions. Affected individuals are unable to metabolize cholesterol due to inherited changes in the low-density lipoprotein (LDL) receptor, which impairs the ability to metabolize cholesterol, resulting in extremely high levels of cholesterol that leads to premature coronary artery disease. Autosomal dominant FH is caused by variants in several genes, which may present as heterozygous FH (less severe) or homozygous FH (more severe). Clinical diagnosis may be more likely when there is a family history of two or more first-degree relatives with total and LDL-cholesterol (LDL-C) level elevations, a child is identified, or the affected individual or close relatives have tendon xanthomas and/or progressive atherosclerosis. This article provides an overview of autosomal dominant FH, including disease prevalence, clinical diagnostic criteria, genetic variants, diagnostic testing, pathognomonic findings, and treatment options. It also shares a brief case, which highlights challenges associated with genetic test interpretation and the importance of including experienced providers in the diagnosis and treatment of this underdiagnosed and often untreated or undertreated genetic condition.
Collapse
Affiliation(s)
- Sharon Anderson
- Division of Medical Genetics, Rutgers Robert Wood Johnson Medical School, Rutgers Health, Child Health Institute of New Jersey, New Brunswick, New Jersey
- Division of Advanced Nursing Practice, School of Nursing, Rutgers, The State University of New Jersey, Newark, New Jersey
| | - Christina Botti
- Division of Medical Genetics, Rutgers Robert Wood Johnson Medical School, Rutgers Health, Child Health Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
7
|
Page MM, Hardikar W, Alex G, Bates S, Srinivasan S, Stormon M, Hall K, Evans HM, Johnston P, Chen J, Wigg A, John L, Ekinci EI, O'Brien RC, Jones R, Watts GF. Long-term outcomes of liver transplantation for homozygous familial hypercholesterolaemia in Australia and New Zealand. Atherosclerosis 2023; 387:117305. [PMID: 37863699 DOI: 10.1016/j.atherosclerosis.2023.117305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND AND AIMS Homozygous familial hypercholesterolaemia (FH) causes severe cardiovascular disease from childhood. Conventional drug therapy is usually ineffective; lipoprotein apheresis (LA) is often required. Liver transplantation (LT) can correct the metabolic defect but is considered a treatment of last resort. Newer drugs including lomitapide and evinacumab might reduce the need for apheresis and LT. We sought to determine the long-term outcomes following LT in Australia and New Zealand. METHODS We analysed demographic, biochemical and clinical data from all patients in Australia and New Zealand who have received LT for homozygous FH, identified from the Australia and New Zealand Liver and Intestinal Transplant Registry. RESULTS Nine patients (five female; one deceased; seven aged between 3 and 6 years at the time of LT and two aged 22 and 26 years) were identified. Mean follow-up was 14.1 years (range 4-27). Baseline LDL-cholesterol off all treatment was 23 ± 4.1 mmol/L. Mean LDL-cholesterol on medical therapy (including maximal statin therapy in all patients, ezetimibe in three and LA in five) was 11 ± 5.7 mmol/L (p < 0.001). After LT, mean LDL-cholesterol was 2.6 ± 0.9 mmol/L (p = 0.004) with three patients remaining on statin therapy and none on LA. One patient died from acute myocardial infarction (AMI) three years after LT. Two patients required aortic valve replacement, more than 10 years after LT. The remaining six patients were asymptomatic after eight to 21 years of follow-up. No significant adverse events associated with immunosuppression were reported. CONCLUSIONS LT for homozygous FH was highly effective in achieving substantial long-term reduction in LDL-cholesterol concentrations in all nine patients. LT remains an option for severe cases of homozygous FH where drug therapy combined with apheresis is ineffective or unfeasible.
