1
|
Zhang S, Feng L, Han Y, Xu Z, Xu L, An X, Zhang Q. Revealing the degrading-possibility of methyl red by two azoreductases of Anoxybacillus sp. PDR2 based on molecular docking. CHEMOSPHERE 2024; 351:141173. [PMID: 38232904 DOI: 10.1016/j.chemosphere.2024.141173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/27/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Azo dyes, as the most widely used synthetic dyes, are considered to be one of the culprits of water resources and environmental pollution. Anoxybacillus sp. PDR2 is a thermophilic bacterium with the ability to degrade azo dyes, whose genome contains two genes encoding azoreductases (named AzoPDR2-1 and AzoPDR2-2). In this study, through response surface methodology (RSM), when the initial pH, inoculation volume and Mg2+ addition amount were 7.18, 10.72% and 0.1 g/L respectively, the decolorization rate of methyl red (MR) (200 mg/L) could reach its maximum (98.8%). The metabolites after biodegradation were detected by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography mass spectrometry (LC-MS/MS), indicating that MR was successfully decomposed into 4-aminobenzoic acid and other small substrates. In homologous modeling, it was found that both azoreductases were flavin-dependent azoreductases, and belonged to the α/β structure, using the Rossmann fold. In their docking results with the cofactor flavin mononucleotide (FMN), FMN bound to the surface of the protein dimer. Nicotinamide adenine dinucleotide (NADH) was superimposed on the plane of the pyrazine ring between FMN and the activity pocket of protein. Besides, both azoreductase complexes (azoreductase-FMN-NADH) exhibited a substrate preference for MR. Asn104 and Tyr74 played an important role in the combination of the azoreductase AzoPDR2-1 complex and the azoreductase AzoPDR2-2 complex with MR, respectively. This provided assistance for studying the mechanism of azoreductase biodegradation of azo dyes in thermophilic bacteria.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Linlin Feng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Yanyan Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China.
| |
Collapse
|
2
|
Valenzuela-García LI, Zapata BL, Ramírez-Ramírez N, Huchin-Mian JP, Robleto EA, Ayala-García VM, Pedraza-Reyes M. Novel Biochemical Properties and Physiological Role of the Flavin Mononucleotide Oxidoreductase YhdA from Bacillus subtilis. Appl Environ Microbiol 2020; 86:e01688-20. [PMID: 32801174 PMCID: PMC7531954 DOI: 10.1128/aem.01688-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/10/2020] [Indexed: 01/06/2023] Open
Abstract
Cr(VI) is mutagenic and teratogenic and considered an environmental pollutant of increasing concern. The use of microbial enzymes that convert this ion into its less toxic reduced insoluble form, Cr(III), represents a valuable bioremediation strategy. In this study, we examined the Bacillus subtilis YhdA enzyme, which belongs to the family of NADPH-dependent flavin mononucleotide oxide reductases and possesses azo-reductase activity as a factor that upon overexpression confers protection on B. subtilis from the cytotoxic effects promoted by Cr(VI) and counteracts the mutagenic effects of the reactive oxygen species (ROS)-promoted lesion 8-OxoG. Further, our in vitro assays unveiled catalytic and biochemical properties of biotechnological relevance in YhdA; a pure recombinant His10-YhdA protein efficiently catalyzed the reduction of Cr(VI) employing NADPH as a cofactor. The activity of the pure oxidoreductase YhdA was optimal at 30°C and at pH 7.5 and displayed Km and Vmax values of 7.26 mM and 26.8 μmol·min-1·mg-1 for Cr(VI), respectively. Therefore, YhdA can be used for efficient bioremediation of Cr(VI) and counteracts the cytotoxic and genotoxic effects of oxygen radicals induced by intracellular factors and those generated during reduction of hexavalent chromium.IMPORTANCE Here, we report that the bacterial flavin mononucleotide/NADPH-dependent oxidoreductase YhdA, widely distributed among Gram-positive bacilli, conferred protection to cells from the cytotoxic effects of Cr(VI) and prevented the hypermutagenesis exhibited by a MutT/MutM/MutY-deficient strain. Additionally, a purified recombinant His10-YhdA protein displayed a strong NADPH-dependent chromate reductase activity. Therefore, we postulate that in bacterial cells, YhdA counteracts the cytotoxic and genotoxic effects of intracellular and extracellular inducers of oxygen radicals, including those caused by hexavalent chromium.
Collapse
Affiliation(s)
| | - Blanca L Zapata
- Department of Biology, University of Guanajuato, Guanajuato, Guanajuato, Mexico
| | | | - Juan P Huchin-Mian
- Department of Biology, University of Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | - Víctor M Ayala-García
- Faculty of Chemical Sciences, Juarez University of Durango State, Durango, Durango, Mexico
| | - Mario Pedraza-Reyes
- Department of Biology, University of Guanajuato, Guanajuato, Guanajuato, Mexico
| |
Collapse
|
3
|
Bhattacharya M, Sharma AR, Patra P, Ghosh P, Sharma G, Patra BC, Lee S, Chakraborty C. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J Med Virol 2020; 92:618-631. [PMID: 32108359 PMCID: PMC7228377 DOI: 10.1002/jmv.25736] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Recently, a novel coronavirus (SARS-COV-2) emerged which is responsible for the recent outbreak in Wuhan, China. Genetically, it is closely related to SARS-CoV and MERS-CoV. The situation is getting worse and worse, therefore, there is an urgent need for designing a suitable peptide vaccine component against the SARS-COV-2. Here, we characterized spike glycoprotein to obtain immunogenic epitopes. Next, we chose 13 Major Histocompatibility Complex-(MHC) I and 3 MHC-II epitopes, having antigenic properties. These epitopes are usually linked to specific linkers to build vaccine components and molecularly dock on toll-like receptor-5 to get binding affinity. Therefore, to provide a fast immunogenic profile of these epitopes, we performed immunoinformatics analysis so that the rapid development of the vaccine might bring this disastrous situation to the end earlier.
