1
|
Martinez-Lucio TS, Mendoza-Ibañez OI, Liu W, Mostafapour S, Li Z, Providência L, Salvi de Souza G, Mohr P, Dobrolinska MM, van Leer B, Tingen HSA, van Sluis J, Tsoumpas C, Glaudemans AWJM, Koopmans KP, Lammertsma AA, Slart RHJA. Long Axial Field of View PET/CT: Technical Aspects in Cardiovascular Diseases. Semin Nucl Med 2024:S0001-2998(24)00094-1. [PMID: 39537432 DOI: 10.1053/j.semnuclmed.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Positron emission tomography / computed tomography (PET/CT) plays a pivotal role in the assessment of cardiovascular diseases (CVD), particularly in the context of ischemic heart disease. Nevertheless, its application in other forms of CVD, such as infiltrative, infectious, or inflammatory conditions, remains limited. Recently, PET/CT systems with an extended axial field of view (LAFOV) have been developed, offering greater anatomical coverage and significantly enhanced PET sensitivity. These advancements enable head-to-pelvis imaging with a single bed position, and in systems with an axial field of view (FOV) of approximately 2 meters, even total body (TB) imaging is feasible in a single scan session. The application of LAFOV PET/CT in CVD presents a promising opportunity to improve systemic cardiovascular assessments and address the limitations inherent to conventional short axial field of view (SAFOV) devices. However, several technical challenges, including procedural considerations for LAFOV systems in CVD, complexities in data processing, arterial input function extraction, and artefact management, have not been fully explored. This review aims to discuss the technical aspects of LAFOV PET/CT in relation to CVD by highlighting key opportunities and challenges and examining the impact of these factors on the evaluation of most relevant CVD.
Collapse
Affiliation(s)
- Tonantzin Samara Martinez-Lucio
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Oscar Isaac Mendoza-Ibañez
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wanling Liu
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Samaneh Mostafapour
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zekai Li
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Providência
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Giordana Salvi de Souza
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Philipp Mohr
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magdalena M Dobrolinska
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, Katowice, Poland
| | - Bram van Leer
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrea S A Tingen
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Pieter Koopmans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
2
|
Bhakta S, Chowdhury MM, Tarkin JM, Rudd JH, Warburton EA, Evans NR. 18F-NaF uptake on vascular PET imaging in symptomatic versus asymptomatic atherosclerotic disease: A meta-analysis. Vasc Med 2024:1358863X241287692. [PMID: 39415512 DOI: 10.1177/1358863x241287692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
INTRODUCTION 18F-sodium fluoride (NaF) positron-emission tomography (PET) is increasingly being used to measure microcalcification in atherosclerotic disease in vivo. Correlations have been drawn between sodium fluoride uptake and the presence of high-risk plaque features, as well as its association with clinical atherosclerotic sequelae. The aim of this study was to perform a meta-analysis of NaF uptake on PET imaging and its relation to symptomatic and asymptomatic disease. METHODS A systematic review was performed according to PRISMA guidelines, via searching the Ovid MEDLINE, Ovid Embase, Cochrane Library, PubMed, Scopus, and Web of Science Core Collection databases up to May 2024. The search strategy included the terms 'NaF', 'PET', and 'plaque', and all studies with data regarding the degree of microcalcification, as measured by 18F-NaF uptake in symptomatic and asymptomatic atherosclerotic plaques, were included. Analysis involved calculating mean differences between uptake values and comparison using a random-effects model. RESULTS A total of 16 articles, involving 423 participants, were included in the meta-analysis (10 carotid artery studies, five coronary artery studies, and one in peripheral vascular disease). Comparing 18F-NaF uptake in symptomatic versus asymptomatic atherosclerotic plaques, a mean difference of 0.43 (95% CI 0.29 to 0.57; p < 0.0001, I2 = 65%) was noted in studies comparing symptomatic and asymptomatic plaques in the same participant, with a significant difference in effect based on arterial territory studied (χ2 = 12.68, p = 0.0018). In studies of participants with and without symptomatic disease, there was no significant difference between symptomatic and asymptomatic plaques (mean difference 0.27, 95% CI -0.26 to 0.80, p = 0.28, I2 = 85%). CONCLUSIONS PET imaging using 18F-NaF can detect differences in microcalcification between symptomatic and asymptomatic atherosclerotic plaques within, but not between, individuals, and thus, is a marker of symptomatic disease. The standardization of 18F-NaF PET imaging protocols, and its future use as a risk stratification tool or outcome measure, requires further study. (PROSPERO Registration ID: CRD42023451363).
Collapse
Affiliation(s)
- Shiv Bhakta
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Jason M Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - James Hf Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | | | - Nicholas R Evans
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Maier A, Teunissen AJP, Nauta SA, Lutgens E, Fayad ZA, van Leent MMT. Uncovering atherosclerotic cardiovascular disease by PET imaging. Nat Rev Cardiol 2024; 21:632-651. [PMID: 38575752 PMCID: PMC11324396 DOI: 10.1038/s41569-024-01009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Assessing atherosclerosis severity is essential for precise patient stratification. Specifically, there is a need to identify patients with residual inflammation because these patients remain at high risk of cardiovascular events despite optimal management of cardiovascular risk factors. Molecular imaging techniques, such as PET, can have an essential role in this context. PET imaging can indicate tissue-based disease status, detect early molecular changes and provide whole-body information. Advances in molecular biology and bioinformatics continue to help to decipher the complex pathogenesis of atherosclerosis and inform the development of imaging tracers. Concomitant advances in tracer synthesis methods and PET imaging technology provide future possibilities for atherosclerosis imaging. In this Review, we summarize the latest developments in PET imaging techniques and technologies for assessment of atherosclerotic cardiovascular disease and discuss the relationship between imaging readouts and transcriptomics-based plaque phenotyping.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheqouia A Nauta
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Experimental Cardiovascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Whittington B, Dweck MR, van Beek EJR, Newby D, Williams MC. PET-MRI of Coronary Artery Disease. J Magn Reson Imaging 2023; 57:1301-1311. [PMID: 36524452 DOI: 10.1002/jmri.28554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Simultaneous positron emission tomography and magnetic resonance imaging (PET-MRI) combines the anatomical detail and tissue characterization of MRI with the functional information from PET. Within the coronary arteries, this hybrid technique can be used to identify biological activity combined with anatomically high-risk plaque features to better understand the processes underlying coronary atherosclerosis. Furthermore, the downstream effects of coronary artery disease on the myocardium can be characterized by providing information on myocardial perfusion, viability, and function. This review will describe the current capabilities of PET-MRI in coronary artery disease and discuss the limitations and future directions of this emerging technique. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Beth Whittington
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | | | - David Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Kirienko M, Erba PA, Chiti A, Sollini M. Hybrid PET/MRI in Infection and Inflammation: An Update About the Latest Available Literature Evidence. Semin Nucl Med 2023; 53:107-124. [PMID: 36369091 DOI: 10.1053/j.semnuclmed.2022.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
PET/MRI has been reported to be promising in the diagnosis and evaluation of infection and inflammation including brain disorders, bone and soft tissue infections and inflammations, cardiovascular, abdominal, and systemic diseases. However, evidence came out manly from anecdotal cases or small cohorts. The present review aimed to update the latest available evidence about the role of PET/MRI in infection and inflammation. The search (January, 1 2018-July, 8 2022) on PubMed produced 504 results. Sixty-five articles were selected and included in the qualitative synthesis. The number of publications on PET/MRI in the 3 years 2018-2020 was comparable, while it increased in 2021 and 2022 (from 11 to 17 and 15, respectively). [18F]FDG and 68Ga-DOTA-FAPI-04 were the most frequently used (42/65) and innovative radiopharmaceuticals, respectively. [18F]fluoride (9/65), translocator protein (TSPO)-targeted PET agents (6/65), CXCR4 receptor targeting tracer and β-amyloid plaques binding radiopharmaceuticals (2/65 and 2/65, respectively) were also used. Most PET/MRI studies in the period 2018-2022 focused on inflammation (55/65), and cardiovascular diseases represented the most frequent field of interest (30/65), also when considering each year singularly. An increasing trend in bone and joint publications was observed in the considered period (12/65). Other topics included neurology (11/65), inflammatory bowel disease (8/65), and other (4/65). PET/MRI technology demonstrated to be useful in infection and inflammation, being superior to each single modality and/or facilitating diagnosis in a number of conditions (eg, cardiac sarcoidosis, myocarditis, endocarditis), and/or allowing to provide insightful information about disease biology and apply innovative radiopharmaceuticals (eg, neurology, atherosclerosis). Publications focused on PET/MRI in large vessel vasculitis and aortic diseases include both diagnostic and discovery objectives. The current review corroborates the potential of PET/MRI - combining in a single examination the high soft tissue contrast, high resolution, and functional information of MRI, with molecular data provided by PET technology - to positively impact on the management of infectious diseases and inflammatory conditions.