Collapse
Affiliation(s)
- Michael M Page
- Medical School, The University of Western Australia, Perth, Australia; Western Diagnostic Pathology, Perth, Australia
| | - Winita Hardikar
- Gastroenterology and Clinical Nutrition, The Royal Children's Hospital Melbourne, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - George Alex
- Gastroenterology and Clinical Nutrition, The Royal Children's Hospital Melbourne, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Sue Bates
- Gastroenterology and Clinical Nutrition, The Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Michael Stormon
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Gastroenterology and Hepatology, The Children's Hospital at Westmead, Sydney, Australia
| | - Kat Hall
- Hepatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, Australia
| | - Helen M Evans
- Paediatric Gastroenterology and Hepatology, Starship Child Health, Auckland, New Zealand; Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Peter Johnston
- New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand
| | - John Chen
- South Australia Liver Transplant Unit, Flinders Medical Centre, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alan Wigg
- South Australia Liver Transplant Unit, Flinders Medical Centre, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Libby John
- South Australia Liver Transplant Unit, Flinders Medical Centre, Adelaide, Australia
| | - Elif I Ekinci
- Department of Endocrinology, Austin Health, Melbourne, Australia; The Australian Centre for Accelerating Diabetes Innovation, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia; Department of Medicine, Austin Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Richard C O'Brien
- Department of Endocrinology, Austin Health, Melbourne, Australia; Department of Medicine, Austin Health, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Robert Jones
- Hepatobiliary and Liver Transplant Surgery Unit, Austin Health, Melbourne, Australia; Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Gerald F Watts
- Medical School, The University of Western Australia, Perth, Australia; Department of Cardiovascular Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
8
|
Watts GF, Gidding SS, Hegele RA, Raal FJ, Sturm AC, Jones LK, Sarkies MN, Al-Rasadi K, Blom DJ, Daccord M, de Ferranti SD, Folco E, Libby P, Mata P, Nawawi HM, Ramaswami U, Ray KK, Stefanutti C, Yamashita S, Pang J, Thompson GR, Santos RD. International Atherosclerosis Society guidance for implementing best practice in the care of familial hypercholesterolaemia. Nat Rev Cardiol 2023; 20:845-869. [PMID: 37322181 DOI: 10.1038/s41569-023-00892-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
This contemporary, international, evidence-informed guidance aims to achieve the greatest good for the greatest number of people with familial hypercholesterolaemia (FH) across different countries. FH, a family of monogenic defects in the hepatic LDL clearance pathway, is a preventable cause of premature coronary artery disease and death. Worldwide, 35 million people have FH, but most remain undiagnosed or undertreated. Current FH care is guided by a useful and diverse group of evidence-based guidelines, with some primarily directed at cholesterol management and some that are country-specific. However, none of these guidelines provides a comprehensive overview of FH care that includes both the lifelong components of clinical practice and strategies for implementation. Therefore, a group of international experts systematically developed this guidance to compile clinical strategies from existing evidence-based guidelines for the detection (screening, diagnosis, genetic testing and counselling) and management (risk stratification, treatment of adults or children with heterozygous or homozygous FH, therapy during pregnancy and use of apheresis) of patients with FH, update evidence-informed clinical recommendations, and develop and integrate consensus-based implementation strategies at the patient, provider and health-care system levels, with the aim of maximizing the potential benefit for at-risk patients and their families worldwide.
Collapse
Affiliation(s)
- Gerald F Watts
- School of Medicine, University of Western Australia, Perth, WA, Australia.
- Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia.
| | | | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine, Western University, London, ON, Canada
| | - Frederick J Raal
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amy C Sturm
- Department of Genomic Health, Geisinger, Danville, PA, USA
- 23andMe, Sunnyvale, CA, USA
| | - Laney K Jones
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Mitchell N Sarkies
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Khalid Al-Rasadi
- Medical Research Centre, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Dirk J Blom
- Division of Lipidology and Cape Heart Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Hapizah M Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM) and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Specialist Lipid and Coronary Risk Prevention Clinics, Hospital Al-Sultan Abdullah (HASA) and Clinical Training Centre, Puncak Alam and Sungai Buloh Campuses, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Uma Ramaswami
- Royal Free London NHS Foundation Trust, University College London, London, UK
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Claudia Stefanutti
- Department of Molecular Medicine, Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Regional Centre for Rare Diseases, Immunohematology and Transfusion Medicine, Umberto I Hospital, 'Sapienza' University of Rome, Rome, Italy
| | - Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
| | - Jing Pang
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | | | - Raul D Santos
- Lipid Clinic, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
9
|
Katzmann JL, Laufs U. Liver transplantation for homozygous familial hypercholesterolemia: Cure for a genetic disease? Atherosclerosis 2023; 387:117337. [PMID: 37866977 DOI: 10.1016/j.atherosclerosis.2023.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Affiliation(s)
- Julius L Katzmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany.