Collapse
Affiliation(s)
| | - Paola A Erba
- Nuclear Medicine Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy.
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
6
|
Figtree GA, Adamson PD, Antoniades C, Blumenthal RS, Blaha M, Budoff M, Celermajer DS, Chan MY, Chow CK, Dey D, Dwivedi G, Giannotti N, Grieve SM, Hamilton-Craig C, Kingwell BA, Kovacic JC, Min JK, Newby DE, Patel S, Peter K, Psaltis PJ, Vernon ST, Wong DT, Nicholls SJ. Noninvasive Plaque Imaging to Accelerate Coronary Artery Disease Drug Development. Circulation 2022; 146:1712-1727. [PMID: 36441819 DOI: 10.1161/circulationaha.122.060308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Coronary artery disease (CAD) remains the leading cause of adult mortality globally. Targeting known modifiable risk factors has had substantial benefit, but there remains a need for new approaches. Improvements in invasive and noninvasive imaging techniques have enabled an increasing recognition of distinct quantitative phenotypes of coronary atherosclerosis that are prognostically relevant. There are marked differences in plaque phenotype, from the high-risk, lipid-rich, thin-capped atheroma to the low-risk, quiescent, eccentric, nonobstructive calcified plaque. Such distinct phenotypes reflect different pathophysiologic pathways and are associated with different risks for acute ischemic events. Noninvasive coronary imaging techniques, such as computed tomography, positron emission tomography, and coronary magnetic resonance imaging, have major potential to accelerate cardiovascular drug development, which has been affected by the high costs and protracted timelines of cardiovascular outcome trials. This may be achieved through enrichment of high-risk phenotypes with higher event rates or as primary end points of drug efficacy, at least in phase 2 trials, in a manner historically performed through intravascular coronary imaging studies. Herein, we provide a comprehensive review of the current technology available and its application in clinical trials, including implications for sample size requirements, as well as potential limitations. In its effort to accelerate drug development, the US Food and Drug Administration has approved surrogate end points for 120 conditions, but not for CAD. There are robust data showing the beneficial effects of drugs, including statins, on CAD progression and plaque stabilization in a manner that correlates with established clinical end points of mortality and major adverse cardiovascular events. This, together with a clear mechanistic rationale for using imaging as a surrogate CAD end point, makes it timely for CAD imaging end points to be considered. We discuss the importance of global consensus on these imaging end points and protocols and partnership with regulatory bodies to build a more informed, sustainable staged pathway for novel therapies.
Collapse
Affiliation(s)
- Gemma A Figtree
- Kolling Institute of Medical Research, Sydney, Australia (G.A.F., S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia (G.A.F., S.T.V.)
- Charles Perkins Centre (G.A.F., C.K.C.), University of Sydney, Australia
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
| | - Philip D Adamson
- Christchurch Heart Institute, University of Otago Christchurch, New Zealand (P.D.A.)
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (P.D.A., D.E.N.)
| | - Charalambos Antoniades
- Acute Vascular Imaging Centre (C.A.), Radcliffe Department of Medicine, University of Oxford, UK
- Division of Cardiovascular Medicine (C.A.), Radcliffe Department of Medicine, University of Oxford, UK
| | - Roger S Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD (R.S.B., M. Blaha)
| | - Michael Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD (R.S.B., M. Blaha)
| | | | - David S Celermajer
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
- Departments of Cardiology (D.S.C., S.P.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Mark Y Chan
- Department of Cardiology, National University Heart Centre, Singapore (M.Y.C.)
| | - Clara K Chow
- Westmead Applied Research Centre (C.K.C.), University of Sydney, Australia
- Charles Perkins Centre (G.A.F., C.K.C.), University of Sydney, Australia
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (D.D.)
| | - Girish Dwivedi
- Harry Perkins Institute of Medical Research, University of Western Australia (G.D.)
- Department of Cardiology, Fiona Stanley Hospital, Perth, Australia (G.D.)
| | - Nicola Giannotti
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
| | - Stuart M Grieve
- Imaging and Phenotyping Laboratory (S.M.G.), University of Sydney, Australia
- Radiology (S.M.G.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Christian Hamilton-Craig
- Faculty of Medicine and Centre for Advanced Imaging, University of Queensland and School of Medicine, Griffith University Sunshine Coast, Australia (C.H.-C.)
| | | | - Jason C Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia (J.C.K.)
- St Vincent's Clinical School, University of NSW, Australia (J.C.K.)
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY (J.C.K.)
| | | | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (P.D.A., D.E.N.)
| | - Sanjay Patel
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
- Departments of Cardiology (D.S.C., S.P.), Royal Prince Alfred Hospital, Sydney, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Australia (K.P.)
- Department of Cardiology, The Alfred Hospital, Melbourne, Australia (K.P.)
| | - Peter J Psaltis
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide (P.J.P.)
- Department of Cardiology, Royal Adelaide Hospital, Australia (P.J.P.)
| | - Stephen T Vernon
- Kolling Institute of Medical Research, Sydney, Australia (G.A.F., S.T.V.)
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia (G.A.F., S.T.V.)
- Faculty of Medicine and Health (G.A.F., D.S.C., N.G., S.P., S.T.V.), University of Sydney, Australia
| | - Dennis T Wong
- Monash Heart, Clayton, Australia (D.T.W., S.J.N.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (D.T.W., S.J.N.)
| | - Stephen J Nicholls
- Monash Heart, Clayton, Australia (D.T.W., S.J.N.)
- Victorian Heart Institute, Monash University, Melbourne, Australia (D.T.W., S.J.N.)
| |
Collapse
|
7
|
Ndlovu H, Lawal IO, Popoola GO, Brits B, Mokoala KMG, Maserumule LC, Hlongwa KN, Mahapane J, Davis C, Sathekge MM. [ 68Ga]Ga-NODAGAZOL uptake in atherosclerotic plaques correlates with the cardiovascular risk profile of patients. Ann Nucl Med 2022; 36:684-692. [PMID: 35612698 DOI: 10.1007/s12149-022-01752-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/06/2022] [Indexed: 11/01/2022]
Abstract
OBJECTIVES This study aimed to determine the correlation of [68Ga]Ga-NODAGAZOL uptake in atherosclerotic plaques and the cardiovascular risk profile of patients imaged with positron emission tomography (PET), wherein quantification of uptake was determined by atherosclerotic plaque maximum target-to-background ratio (TBRmax). We also correlated uptake with a history of cardiovascular events. METHODS We included patients who underwent PET/CT imaging post-injection of [68Ga] Ga-NODAGAZOL. We documented the number of atherosclerotic plaques found in the major arteries on CT and the cardiovascular risks in each patient. We quantified the intensity of tracer uptake in atherosclerotic plaque in the major arteries using the maximum standardized uptake value (SUVmax). The SUVmax of the most tracer-avid plaque was documented as representative of the individual arterial bed. We determined background vascular tracer activity using the mean standardized uptake value (SUVmean) obtained from the lumen of the superior vena cava. The maximum target-to-background ratio (TBRmax) was calculated as a ratio of the SUVmax to the SUVmean. The TBRmax was correlated to the number of atherogenic risk factors and history of cardiovascular events. RESULTS Thirty-four patients (M: F 31:3; mean age ± SD: 63 ± 10.01 years) with ≥ 2 cardiovascular risk factors were included. Statistically significant correlation between TBRmax and the number of cardiovascular risk factors was noted in the right carotid (r = 0.50; p < 0.05); left carotid (r = 0. 649; p < 0.05); ascending aorta (r = 0.375; p < 0.05); aortic arch (r = 0.483; p < 0.05); thoracic aorta (r = 0.644; p < 0.05); left femoral (r = 0.552; p < 0.05) and right femoral arteries (r = 0.533; p < 0.05). TBRmax also demonstrated a positive correlation to history of cardiovascular event in the right carotid (U = 26.00; p < 0.05); left carotid (U = 11.00; p < 0.05); ascending aorta (U = 49.00; p < 0.05); aortic arch (U = 37.00; p < 0.05); thoracic aorta (U = 16.00; p < 0.05); left common iliac (U = 49.500; p < 0.05), right common iliac (U = 43.00; p < 0.05), left femoral (U = 40.500; p < 0.05) and right femoral (U = 37.500; p < 0.05). CONCLUSION In this cohort of patients, a positive correlation was noted between atherosclerotic plaque uptake of [68Ga]Ga-NODAGAZOL and the number of atherogenic risk factors which translates to the risk of atherosclerosis and cardiovascular risk factors.