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Reijman MD, Kusters DM, Groothoff JW, Arbeiter K, Dann EJ, de Boer LM, de Ferranti SD, Gallo A, Greber-Platzer S, Hartz J, Hudgins LC, Ibarretxe D, Kayikcioglu M, Klingel R, Kolovou GD, Oh J, Planken RN, Stefanutti C, Taylan C, Wiegman A, Schmitt CP. Clinical practice recommendations on lipoprotein apheresis for children with homozygous familial hypercholesterolemia: an expert consensus statement from ERKNet and ESPN. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.14.23298547. [PMID: 38014132 PMCID: PMC10680892 DOI: 10.1101/2023.11.14.23298547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Homozygous familial hypercholesterolaemia is a life-threatening genetic condition, which causes extremely elevated LDL-C levels and atherosclerotic cardiovascular disease very early in life. It is vital to start effective lipid-lowering treatment from diagnosis onwards. Even with dietary and current multimodal pharmaceutical lipid-lowering therapies, LDL-C treatment goals cannot be achieved in many children. Lipoprotein apheresis is an extracorporeal lipid-lowering treatment, which is well established since three decades, lowering serum LDL-C levels by more than 70% per session. Data on the use of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia mainly consists of case-reports and case-series, precluding strong evidence-based guidelines. We present a consensus statement on lipoprotein apheresis in children based on the current available evidence and opinions from experts in lipoprotein apheresis from over the world. It comprises practical statements regarding the indication, methods, treatment targets and follow-up of lipoprotein apheresis in children with homozygous familial hypercholesterolaemia and on the role of lipoprotein(a) and liver transplantation.
Collapse
Affiliation(s)
- M. Doortje Reijman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - D. Meeike Kusters
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Jaap W. Groothoff
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Klaus Arbeiter
- Division of Paediatric Nephrology and Gastroenterology, Department of Paediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Eldad J. Dann
- Blood Bank and apheresis unit Rambam Health care campus, Haifa, Israel
| | - Lotte M. de Boer
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Sarah D. de Ferranti
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Antonio Gallo
- Sorbonne Université, INSERM, UMR 1166, Lipidology and cardiovascular prevention Unit, Department of Nutrition, APHP, Hôpital Pitié-Salpêtrière F-75013 Paris, France
| | - Susanne Greber-Platzer
- Clinical Division of Paediatric Pulmonology, Allergology and Endocrinology, Department of Paediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Jacob Hartz
- Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Lisa C. Hudgins
- The Rogosin Institute, Weill Cornell Medical College, New York, New York, USA
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit (UVASMET), Hospital Universitari Sant Joan; Universitat Rovira i Virgili; Institut Investigació Sanitària Pere Virgili (IISPV)-CERCA, Spain; Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
| | - Meral Kayikcioglu
- Department of Cardiology, Medical Faculty, Ege University, 35100 Izmir, Turkey
| | - Reinhard Klingel
- Apheresis Research Institute, Stadtwaldguertel 77, 50935 Cologne, Germany (www.apheresis-research.org)
| | - Genovefa D. Kolovou
- Metropolitan Hospital, Department of Preventive Cardiology. 9, Ethn. Makariou & 1, El. Venizelou, N. Faliro, 185 47, Athens, Greece
| | - Jun Oh
- University Medical Center Hamburg/Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - R. Nils Planken
- Department of Radiology and nuclear medicine, Amsterdam UMC, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, The Netherlands
| | - Claudia Stefanutti
- Department of Molecular Medicine, Lipid Clinic and Atherosclerosis Prevention Centre, ‘Umberto I’ Hospital ‘Sapienza’ University of Rome, I-00161 Rome, Italy
| | - Christina Taylan
- Paediatric Nephrology, Children’s and Adolescents’ Hospital, University Hospital of Cologne, Faculty of Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Albert Wiegman