Collapse
Affiliation(s)
- Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa.,Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Ismaheel O Lawal
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa.,Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Gbenga O Popoola
- Saxon Court Lincolnshire Partnership NHS Foundation Trust (LPFT), Lincoln, Lincolnshire, UK
| | - Bradley Brits
- Department of Cardiology, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
| | - Kgomotso M G Mokoala
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
| | - Letjie C Maserumule
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
| | - Khanyisile N Hlongwa
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
| | - Johncy Mahapane
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
| | - Cindy Davis
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Private Bag X169, Pretoria, 0001, South Africa. .,Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa.
| |
Collapse
|
8
|
Akerele MI, Mushari NA, Forsythe RO, Syed M, Karakatsanis NA, Newby DE, Dweck MR, Tsoumpas C. Assessment of different quantification metrics of [ 18F]-NaF PET/CT images of patients with abdominal aortic aneurysm. J Nucl Cardiol 2022; 29:251-261. [PMID: 32557152 PMCID: PMC8873073 DOI: 10.1007/s12350-020-02220-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/26/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND We aim to assess the spill-in effect and the benefit in quantitative accuracy for [18F]-NaF PET/CT imaging of abdominal aortic aneurysms (AAA) using the background correction (BC) technique. METHODS Seventy-two datasets of patients diagnosed with AAA were reconstructed with ordered subset expectation maximization algorithm incorporating point spread function (PSF). Spill-in effect was investigated for the entire aneurysm (AAA), and part of the aneurysm excluding the region close to the bone (AAAexc). Quantifications of PSF and PSF+BC images using different thresholds (% of max. SUV in target regions-of-interest) to derive target-to-background (TBR) values (TBRmax, TBR90, TBR70 and TBR50) were compared at 3 and 10 iterations. RESULTS TBR differences were observed between AAA and AAAexc due to spill-in effect from the bone into the aneurysm. TBRmax showed the highest sensitivity to the spill-in effect while TBR50 showed the least. The spill-in effect was reduced at 10 iterations compared to 3 iterations, but at the expense of reduced contrast-to-noise ratio (CNR). TBR50 yielded the best trade-off between increased CNR and reduced spill-in effect. PSF+BC method reduced TBR sensitivity to spill-in effect, especially at 3 iterations, compared to PSF (P-value ≤ 0.05). CONCLUSION TBR50 is robust metric for reduced spill-in and increased CNR.
Collapse
Affiliation(s)
- Mercy I. Akerele
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9NL UK
| | - Nouf A. Mushari
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9NL UK
| | - Rachael O. Forsythe
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Maaz Syed
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicolas A. Karakatsanis
- Division of Radiopharmaceutical Sciences, Department of Radiology, Weil Cornell Medical College of Cornell University, New York, NY USA
- Biomedical Engineering & Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - David E. Newby
- Edinburgh Imaging Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Marc R. Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- Edinburgh Imaging Facility, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Charalampos Tsoumpas
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9NL UK
- Biomedical Engineering & Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Invicro, London, UK
| |
Collapse
|
9
|
Raynor WY, Park PSU, Borja AJ, Sun Y, Werner TJ, Ng SJ, Lau HC, Høilund-Carlsen PF, Alavi A, Revheim ME. PET-Based Imaging with 18F-FDG and 18F-NaF to Assess Inflammation and Microcalcification in Atherosclerosis and Other Vascular and Thrombotic Disorders. Diagnostics (Basel) 2021; 11:diagnostics11122234. [PMID: 34943473 PMCID: PMC8700072 DOI: 10.3390/diagnostics11122234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
Positron emission tomography (PET) imaging with 18F-fluorodeoxyglucose (FDG) represents a method of detecting and characterizing arterial wall inflammation, with potential applications in the early assessment of vascular disorders such as atherosclerosis. By portraying early-stage molecular changes, FDG-PET findings have previously been shown to correlate with atherosclerosis progression. In addition, recent studies have suggested that microcalcification revealed by 18F-sodium fluoride (NaF) may be more sensitive at detecting atherogenic changes compared to FDG-PET. In this review, we summarize the roles of FDG and NaF in the assessment of atherosclerosis and discuss the role of global assessment in quantification of the vascular disease burden. Furthermore, we will review the emerging applications of FDG-PET in various vascular disorders, including pulmonary embolism, as well as inflammatory and infectious vascular diseases.
Collapse
Affiliation(s)
- William Y. Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Peter Sang Uk Park
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Austin J. Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Yusha Sun
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Thomas J. Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Sze Jia Ng
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA; (S.J.N.); (H.C.L.)
| | - Hui Chong Lau
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA; (S.J.N.); (H.C.L.)
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, 0315 Oslo, Norway
- Correspondence: or
| |
Collapse
|
10
|
Imaging dysregulated calcium homeostasis in acute myocardial infarction with [ 68 Ga]Ga-NODAGA ZOL. Eur J Nucl Med Mol Imaging 2021; 49:417-418. [PMID: 34420068 DOI: 10.1007/s00259-021-05521-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
|
11
|
Saboury B, Edenbrandt L, Piri R, Gerke O, Werner T, Arbab-Zadeh A, Alavi A, Høilund-Carlsen PF. Alavi-Carlsen Calcification Score (ACCS): A Simple Measure of Global Cardiac Atherosclerosis Burden. Diagnostics (Basel) 2021; 11:1421. [PMID: 34441355 PMCID: PMC8391812 DOI: 10.3390/diagnostics11081421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Multislice cardiac CT characterizes late stage macrocalcification in epicardial arteries as opposed to PET/CT, which mirrors early phase arterial wall changes in epicardial and transmural coronary arteries. With regard to tracer, there has been a shift from using mainly 18F-fluorodeoxyglucose (FDG), indicating inflammation, to applying predominantly 18F-sodium fluoride (NaF) due to its high affinity for arterial wall microcalcification and more consistent association with cardiovascular risk factors. To make NaF-PET/CT an indispensable adjunct to clinical assessment of cardiac atherosclerosis, the Alavi-Carlsen Calcification Score (ACCS) has been proposed. It constitutes a global assessment of cardiac atherosclerosis burden in the individual patient, supported by an artificial intelligence (AI)-based approach for fast observer-independent segmentation. Common measures for characterizing epicardial coronary atherosclerosis by NaF-PET/CT as the maximum standardized uptake value (SUV) or target-to-background ratio are more versatile, error prone, and less reproducible than the ACCS, which equals the average cardiac SUV. The AI-based approach ensures a quick and easy delineation of the entire heart in 3D to obtain the ACCS expressing ongoing global cardiac atherosclerosis, even before it gives rise to CT-detectable coronary calcification. The quantification of global cardiac atherosclerotic burden by the ACCS is suited for management triage and monitoring of disease progression with and without intervention.
Collapse
Affiliation(s)
- Babak Saboury
- Clinical Center, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD 20892, USA;
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lars Edenbrandt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden;
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
| | - Reza Piri
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark; (R.P.); (O.G.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark; (R.P.); (O.G.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Tom Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Armin Arbab-Zadeh
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark; (R.P.); (O.G.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
12
|
Silva Mendes BI, Oliveira-Santos M, Vidigal Ferreira MJ. Sodium fluoride in cardiovascular disorders: A systematic review. J Nucl Cardiol 2021; 28:1461-1473. [PMID: 31388965 DOI: 10.1007/s12350-019-01832-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/23/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND 18-Fluorine sodium fluoride is a well-known radiotracer used for bone metastasis diagnosis. Its uptake correlation with cardiovascular (CV) risk was primarily suggested in oncological patients. Moreover, as a specific marker of microcalcification, it seems to correlate with CV disease progression and plaque instability. METHODS AND RESULTS Our purpose was to systematically review clinical studies that characterized the use of this marker in CV conditions. In atherosclerosis, most studies report a positive correlation with the burden of CV risk factors and vascular calcification. A higher uptake was found in culprit plaques/rupture sites in coronary and carotid arteries and it was also linked to high-risk features in histology and intravascular imaging analysis of the plaques. In aortic stenosis, this tracer displayed an increasing uptake with disease severity. CONCLUSIONS Sodium fluoride positron emission tomography is a promising non-invasive technique to identify high-risk plaques, which sets ground to a potential use of this tracer in evaluating atherosclerotic disease progression and degenerative changes in aortic valve stenosis. Nevertheless, there is a need for further prospective evidence that demonstrates this technique's value in predicting clinical events, adjusting treatment strategies, and improving patient outcomes.
Collapse
Affiliation(s)
- Beatriz Isabel Silva Mendes
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba - Celas PT, 3000-548, Coimbra, Portugal.
| | - Manuel Oliveira-Santos
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba - Celas PT, 3000-548, Coimbra, Portugal
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Instituto de Ciências Nucleares Aplicadas à Saúde (ICNAS), Coimbra, Portugal
| | - Maria João Vidigal Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Azinhaga de Santa Comba - Celas PT, 3000-548, Coimbra, Portugal
- Serviço de Cardiologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Instituto de Ciências Nucleares Aplicadas à Saúde (ICNAS), Coimbra, Portugal
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To examine the use of positron emission tomography (PET) for imaging post-infarct myocardial inflammation and repair. RECENT FINDINGS Dysregulated immune responses after myocardial infarction are associated with adverse cardiac remodelling and an increased likelihood of ischaemic heart failure. PET imaging utilising novel tracers can be applied to visualise different components of the post-infarction inflammatory and repair processes. This approach could offer unique pathophysiological insights that could prove useful for the identification and risk-stratification of individuals who would ultimately benefit most from emerging immune-modulating therapies. PET imaging could also bridge the clinical translational gap as a surrogate measure of drug efficacy in early-stage clinical trials in patients with myocardial infarction. The use of hybrid PET/MR imaging, in particular, offers the additional advantage of simultaneous in vivo molecular imaging and detailed assessment of myocardial function, viability and tissue characterisation. Further research is needed to realise the true clinical translational value of PET imaging after myocardial infarction.
Collapse
Affiliation(s)
- Andrej Ćorović
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Meritxell Nus
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - James H. F. Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Jason M. Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Yang T, Fu X, Fu P, Chen J, Xu C, Liu X, Niu T. The value of fragmented QRS in predicting the prognosis of chronic total occlusion patients with myocardial infarction history undergoing percutaneous coronary intervention: A 24-months follow-up study. Clin Cardiol 2021; 44:537-546. [PMID: 33590897 PMCID: PMC8027581 DOI: 10.1002/clc.23573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Fragmented QRS (fQRS) is a marker of local myocardial scar. This study aimed to analyze the relationship between fQRS and coronary collateral circulation (CCC) and evaluate the predictive value of fQRS for long-term clinical outcomes among patients with chronic total occlusion (CTO) and prior myocardial infarction (MI) who underwent percutaneous coronary intervention (PCI). METHODS A total of 862 patients with a definite history of MI who had one CTO coronary artery and underwent PCI between 2013 and 2018 were continuously analyzed. Patients were divided into group A (no Q wave and fQRS, n = 206), group B (fQRS, n = 265), group C (Q wave, n = 391). All patients were followed up for 2 years. RESULTS The incidence rate of major adverse cardiovascular events (MACE) in group B was significantly lower than in group C (group B vs. C: 7.2% vs. 11.3%, P = 0.043). The percentage of good CCC was 94.2%, 88.3%, and 82.9% in group A, B, and C (p < .001), respectively. The improvement of cardiac function in group B and A were more significant than in group C. Multivariate Cox regression analysis showed fQRS was an independent protective factor of MACE after PCI within 2 years in CTO patients with prior MI (RR = 0.668, 95% CI [0.422-0.917], p = .001). CONCLUSION fQRS is an independent protective factor of prognosis in patients with prior MI and one CTO vessel who underwent PCI, presenting with a higher rate of good CCC, less occurrence of MACE, and better heart function than in Q wave patients.
Collapse
Affiliation(s)
- Tiangui Yang
- Department of CardiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xi Fu
- Department of CardiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Peng Fu
- Department of CardiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jie Chen
- Department of CardiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Changlu Xu
- Department of CardiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xiaoxia Liu
- Department of CardiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Tiesheng Niu
- Department of CardiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
15
|
Advances in Quantitative Analysis of 18F-Sodium Fluoride Coronary Imaging. Mol Imaging 2021; 2021:8849429. [PMID: 33746631 PMCID: PMC7953548 DOI: 10.1155/2021/8849429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/05/2020] [Indexed: 11/22/2022] Open
Abstract
18F-sodium fluoride (18F-NaF) positron emission tomography (PET) has emerged as a promising noninvasive imaging tool for the assessment of active calcification processes in coronary artery disease. 18F-NaF uptake colocalizes to high-risk and ruptured atherosclerotic plaques. Most recently, 18F-NaF coronary uptake was shown to be a robust and independent predictor of myocardial infarction in patients with advanced coronary artery disease. In this review, we provide an overview of the advances in coronary 18F-NaF imaging. In particular, we discuss the recently developed and validated motion correction techniques which address heart contractions, tidal breathing, and patient repositioning during the prolonged PET acquisitions. Additionally, we discuss a novel quantification approach—the coronary microcalcification activity (which has been inspired by the widely employed method in oncology total active tumor volume measurement). This new method provides a single number encompassing 18F-NaF activity within the entire coronary vasculature rather than just information regarding a single area of most intense tracer uptake.
Collapse
|
16
|
Høilund-Carlsen PF, Piri R, Gerke O, Edenbrandt L, Alavi A. Assessment of Total-Body Atherosclerosis by PET/Computed Tomography. PET Clin 2020; 16:119-128. [PMID: 33160930 DOI: 10.1016/j.cpet.2020.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Atherosclerotic burden has become the focus of cardiovascular risk assessment. PET/computed tomography (CT) imaging with the tracers 18F-fluorodeoxyglucose and 18F-sodium fluoride shows arterial wall inflammation and microcalcification, respectively. Arterial uptake of both tracers is modestly age dependent. 18F-sodium fluoride uptake is consistently associated with risk factors and more easily measured in the heart. Because of extremely high sensitivity, ultrashort acquisition, and minimal radiation to the patient, total-body PET/CT provides unique opportunities for atherosclerosis imaging: disease screening and delayed and repeat imaging with global disease scoring and parametric imaging to better characterize the atherosclerosis of individual patients.
Collapse
Affiliation(s)
- Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark.
| | - Reza Piri
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, 5000 Odense C, Denmark; Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Lars Edenbrandt
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine, Institute of Medicine, SU Sahlgrenska, 41345 Göteborg, Sweden
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, PA 19104, USA
| |
Collapse
|
17
|
Paydary K, Revheim ME, Emamzadehfard S, Gholami S, Pourhassan S, Werner TJ, Høilund-Carlsen PF, Alavi A. Quantitative thoracic aorta calcification assessment by 18F-NaF PET/CT and its correlation with atherosclerotic cardiovascular disorders and increasing age. Eur Radiol 2020; 31:785-794. [PMID: 32870396 DOI: 10.1007/s00330-020-07133-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/18/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES We aimed to assess the correlation between age and cardiovascular risk factors with NaF-PET/CT imaging in the thoracic aorta (TA). METHODS In this prospective study, 80 healthy controls and 44 patients with chest pain underwent NaF-PET/CT imaging, and three segments of the aorta (ascending, arch, and descending) were examined. Average SUVmax, SUVmean, and Alavi-Carlsen Score (ACS) were calculated in each segment and the entire vessel. The degree of NaF uptake in controls and patients and its correlation with age were determined. Multivariate linear regression and logistic regression models were employed to determine the predictabilities of Framingham Risk Score (FRS) and unfavorable cardiovascular disease (CVD) risk profile by these measurements. RESULTS Average SUVmax, average SUVmean, and ACS were significantly higher in patients than in controls, and all correlated well with age. The correlation of average SUVmean with age was significant in both controls (r = 0.32, p = 0.04) and patients (r = 0.64, p < 0.001). ACS of the entire TA was a stronger predictor of FRS compared with average SUVmax and average SUVmean (adjusted R2 = 0.38, standardized β = 0.58, p < 0.001). ACS was a significant predictor of unfavorable CVD risk profile as compared with other values (odds ratio = 1.006, 95% CI = 1.000-1.013, p = 0.05). CONCLUSIONS Active calcification in TA correlates with age, and its correlation is higher among subjects with CVD risk factors. Global assessment (ACS) can predict unfavorable CVD risk profile. These data provide evidence for the potential role of NaF in assessing micro-calcification in arteries and its relations to cardiovascular events. KEY POINTS • Global micro-calcification in the thoracic aorta as measured by NaF-PET/CT imaging correlates with increasing age. • The extent of the correlation was higher among patients with cardiovascular disease (CVD) risk factors. • These data provide evidence for the potential role of NaF in assessing active calcification in arteries and its relations to cardiovascular events.