- Amsterdam UMC, University of Amsterdam, Department of Paediatrics, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, Netherlands
| | - Claus Peter Schmitt
- Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, Germany
| |
Collapse
|
11
|
Lan NSR, Bajaj A, Watts GF, Cuchel M. Recent advances in the management and implementation of care for familial hypercholesterolaemia. Pharmacol Res 2023; 194:106857. [PMID: 37460004 DOI: 10.1016/j.phrs.2023.106857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Familial hypercholesterolaemia (FH) is a common autosomal semi-dominant and highly penetrant disorder of the low-density lipoprotein (LDL) receptor pathway, characterised by lifelong elevated levels of low-density lipoprotein cholesterol (LDL-C) and increased risk of atherosclerotic cardiovascular disease (ASCVD). However, many patients with FH are not diagnosed and do not attain recommended LDL-C goals despite maximally tolerated doses of potent statin and ezetimibe. Over the past decade, several cholesterol-lowering therapies such as those targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) or angiopoietin-like 3 (ANGPTL3) with monoclonal antibody or ribonucleic acid (RNA) approaches have been developed that promise to close the treatment gap. The availability of new therapies with complementary modes of action of lipid metabolism has enabled many patients with FH to attain guideline-recommended LDL-C goals. Emerging therapies for FH include liver-directed gene transfer of the LDLR, vaccines targeting key proteins involved in cholesterol metabolism, and CRISPR-based gene editing of PCSK9 and ANGPTL3, but further clinical trials are required. In this review, current and emerging treatment strategies for lowering LDL-C, and ASCVD risk-stratification, as well as implementation strategies for the care of patients with FH are reviewed.
Collapse
Affiliation(s)
- Nick S R Lan
- Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia; School of Medicine, The University of Western Australia, Perth, Australia.
| | - Archna Bajaj
- Division of Translational Medicine & Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gerald F Watts
- Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia; School of Medicine, The University of Western Australia, Perth, Australia
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Lin S, Hu T, Wang K, Wang J, Zhu Y, Chen X. In vitro assessment of the pathogenicity of the LDLR c.2160delC variant in familial hypercholesterolemia. Lipids Health Dis 2023; 22:77. [PMID: 37340302 DOI: 10.1186/s12944-023-01848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an inherited disorder with markedly elevated low-density lipoprotein cholesterol (LDL-C) and premature atherosclerotic cardiovascular disease. Although many mutations have been reported in FH, only a few have been identified as pathogenic mutations. This study aimed to confirm the pathogenicity of the LDL receptor (LDLR) c.2160delC variant in FH. METHODS In this study, the proband and her family members were systematically investigated, and a pedigree map was drawn. High-throughput whole-exome sequencing was used to explore the variants in this family. Next, quantitative polymerase chain reaction (qPCR), western blot (WB) assays, and flow cytometry were conducted to detect the effect of the LDLR c.2160delC variant on its expression. The LDL uptake capacity and cell localization of LDLR variants were analyzed by confocal microscopy. RESULTS According to Dutch Lipid Clinic Network (DLCN) diagnostic criteria, three FH patients were identified with the LDLR c.2160delC variant in this family. An in-silico analysis suggested that the deletion mutation at the 2160 site of LDLR causes a termination mutation. The results of qPCR and WB verified that the LDLR c.2160delC variant led to early termination of LDLR gene transcription. Furthermore, the LDLR c.2160delC variant caused LDLR to accumulate in the endoplasmic reticulum, preventing it from reaching the cell surface and internalizing LDL. CONCLUSIONS The LDLR c.2160delC variant is a terminating mutation that plays a pathogenic role in FH.