Collapse
Affiliation(s)
- Koosha Paydary
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sahra Emamzadehfard
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Saeid Gholami
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Sara Pourhassan
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA
| | | | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Manabe O, Oyama-Manabe N, Tamaki N. Positron emission tomography/MRI for cardiac diseases assessment. Br J Radiol 2020; 93:20190836. [PMID: 32023123 DOI: 10.1259/bjr.20190836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Functional imaging tools have emerged in the last few decades and are increasingly used to assess the function of the human heart in vivo. Positron emission tomography (PET) is used to evaluate myocardial metabolism and blood flow. Magnetic resonance imaging (MRI) is an essential tool for morphological and functional evaluation of the heart. In cardiology, PET is successfully combined with CT for hybrid cardiac imaging. The effective integration of two imaging modalities allows simultaneous data acquisition combining functional, structural and molecular imaging. After PET/CT has been successfully accepted for clinical practices, hybrid PET/MRI is launched. This review elaborates the current evidence of PET/MRI in cardiovascular imaging and its expected clinical applications for a comprehensive assessment of cardiovascular diseases while highlighting the advantages and limitations of this hybrid imaging approach.
Collapse
Affiliation(s)
- Osamu Manabe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Noriko Oyama-Manabe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Tzolos E, Andrews JPM, Dweck MR. Aortic valve stenosis-multimodality assessment with PET/CT and PET/MRI. Br J Radiol 2020; 93:20190688. [PMID: 31647323 PMCID: PMC7465843 DOI: 10.1259/bjr.20190688] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aortic valve disease is the most common form of heart valve disease in developed countries and a growing healthcare burden with an ageing population. Transthoracic and transoesophageal echocardiography remains central to the diagnosis and surveillance of patients with aortic stenosis, providing gold standard assessments of valve haemodynamics and myocardial performance. However, other multimodality imaging techniques are being explored for the assessment of aortic stenosis, including combined PET/CT and PET/MR. Both approaches provide unique information with respect to disease activity in the valve alongside more conventional anatomic assessments of the valve and myocardium in this condition. This review investigates the emerging use of PET/CT and PET/MR to assess patients with aortic stenosis, examining how the complementary data provided by each modality may be used for research applications and potentially in future clinical practice.
Collapse
Affiliation(s)
- Evangelos Tzolos
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Jack PM Andrews
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Marc R. Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Daghem M, Newby DE. Innovation in medical imaging to improve disease staging, therapeutic intervention, and clinical outcomes. Atherosclerosis 2020; 306:75-84. [DOI: 10.1016/j.atherosclerosis.2020.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
|
21
|
MacAskill MG, Newby DE, Tavares AAS. Frontiers in positron emission tomography imaging of the vulnerable atherosclerotic plaque. Cardiovasc Res 2020; 115:1952-1962. [PMID: 31233100 DOI: 10.1093/cvr/cvz162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
Rupture of vulnerable atherosclerotic plaques leading to an atherothrombotic event is the primary driver of myocardial infarction and stroke. The ability to detect non-invasively the presence and evolution of vulnerable plaques could have a huge impact on the future identification and management of atherosclerotic cardiovascular disease. Positron emission tomography (PET) imaging with an appropriate radiotracer has the potential to achieve this goal. This review will discuss the biological hallmarks of plaque vulnerability before going on to evaluate and to present PET imaging approaches which target these processes. The focus of this review will be on techniques beyond [18F]FDG imaging, some of which are clinically advanced, and others which are on the horizon. As inflammation is the primary driving force behind atherosclerotic plaque development, we will predominantly focus on approaches which either directly, or indirectly, target this process.
Collapse
Affiliation(s)
- Mark G MacAskill
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Adriana A S Tavares
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.,Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Kwiecinski J, Cadet S, Daghem M, Lassen ML, Dey D, Dweck MR, Berman DS, Newby DE, Slomka PJ. Whole-vessel coronary 18F-sodium fluoride PET for assessment of the global coronary microcalcification burden. Eur J Nucl Med Mol Imaging 2020; 47:1736-1745. [PMID: 31897586 PMCID: PMC7271818 DOI: 10.1007/s00259-019-04667-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/20/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE 18F-sodium fluoride (18F-NaF) has shown promise in assessing disease activity in coronary arteries, but currently used measures of activity - such as maximum target to background ratio (TBRmax) - are defined by single pixel count values. We aimed to develop a novel coronary-specific measure of 18F-NaF PET reflecting activity throughout the entire coronary vasculature (coronary microcalcification activity [CMA]). METHODS Patients with recent myocardial infarction and multi-vessel coronary artery disease underwent 18F-NaF PET and coronary CT angiography. We assessed the association between coronary 18F-NaF uptake (both TBRmax and CMA) and coronary artery calcium scores (CACS) as well as low attenuation plaque (LAP, attenuation < 30 Hounsfield units) volume. RESULTS In 50 patients (64% males, 63 ± 7 years), CMA and TBRmax were higher in vessels with LAP compared to those without LAP (1.09 [0.02, 2.34] versus 0.0 [0.0, 0.0], p < 0.001 and 1.23 [1.16, 1.37] versus 1.04 [0.93, 1.11], p < 0.001). Compared to a TBRmax threshold of 1.25, CMA > 0 had a higher diagnostic accuracy for detection of LAP: sensitivity of 93.1 (83.3-98.1)% versus 58.6 (44.9-71.4)% and a specificity of 95.7 (88.0-99.1)% versus 80.0 (68.7-88.6)% (both p < 0.001). 18F-NaF uptake assessed by CMA correlated more closely with LAP (r = 0.86, p < 0.001) than the CT calcium score (r = 0.39, p < 0.001), with these associations outperforming those observed for TBRmax values (LAP r = 0.63, p < 0.001; CT calcium score r = 0.30, p < 0.001). CONCLUSIONS Automated assessment of disease activity across the entire coronary vasculature is feasible using 18F-NaF CMA, providing a single measurement that has closer agreement with CT markers of plaque vulnerability than more traditional measures of plaque activity.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Departments of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Alpejska 42, 04-628, Warsaw, Poland
| | - Sebastien Cadet
- Departments of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marwa Daghem
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Martin L Lassen
- Departments of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Departments of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Daniel S Berman
- Departments of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Piotr J Slomka
- Departments of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Massera D, Doris MK, Cadet S, Kwiecinski J, Pawade TA, Peeters FECM, Dey D, Newby DE, Dweck MR, Slomka PJ. Analytical quantification of aortic valve 18F-sodium fluoride PET uptake. J Nucl Cardiol 2020; 27:962-972. [PMID: 30499069 PMCID: PMC6541558 DOI: 10.1007/s12350-018-01542-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/07/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND Challenges to cardiac PET-CT include patient motion, prolonged image acquisition and a reduction of counts due to gating. We compared two analytical tools, FusionQuant and OsiriX, for quantification of gated cardiac 18F-sodium fluoride (18F-fluoride) PET-CT imaging. METHODS Twenty-seven patients with aortic stenosis were included, 15 of whom underwent repeated imaging 4 weeks apart. Agreement between analytical tools and scan-rescan reproducibility was determined using the Bland-Altman method and Lin's concordance correlation coefficients (CCC). RESULTS Image analysis was faster with FusionQuant [median time (IQR) 7:10 (6:40-8:20) minutes] compared with OsiriX [8:30 (8:00-10:10) minutes, p = .002]. Agreement of uptake measurements between programs was excellent, CCC = 0.972 (95% CI 0.949-0.995) for mean tissue-to-background ratio (TBRmean) and 0.981 (95% CI 0.965-0.997) for maximum tissue-to-background ratio (TBRmax). Mean noise decreased from 11.7% in the diastolic gate to 6.7% in motion-corrected images (p = .002); SNR increased from 25.41 to 41.13 (p = .0001). Aortic valve scan-rescan reproducibility for TBRmax was improved with FusionQuant using motion correction compared to OsiriX (error ± 36% vs ± 13%, p < .001) while reproducibility for TBRmean was similar (± 10% vs ± 8% p = .252). CONCLUSION 18F-fluoride PET quantification with FusionQuant and OsiriX is comparable. FusionQuant with motion correction offers advantages with respect to analysis time and reproducibility of TBRmax values.