Collapse
Affiliation(s)
- Shaoyi Lin
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Tingting Hu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaihan Wang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiaqi Wang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunyun Zhu
- Department of Geriatrics, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Cuchel M, Raal FJ, Hegele RA, Al-Rasadi K, Arca M, Averna M, Bruckert E, Freiberger T, Gaudet D, Harada-Shiba M, Hudgins LC, Kayikcioglu M, Masana L, Parhofer KG, Roeters van Lennep JE, Santos RD, Stroes ESG, Watts GF, Wiegman A, Stock JK, Tokgözoğlu LS, Catapano AL, Ray KK. 2023 Update on European Atherosclerosis Society Consensus Statement on Homozygous Familial Hypercholesterolaemia: new treatments and clinical guidance. Eur Heart J 2023:7148157. [PMID: 37130090 DOI: 10.1093/eurheartj/ehad197] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023] Open
Abstract
This 2023 statement updates clinical guidance for homozygous familial hypercholesterolaemia (HoFH), explains the genetic complexity, and provides pragmatic recommendations to address inequities in HoFH care worldwide. Key strengths include updated criteria for the clinical diagnosis of HoFH and the recommendation to prioritize phenotypic features over genotype. Thus, a low-density lipoprotein cholesterol (LDL-C) >10 mmol/L (>400 mg/dL) is suggestive of HoFH and warrants further evaluation. The statement also provides state-of-the art discussion and guidance to clinicians for interpreting the results of genetic testing and for family planning and pregnancy. Therapeutic decisions are based on the LDL-C level. Combination LDL-C-lowering therapy-both pharmacologic intervention and lipoprotein apheresis (LA)-is foundational. Addition of novel, efficacious therapies (i.e. inhibitors of proprotein convertase subtilisin/kexin type 9, followed by evinacumab and/or lomitapide) offers potential to attain LDL-C goal or reduce the need for LA. To improve HoFH care around the world, the statement recommends the creation of national screening programmes, education to improve awareness, and management guidelines that account for the local realities of care, including access to specialist centres, treatments, and cost. This updated statement provides guidance that is crucial to early diagnosis, better care, and improved cardiovascular health for patients with HoFH worldwide.
Collapse
Affiliation(s)
- Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 9017 Maloney Building, 3600 Spruce Street, Philadelphia, PA 19104, USA
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand Parktown, Johannesburg, South Africa
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Khalid Al-Rasadi
- Department of Biochemistry, College of Medicine & Health Sciences, Medical Research Center, Sultan Qaboos University, Muscat, Oman
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Eric Bruckert
- Pitié-Salpêtrière Hospital and Sorbonne University, Cardio metabolic Institute, Paris, France
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE, Clinical and Translational Research Center, and Lipid Clinic, Chicoutimi Hospital, Chicoutimi, Québec, Canada
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Lisa C Hudgins
- Rogosin Institute, Weill Cornell Medical College, New York, NY, USA
| | - Meral Kayikcioglu
- Department of Cardiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Luis Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV CIBERDEM, Reus, Spain
| | - Klaus G Parhofer
- Medizinische Klinik und Poliklinik IV, Ludwigs-Maximilians University Klinikum, Munich, Germany
| | | | - Raul D Santos
- Lipid Clinic, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
- Academic Research Organization Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerald F Watts
- Medical School, University of Western Australia, and Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Albert Wiegman
- Department of Pediatrics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jane K Stock
- European Atherosclerosis Society, Gothenburg, Sweden
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- IRCCS MultiMedica, and Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
14
|
Kholaif N, Mohamed TI, Alharbi IS, Aljenedil SA, AlHumaidan H, Al-Ashwal A, Almahfouz A, Algorashi S, Almasood A, Baqal OJ. Management and clinical outcomes of patients with homozygous familial hypercholesteremia in Saudi Arabia. Monaldi Arch Chest Dis 2023; 93. [PMID: 36786168 DOI: 10.4081/monaldi.2023.2503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 02/05/2023] Open