Collapse
Affiliation(s)
- Daniele Massera
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA
| | - Mhairi K Doris
- BHF Centre for Cardiovascular Science, Clinical Research Imaging Centre, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, Scotland, UK
| | - Sebastien Cadet
- Department of Imaging, Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047 N, Los Angeles, CA, 90048, USA
| | - Jacek Kwiecinski
- BHF Centre for Cardiovascular Science, Clinical Research Imaging Centre, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, Scotland, UK
- Department of Imaging, Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047 N, Los Angeles, CA, 90048, USA
| | - Tania A Pawade
- BHF Centre for Cardiovascular Science, Clinical Research Imaging Centre, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Damini Dey
- Department of Imaging, Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047 N, Los Angeles, CA, 90048, USA
| | - David E Newby
- BHF Centre for Cardiovascular Science, Clinical Research Imaging Centre, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, Scotland, UK
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, Clinical Research Imaging Centre, Edinburgh Heart Centre, University of Edinburgh, Edinburgh, Scotland, UK
| | - Piotr J Slomka
- Department of Imaging, Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Ste A047 N, Los Angeles, CA, 90048, USA.
| |
Collapse
|
24
|
Florea A, Morgenroth A, Bucerius J, Schurgers LJ, Mottaghy FM. Locking and loading the bullet against micro-calcification. Eur J Prev Cardiol 2020; 28:1370-1375. [PMID: 33611501 DOI: 10.1177/2047487320911138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
AIMS Despite recent medical advances, cardiovascular disease remains the leading cause of death worldwide. As (micro)-calcification is a hallmark of atherosclerosis, this review will elaborately discuss advantages of sodium fluoride positron emission tomography (PET) as a reliable cardiovascular imaging technique for identifying the early onset of vascular calcification (i.e. locking onto the target). We assess state-of-the-art meta-analysis and clinical studies of possible treatment options and evaluate the concept of vitamin K supplementation to preserve vascular health (i.e. loading the bullet). METHODS AND RESULTS After a structured PubMed search, we identified 18F-sodium fluoride (18F-NaF) PET as the most suitable technique for detecting micro-calcification. Presenting the pros and cons of available treatments, vitamin K supplementation should be considered as a possible safe and cost-effective option to inhibit vascular (micro)-calcification. CONCLUSION This review demonstrates need for more extensive research in the concept of vitamin K supplementation (i.e. loading the bullet) and recommends monitoring the effects on vascular calcification using 18F-NaF PET (i.e. locking onto the target).
Collapse
Affiliation(s)
- Alexandru Florea
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Academic Hospital Maastricht, Maastricht, Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Netherlands
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Bucerius
- Department of Radiology and Nuclear Medicine, Academic Hospital Maastricht, Maastricht, Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Netherlands
- Department of Nuclear Medicine, University of Göttingen, Göttingen, Germany
| | - Leon J Schurgers
- School for Cardiovascular Diseases (CARIM), Maastricht University, Netherlands
- Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Academic Hospital Maastricht, Maastricht, Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Netherlands
| |
Collapse
|
25
|
Evans NR, Tarkin JM, Le EP, Sriranjan RS, Corovic A, Warburton EA, Rudd JH. Integrated cardiovascular assessment of atherosclerosis using PET/MRI. Br J Radiol 2020; 93:20190921. [PMID: 32238077 DOI: 10.1259/bjr.20190921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis is a systemic inflammatory disease typified by the development of lipid-rich atheroma (plaques), the rupture of which are a major cause of myocardial infarction and stroke. Anatomical evaluation of the plaque considering only the degree of luminal stenosis overlooks features associated with vulnerable plaques, such as high-risk morphological features or pathophysiology, and hence risks missing vulnerable or ruptured non-stenotic plaques. Consequently, there has been interest in identifying these markers of vulnerability using either MRI for morphology, or positron emission tomography (PET) for physiological processes involved in atherogenesis. The advent of hybrid PET/MRI scanners offers the potential to combine the strengths of PET and MRI to allow comprehensive assessment of the atherosclerotic plaque. This review will discuss the principles and technical aspects of hybrid PET/MRI assessment of atherosclerosis, and consider how combining the complementary modalities of PET and MRI has already furthered our understanding of atherogenesis, advanced drug development, and how it may hold potential for clinical application.
Collapse
Affiliation(s)
- Nicholas R Evans
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jason M Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth Pv Le
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Rouchelle S Sriranjan
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrej Corovic
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth A Warburton
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - James Hf Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
|
27
|
Calcagno C, Fayad ZA. Clinical imaging of cardiovascular inflammation. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:74-84. [PMID: 32077666 DOI: 10.23736/s1824-4785.20.03228-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiovascular disease due to atherosclerosis is the number one cause of morbidity and mortality worldwide. In the past twenty years, compelling preclinical and clinical data have indicated that a maladaptive inflammatory response plays a crucial role in the development of atherosclerosis initiation and progression in the vasculature, all the way to the onset of life-threatening cardiovascular events. Furthermore, inflammation is key to heart and brain damage and healing after myocardial infarction or stroke. Recent evidence indicates that this interplay between the vasculature, organs target of ischemia and the immune system is mediated by the activation of hematopoietic organs (bone marrow and spleen). In this evolving landscape, non-invasive imaging is becoming more and more essential to support either mechanistic preclinical studies to investigate the role of inflammation in cardiovascular disease (CVD), or as a translational tool to quantify inflammation in the cardiovascular system and hematopoietic organs in patients. In this review paper, we will describe the clinical applications of non-invasive imaging to quantify inflammation in the vasculature, infarcted heart and brain, and hematopoietic organs in patients with cardiovascular disease, with specific focus on [18F]FDG PET and other novel inflammation-specific radiotracers. Furthermore, we will briefly describe the most recent clinical applications of other imaging techniques such as MRI, SPECT, CT, CEUS and OCT in this arena.
Collapse
Affiliation(s)
- Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA - .,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
28
|
Dahal S, Budoff MJ. Implications of serial coronary computed tomography angiography in the evaluation of coronary plaque progression. Curr Opin Lipidol 2019; 30:446-451. [PMID: 31592788 DOI: 10.1097/mol.0000000000000645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The purpose is to review the use of coronary computed tomography (CT) angiography to assess coronary plaque burden/progression and to discuss about recent clinical trials that have utilized this imaging modality to study the effect of new pharmacotherapies on plaque burden/progression. RECENT FINDINGS There are numerous clinical trials that have utilized coronary CT angiography to demonstrate the potential benefits of statins, apixaban, rivaroxaban, aged garlic extract, biologic agents, and omega-3 fatty acids to reduce coronary plaque progression. Coronary CT angiography can identify high-risk plaques and can also quantify total plaque burden, both of which are independent risk factors to predict major adverse cardiac events. SUMMARY Coronary heart disease remains one of the leading cause of mortality in the world. Utilizing coronary CT angiography, it is possible to identify rupture-prone plaques and also to quantify the total plaque burden. New pharmacotherapies that have the potential to reduce plaque progression have been used in clinical trials and these trials have utilized coronary CT angiography to track coronary atheroma progression. In future, we will see frequent utilization of coronary CT angiography to track coronary atheroma.