Abstract
We report the incidence, patient characteristic with clinical outcomes in patients with homozygous familial hypercholesterolemia (HoFH) in Saudi Arabia. This is a retrospective and prospective, single center study which included 37 patients 14 years and older enrolled and followed up between 2018-2021 for three years. 46% were females, 78% were offspring of consanguineous marriage. LDLR mutation was in 78% and LDL-C/LDLRAP in 3% of patients. Mean LDL-C at the first presentation was 14.2±3.7 mmol/L, average Dutch lipid score was 20.9±6.24. LDL apheresis was performed on 70% of patients. Most patients were on ezetimibe (92%), high-dose statins ( 84%) and PCSK9 inhibitors (32%). 48.6% had aortic stenosis, out of which 30% had severe aortic stenosis. Ten underwent aortic valve surgery (5 mechanical valve, 3 Ross procedure, 1 aortic valve repair, 1 bioprosthetic valve) and one had transcatheter aortic valve implantation (TAVI). Coronary artery bypass surgery (CABG) was performed on 32% and percutaneous intervention (PCI) on 11% of patients. HoFH patients have complex diseases with high morbidity and mortality, and benefit from a highly specialized multidisciplinary clinic to address their clinical needs. Although there are several therapeutic agents on the horizon, early diagnosis, and treatment of HoFH remain critical to optimize patient outcomes.
Collapse
Affiliation(s)
- Naji Kholaif
- Heart Center Department, King Faisal Specialist Hospital and Research Center, Riyadh; Department of Medicine, Alfaisal University College of Medicine, Riyadh.
| | - Tahir I Mohamed
- Heart Center Department, King Faisal Specialist Hospital and Research Center, Riyadh.
| | - Ibrahim S Alharbi
- Heart Center Department, King Faisal Specialist Hospital and Research Center, Riyadh; Department of Medicine, Alfaisal University College of Medicine, Riyadh.
| | - Sumayah A Aljenedil
- Heart Center Department, King Faisal Specialist Hospital and Research Center, Riyadh; Department of Medicine, Alfaisal University College of Medicine, Riyadh.
| | - Hind AlHumaidan
- Heart Center Department, King Faisal Specialist Hospital and Research Center, Riyadh; Department of Medicine, Alfaisal University College of Medicine, Riyadh.
| | - Abdullah Al-Ashwal
- Heart Center Department, King Faisal Specialist Hospital and Research Center, Riyadh; Department of Medicine, Alfaisal University College of Medicine, Riyadh.
| | - Abdulraof Almahfouz
- Heart Center Department, King Faisal Specialist Hospital and Research Center, Riyadh; Department of Medicine, Alfaisal University College of Medicine, Riyadh.
| | - Shahd Algorashi
- Heart Center Department, King Faisal Specialist Hospital and Research Center, Riyadh; Department of Medicine, Alfaisal University College of Medicine, Riyadh.
| | - Ali Almasood
- Heart Center Department, King Faisal Specialist Hospital and Research Center, Riyadh; Department of Medicine, Alfaisal University College of Medicine, Riyadh.
| | - Omar J Baqal
- Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ.
| |
Collapse
|
15
|
Kayikcioglu M, Tokgozoglu L. Current Treatment Options in Homozygous Familial Hypercholesterolemia. Pharmaceuticals (Basel) 2022; 16:ph16010064. [PMID: 36678563 PMCID: PMC9863418 DOI: 10.3390/ph16010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH) is the rare form of familial hypercholesterolemia causing extremely high low-density lipoprotein cholesterol (LDL-C) levels, leading to atherosclerotic cardiovascular disease (ASCVD) in the first decades of life, if left untreated. Early diagnosis and effective lipid lowering therapy (LLT) are crucial for the prevention of early ASCVD in patients with HoFH. On-treatment LDL-C levels are the best predictor of survival. However, due to the absent or defective LDL-receptor activity, most individuals with HoFH are resistant to conventional LLT, that leads to LDL-C clearance by upregulating LDL-receptors. We are at the dawn of a new era of effective pharmacotherapies for HoFH patients, with new agents providing an LDL-receptor independent cholesterol reduction. In this context, the present review provides a summary of the currently available therapies and emerging therapeutic agents for the management of patients with HoFH, in light of recent evidence and guideline recommendations.