Collapse
Affiliation(s)
- Suraj Dahal
- Department of Internal Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA, CDCRC, Torrance, California, USA
| | | |
Collapse
|
29
|
Høilund-Carlsen PF, Sturek M, Alavi A, Gerke O. Atherosclerosis imaging with 18F-sodium fluoride PET: state-of-the-art review. Eur J Nucl Med Mol Imaging 2019; 47:1538-1551. [PMID: 31773235 PMCID: PMC7188711 DOI: 10.1007/s00259-019-04603-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022]
Abstract
Purpose We examined the literature to elucidate the role of 18F-sodium fluoride (NaF)-PET in atherosclerosis. Methods Following a systematic search of PubMed/MEDLINE, Embase, and Cochrane Library included articles underwent subjective quality assessment with categories low, medium, and high. Of 2811 records, 1780 remained after removal of duplicates. Screening by title and abstract left 41 potentially eligible full-text articles, of which 8 (about the aortic valve (n = 1), PET/MRI feasibility (n = 1), aortic aneurysms (n = 1), or quantification methodology (n = 5)) were dismissed, leaving 33 published 2010–2012 (n = 6), 2013–2015 (n = 11), and 2016–2018 (n = 16) for analysis. Results They focused on coronary (n = 8), carotid (n = 7), and femoral arteries (n = 1), thoracic aorta (n = 1), and infrarenal aorta (n = 1). The remaining 15 studies examined more than one arterial segment. The literature was heterogeneous: few studies were designed to investigate atherosclerosis, 13 were retrospective, 9 applied both FDG and NaF as tracers, 24 NaF only. Subjective quality was low in one, medium in 13, and high in 19 studies. The literature indicates that NaF is a very specific tracer that mimics active arterial wall microcalcification, which is positively associated with cardiovascular risk. Arterial NaF uptake often presents before CT-calcification, tends to decrease with increasing density of CT-calcification, and appears, rather than FDG-avid foci, to progress to CT-calcification. It is mainly surface localized, increases with age with a wide scatter but without an obvious sex difference. NaF-avid microcalcification can occur in fatty streaks, but the degree of progression to CT-calcification is unknown. It remains unknown whether medical therapy influences microcalcification. The literature held no therapeutic or randomized controlled trials. Conclusion The literature was heterogeneous and with few clear cut messages. NaF-PET is a new approach to detect and quantify microcalcification in early-stage atherosclerosis. NaF uptake correlates with cardiovascular risk factors and appears to be a good measure of the body’s atherosclerotic burden, potentially suited also for assessment of anti-atherosclerotic therapy. Electronic supplementary material The online version of this article (10.1007/s00259-019-04603-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark. .,Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Michael Sturek
- Department of Anatomy, Cell Biology, Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
Hope TA, Fayad ZA, Fowler KJ, Holley D, Iagaru A, McMillan AB, Veit-Haiback P, Witte RJ, Zaharchuk G, Catana C. Summary of the First ISMRM-SNMMI Workshop on PET/MRI: Applications and Limitations. J Nucl Med 2019; 60:1340-1346. [PMID: 31123099 PMCID: PMC6785790 DOI: 10.2967/jnumed.119.227231] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022] Open
Abstract
Since the introduction of simultaneous PET/MRI in 2011, there have been significant advancements. In this review, we highlight several technical advancements that have been made primarily in attenuation and motion correction and discuss the status of multiple clinical applications using PET/MRI. This review is based on the experience at the first PET/MRI conference cosponsored by the International Society for Magnetic Resonance in Medicine and the Society of Nuclear Medicine and Molecular Imaging.
Collapse
Affiliation(s)
- Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
- Department of Radiology, San Francisco VA Medical Center, San Francisco, California
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kathryn J Fowler
- Department of Radiology, University of California San Diego, San Diego, California
| | - Dawn Holley
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Andrei Iagaru
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Patrick Veit-Haiback
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | - Robert J Witte
- Department of Radiology, Mayo Clinic, Rochester, Minnesota; and
| | - Greg Zaharchuk
- Department of Radiology, Stanford University Medical Center, Stanford, California
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
31
|
|
32
|
Forsythe RO, Dweck MR, McBride OMB, Vesey AT, Semple SI, Shah ASV, Adamson PD, Wallace WA, Kaczynski J, Ho W, van Beek EJR, Gray CD, Fletcher A, Lucatelli C, Marin A, Burns P, Tambyraja A, Chalmers RTA, Weir G, Mitchard N, Tavares A, Robson JMJ, Newby DE. 18F-Sodium Fluoride Uptake in Abdominal Aortic Aneurysms: The SoFIA 3 Study. J Am Coll Cardiol 2019; 71:513-523. [PMID: 29406857 PMCID: PMC5800891 DOI: 10.1016/j.jacc.2017.11.053] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 12/03/2022]
Abstract
Background Fluorine-18–sodium fluoride (18F-NaF) uptake is a marker of active vascular calcification associated with high-risk atherosclerotic plaque. Objectives In patients with abdominal aortic aneurysm (AAA), the authors assessed whether 18F-NaF positron emission tomography (PET) and computed tomography (CT) predicts AAA growth and clinical outcomes. Methods In prospective case-control (n = 20 per group) and longitudinal cohort (n = 72) studies, patients with AAA (aortic diameter >40 mm) and control subjects (aortic diameter <30 mm) underwent abdominal ultrasound, 18F-NaF PET-CT, CT angiography, and calcium scoring. Clinical endpoints were aneurysm expansion and the composite of AAA repair or rupture. Results Fluorine-18-NaF uptake was increased in AAA compared with nonaneurysmal regions within the same aorta (p = 0.004) and aortas of control subjects (p = 0.023). Histology and micro-PET-CT demonstrated that 18F-NaF uptake localized to areas of aneurysm disease and active calcification. In 72 patients within the longitudinal cohort study (mean age 73 ± 7 years, 85% men, baseline aneurysm diameter 48.8 ± 7.7 mm), there were 19 aneurysm repairs (26.4%) and 3 ruptures (4.2%) after 510 ± 196 days. Aneurysms in the highest tertile of 18F-NaF uptake expanded 2.5× more rapidly than those in the lowest tertile (3.10 [interquartile range (IQR): 2.34 to 5.92 mm/year] vs. 1.24 [IQR: 0.52 to 2.92 mm/year]; p = 0.008) and were nearly 3× as likely to experience AAA repair or rupture (15.3% vs. 5.6%; log-rank p = 0.043). Conclusions Fluorine-18-NaF PET-CT is a novel and promising approach to the identification of disease activity in patients with AAA and is an additive predictor of aneurysm growth and future clinical events. (Sodium Fluoride Imaging of Abdominal Aortic Aneurysms [SoFIA3]; NCT02229006; Magnetic Resonance Imaging [MRI] for Abdominal Aortic Aneurysms to Predict Rupture or Surgery: The MA3RS Trial; ISRCTN76413758)
Collapse
Affiliation(s)
- Rachael O Forsythe
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Olivia M B McBride
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Alex T Vesey
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Scott I Semple
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Anoop S V Shah
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip D Adamson
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - William A Wallace
- National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Jakub Kaczynski
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Weiyang Ho
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Edwin J R van Beek
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Calum D Gray
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Fletcher
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Christophe Lucatelli
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Aleksander Marin
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Burns
- National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Tambyraja
- National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Roderick T A Chalmers
- National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Graeme Weir
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Neil Mitchard
- Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Adriana Tavares
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer M J Robson
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; Edinburgh Imaging Facility, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; National Health Service Lothian, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
33
|
AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2018. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2019; 26:524-535. [PMID: 30603892 DOI: 10.1007/s12350-018-01558-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
Abstract
In this review, we summarize key articles that have been published in the Journal of Nuclear Cardiology in 2018 pertaining to nuclear cardiology with advanced multi-modality and hybrid imaging including positron emission tomography, cardiac-computed tomography, and magnetic resonance. In an upcoming review, we will summarize key articles that relate to the progress made in the field of single-photon emission computed tomography. We hope that these sister reviews will be useful to the reader to navigate the literature in our field.
Collapse
Affiliation(s)
- Wael A AlJaroudi
- Division of Cardiovascular Medicine, Clemenceau Medical Center, Beirut, Lebanon
| | - Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, 306 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL, 35294-0007, USA.
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
34
|
Rischpler C, Nekolla SG, Heusch G, Umutlu L, Rassaf T, Heusch P, Herrmann K, Nensa F. Cardiac PET/MRI-an update. Eur J Hybrid Imaging 2019; 3:2. [PMID: 34191143 PMCID: PMC8212244 DOI: 10.1186/s41824-018-0050-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022] Open
Abstract
It is now about 8 years since the first whole-body integrated PET/MRI has been installed. First, reports on technical characteristics and system performance were published. Early after, reports on the first use of PET/MRI in oncological patients were released. Interestingly, the first article on the application in cardiology was a review article, which was published before the first original article was put out. Since then, researchers have gained a lot experience with the PET/MRI in various cardiovascular diseases and an increasing number on auspicious indications is appearing. In this review article, we give an overview on technical updates within these last years with potential impact on cardiac imaging and summarize those scenarios where PET/MRI plays a pivotal role in cardiovascular medicine.