Collapse
Affiliation(s)
- Meral Kayikcioglu
- Department of Cardiology, Medical Faculty, Ege University, 35100 Izmir, Turkey
- Correspondence:
| | - Lale Tokgozoglu
- Department of Cardiology, Medical Faculty, Hacettepe University, 06230 Ankara, Turkey
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW We reviewed current and future therapeutic options for patients with homozygous familial hypercholesterolemia (HoFH) and place this evidence in context of an adaptable treatment algorithm. RECENT FINDINGS Lowering LDL-C levels to normal in patients with HoFH is challenging, but a combination of multiple lipid-lowering therapies (LLT) is key. Patients with (near) absence of LDL receptor expression are most severely affected and frequently require regular lipoprotein apheresis on top of combined pharmacologic LLT. Therapies acting independently of the LDL receptor pathway, such as lomitapide and evinacumab, are considered game changers for many patients with HoFH, and may reduce the need for lipoprotein apheresis in future. Liver transplantation is to be considered a treatment option of last resort. Headway is being made in gene therapy strategies, either aiming to permanently replace or knock out key lipid-related genes, with first translational steps into humans being made. Cardiovascular disease risk management beyond LDL-C, such as residual Lp(a) or inflammatory risk, should be evaluated and addressed accordingly in HoFH. SUMMARY Hypercholesterolemia is notoriously difficult to control in most patients with HoFH, but multi-LLT, including newer drugs, allows reduction of LDL-C to levels unimaginable until a few years ago. Cost and availability of these new therapies are important future challenges to be addressed.
Collapse
Affiliation(s)
- Tycho R. Tromp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Marina Cuchel
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Perioperative Management and Clinical Outcomes of Liver Transplantation for Children with Homozygous Familial Hypercholesterolemia. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101430. [PMID: 36295590 PMCID: PMC9607350 DOI: 10.3390/medicina58101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022]
Abstract
Background and Objectives: Liver transplantation (LT) has been accepted as a life-saving option as a last resort for children with homozygous familial hypercholesterolemia (HoFH). Perioperative management of LT for HoFH poses extra challenges for clinicians largely due to premature atherosclerotic cardiovascular diseases (ASCVDs). We aimed to analyze our data of pediatric LT recipients with HoFH, with special attention paid to perioperative management and clinical outcomes. Materials and Methods: After obtaining approval from the local ethics committee, the clinical data of pediatric patients with HoFH who underwent LT at our institution between January 2014 and February 2021 were retrospectively studied. Results: Six pediatric LT recipients with HoFH were included in the analysis. Although ASCVDs were common before LT, all children with HoFH survived the perioperative period without in-hospital mortality. However, one patient experienced acute myocardial infarction two months following LT and was successfully treated with medical interventions. Post-LT metabolic improvement was shown by declines in serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels in the early post-LT period (for TC: 14.7 ± 3.2 mmol/L vs. 5.5 ± 1.8 mmol/L, p < 0.001; for LDL-C: 10.6 ± 2.2 mmol/L vs. 3.6 ± 1.2 mmol/L, p < 0.001, respectively) and at the last follow-up (for TC: 14.7 ± 3.2 mmol/L vs. 4.5 ± 0.9 mmol/L, p = 0.001; for LDL-C: 10.6 ± 2.2 mmol/L vs. 2.8 ± 0.6 mmol/L, p = 0.001, respectively). Dietary restrictions could be lifted after LT. However, three patients required restarting lipid-lowering therapy after LT due to suboptimal LDL-C levels and progression of ASCVDs. Conclusions: Our data suggest that LT can be a safe and feasible therapeutic option for well-selected patients with HoFH, offering relaxed dietary restrictions and remarkable reductions in LDL-C levels. However, concerns remain regarding progression of ASCVDs after LT.
Collapse
|