Collapse
Affiliation(s)
- C Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - S G Nekolla
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany.,DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.) partner site Munich Heart alliance, Munich, Germany
| | - G Heusch
- Institute for Pathophysiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - L Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - T Rassaf
- Department of Cardiology and Vascular Medicine, University Hospital Essen, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - P Heusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - K Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - F Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
35
|
Madonna R, Balistreri CR, De Rosa S, Muscoli S, Selvaggio S, Selvaggio G, Ferdinandy P, De Caterina R. Impact of Sex Differences and Diabetes on Coronary Atherosclerosis and Ischemic Heart Disease. J Clin Med 2019; 8:jcm8010098. [PMID: 30654523 PMCID: PMC6351940 DOI: 10.3390/jcm8010098] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/30/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD) including coronary artery disease (CAD) and ischemic heart disease (IHD) are the main cause of mortality in industrialized countries. Although it is well known that there is a difference in the risk of these diseases in women and men, current therapy does not consider the sexual dimorphism; i.e., differences in anatomical structures and metabolism of tissues. Here, we discuss how genetic, epigenetic, hormonal, cellular or molecular factors may explain the different CVD risk, especially in high-risk groups such as women with diabetes. We analyze whether sex may modify the effects of diabetes at risk of CAD. Finally, we discuss current diagnostic techniques in the evaluation of CAD and IHD in diabetic women.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine-CESI-MeT, Institute of Cardiology, "G. d'Annunzio" University, Via dei Vestini 31, 66100 Chieti, Italy.
- Department of Internal Medicine, University of Texas Medical School in Houston, Houston, 77065 TX, USA.
| | - Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy.
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, University "Magna Græcia'' of Catanzaro, Viale Europa, 88100 Catanzaro, Italy.
| | - Saverio Muscoli
- Department of Cardiovascular Disease, Tor Vergata University of Rome, 00133 Rome, Italy.
| | - Stefano Selvaggio
- Geriatric Division, A.R.N.A.S. Ospedale "Garibaldi" Nesima, 95122 Catania, Italy.
| | | | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1085 Budapest, Hungary.
- Pharmahungary Group, 6722 Szeged, Hungary.
| | - Raffaele De Caterina
- Institute of Cardiology, University of Pisa, C/o Ospedale di Cisanello, Via Paradisa 2, 56124 Pisa, Italy.
| |
Collapse
|
36
|
Alavi A, Werner TJ, Høilund-Carlsen PF. What can be and what cannot be accomplished with PET to detect and characterize atherosclerotic plaques. J Nucl Cardiol 2018; 25:2012-2015. [PMID: 28695405 DOI: 10.1007/s12350-017-0977-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
37
|
Bellinge JW, Francis RJ, Majeed K, Watts GF, Schultz CJ. In search of the vulnerable patient or the vulnerable plaque: 18F-sodium fluoride positron emission tomography for cardiovascular risk stratification. J Nucl Cardiol 2018; 25:1774-1783. [PMID: 29992525 DOI: 10.1007/s12350-018-1360-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) remains a leading cause of death. Preventative therapies that reduce CVD are most effective when targeted to individuals at high risk. Current risk stratification tools have only modest prognostic capabilities, resulting in over-treatment of low-risk individuals and under-treatment of high-risk individuals. Improved methods of CVD risk stratification are required. Molecular imaging offers a novel approach to CVD risk stratification. In particular, 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) has shown promise in the detection of both high-risk atherosclerotic plaque features and vascular calcification activity, which predicts future development of new vascular calcium deposits. The rate of change of coronary calcium scores, measured by serial computed tomography scans over a 2-year period, is a strong predictor of CVD risk. Vascular calcification activity, as measured with 18F-NaF PET, has the potential to provide prognostic information similar to consecutive coronary calcium scoring, with a single-time-point convenience. However, owing to the rapid motion and small size of the coronary arteries, new solutions are required to address the traditional limitations of PET imaging. Two different methods of coronary PET analysis have been independently proposed and here we compare their respective strengths, weaknesses, and the potential for clinical translation.
Collapse
Affiliation(s)
- Jamie W Bellinge
- Department of Cardiology, Royal Perth Hospital, 197 Wellington St, Perth, WA, 6000, Australia.
- School of Medicine, University of Western Australia, Perth, Australia.
| | - Roslyn J Francis
- School of Medicine, University of Western Australia, Perth, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Kamran Majeed
- Department of Cardiology, Royal Perth Hospital, 197 Wellington St, Perth, WA, 6000, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| | - Gerald F Watts
- Department of Cardiology, Royal Perth Hospital, 197 Wellington St, Perth, WA, 6000, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| | - Carl J Schultz
- Department of Cardiology, Royal Perth Hospital, 197 Wellington St, Perth, WA, 6000, Australia
- School of Medicine, University of Western Australia, Perth, Australia
| |
Collapse
|
38
|
Nazir MS, Ismail TF, Reyes E, Chiribiri A, Kaufmann PA, Plein S. Hybrid positron emission tomography-magnetic resonance of the heart: current state of the art and future applications. Eur Heart J Cardiovasc Imaging 2018; 19:962-974. [PMID: 30010838 PMCID: PMC6102801 DOI: 10.1093/ehjci/jey090] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/11/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
Hybrid positron emission tomography-magnetic resonance (PET-MR) imaging is a novel imaging modality with emerging applications for cardiovascular disease. PET-MR aims to combine the high-spatial resolution morphological and functional assessment afforded by magnetic resonance imaging (MRI) with the ability of positron emission tomography (PET) for quantification of metabolism, perfusion, and inflammation. The fusion of these two modalities into a single imaging platform not only represents an opportunity to acquire complementary information from a single scan, but also allows motion correction for PET with reduction in ionising radiation. This article presents a brief overview of PET-MR technology followed by a review of the published literature on the clinical cardio-vascular applications of PET and MRI performed separately and with hybrid PET-MR.
Collapse
Affiliation(s)
- Muhummad Sohaib Nazir
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Tevfik F Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Eliana Reyes
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, Zurich, Switzerland
| | - Sven Plein
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, UK
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds, UK
| |
Collapse
|
39
|
Kim SR, Lerman LO. Diagnostic imaging in the management of patients with metabolic syndrome. Transl Res 2018; 194:1-18. [PMID: 29175480 PMCID: PMC5839955 DOI: 10.1016/j.trsl.2017.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/18/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS) is the constellation of metabolic risk factors that might foster development of type 2 diabetes and cardiovascular disease. Abdominal obesity and insulin resistance play a prominent role among all metabolic traits of MetS. Because intervention including weight loss can reduce these morbidity and mortality in MetS, early detection of the severity and complications of MetS could be useful. Recent advances in imaging modalities have provided significant insight into the development and progression of abdominal obesity and insulin resistance, as well as target organ injuries. The purpose of this review is to summarize advances in diagnostic imaging modalities in MetS that can be applied for evaluating each components and target organs. This may help in early detection, monitoring target organ injury, and in turn developing novel therapeutic target to alleviate and avert them.
Collapse
Affiliation(s)
- Seo Rin Kim
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minn.
| |
Collapse
|
40
|
Molecular imaging of cardiac remodelling after myocardial infarction. Basic Res Cardiol 2018; 113:10. [PMID: 29344827 PMCID: PMC5772148 DOI: 10.1007/s00395-018-0668-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/17/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
Myocardial infarction and subsequent heart failure is a major health burden associated with significant mortality and morbidity in western societies. The ability of cardiac tissue to recover after myocardial infarction is affected by numerous complex cellular and molecular pathways. Unbalance or failure of these pathways can lead to adverse remodelling of the heart and poor prognosis. Current clinical cardiac imaging modalities assess anatomy, perfusion, function, and viability of the myocardium, yet do not offer any insight into the specific molecular pathways involved in the repair process. Novel imaging techniques allow visualisation of these molecular processes and may have significant diagnostic and prognostic values, which could aid clinical management. Single photon-emission tomography, positron-emission tomography, and magnetic resonance imaging are used to visualise various aspects of these molecular processes. Imaging probes are usually attached to radioisotopes or paramagnetic nanoparticles to specifically target biological processes such as: apoptosis, necrosis, inflammation, angiogenesis, and scar formation. Although the results from preclinical studies are promising, translating this work to a clinical environment in a valuable and cost-effective way is extremely challenging. Extensive evaluation evidence of diagnostic and prognostic values in multi-centre clinical trials is still required.
Collapse
|