Collapse
MESH Headings
- Amino Acid Sequence
- Betacoronavirus/genetics
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- Binding Sites
- COVID-19
- COVID-19 Vaccines
- Computational Biology/methods
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/chemistry
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Humans
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Middle East Respiratory Syndrome Coronavirus/pathogenicity
- Molecular Docking Simulation
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Structure, Tertiary
- Severe acute respiratory syndrome-related coronavirus/genetics
- Severe acute respiratory syndrome-related coronavirus/immunology
- Severe acute respiratory syndrome-related coronavirus/pathogenicity
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Toll-Like Receptor 5/chemistry
- Toll-Like Receptor 5/genetics
- Toll-Like Receptor 5/immunology
- Vaccines, Subunit
- Viral Vaccines/chemistry
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‐Chuncheon Sacred Heart HospitalChuncheon‐siGangwon‐doRepublic of Korea
- Department of ZoologyVidyasagar UniversityMidnaporeWest BengalIndia
| | - Ashish R. Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‐Chuncheon Sacred Heart HospitalChuncheon‐siGangwon‐doRepublic of Korea
| | - Prasanta Patra
- Department of ZoologyVidyasagar UniversityMidnaporeWest BengalIndia
| | - Pratik Ghosh
- Department of ZoologyVidyasagar UniversityMidnaporeWest BengalIndia
| | - Garima Sharma
- Neuropsychopharmacology and Toxicology ProgramCollege of Pharmacy, Kangwon National UniversityChuncheonRepublic of Korea
| | - Bidhan C. Patra
- Department of ZoologyVidyasagar UniversityMidnaporeWest BengalIndia
| | - Sang‐Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‐Chuncheon Sacred Heart HospitalChuncheon‐siGangwon‐doRepublic of Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University‐Chuncheon Sacred Heart HospitalChuncheon‐siGangwon‐doRepublic of Korea
- Department of BiotechnologySchool of Life Science and Biotechnology, Adamas UniversityKolkataWest BengalIndia
| |
Collapse
|
4
|
Biocomputational Analysis and In Silico Characterization of an Angiogenic Protein (RNase5) in Zebrafish (Danio rerio). Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09978-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Patra P, Mondal N, Patra BC, Bhattacharya M. Epitope-Based Vaccine Designing of Nocardia asteroides Targeting the Virulence Factor Mce-Family Protein by Immunoinformatics Approach. Int J Pept Res Ther 2019; 26:1165-1176. [PMID: 32435172 PMCID: PMC7223102 DOI: 10.1007/s10989-019-09921-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2019] [Indexed: 12/23/2022]
Abstract
Nocardia asteroides is the main causative agent responsible for nocardiosis disease in immunocompromised patient viz. Acquired Immunodeficiency Syndrome (AIDS), malignancy, diabetic, organ recipient and genetic disorders. The virulence factor and outer membrane protein pertains immense contribution towards the designing of epitopic vaccine and limiting the robust outbreak of diseases. While epitopic based vaccine element carrying B and T cell epitope along with adjuvant is highly immunoprophylactic in nature. Present research equips immunoinformatics to figure out the suitable epitopes for effective vaccine designing. The selected epitopes VLGSSVQTA, VNIELKPEF and VVPSNLFAV amino acids sequence are identified by HLA-DRB alleles of both MHC class (MHC-I and II) molecules. Simultaneously, these also accessible to B-cell, confirmed through the ABCPred server. Antigenic property expression is validated by the Vaxijen antigenic prediction web portal. Molecular docking between the epitopes and T cell receptor delta chain authenticate the accurate interaction between epitope and receptor with significantly low binding energy. Easy access of epitopes to immune system also be concluded as transmembrane nature of the protein verified by using of TMHMM server. Appropriate structural identity of the virulence factor Mce-family protein generated through Phyre2 server and subsequently validated by ProSA and PROCHECK program suite. The structural configuration of theses epitopes also shaped using DISTILL web server. Both the structure of epitopes and protein will contribute a significant step in designing of epitopic vaccine against N. asteroides. Therefore, such immunoinformatics based computational drive definitely provides a conspicuous impel towards the development of epitopic vaccine as a promising remedy of nocardiosis.
Collapse
Affiliation(s)
- Prasanta Patra
- 1Department of Zoology, Vidyasagar University, Midnapore, 721 102 West Bengal India
| | - Niladri Mondal
- 1Department of Zoology, Vidyasagar University, Midnapore, 721 102 West Bengal India
| | - Bidhan Chandra Patra
- 1Department of Zoology, Vidyasagar University, Midnapore, 721 102 West Bengal India.,2Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore, 721 102 West Bengal India
| | - Manojit Bhattacharya
- 1Department of Zoology, Vidyasagar University, Midnapore, 721 102 West Bengal India.,2Centre For Aquaculture Research, Extension & Livelihood, Department of Aquaculture Management & Technology, Vidyasagar University, Midnapore, 721 102 West Bengal India
| |
Collapse
|
6
|
Srinivasan S, Sadasivam SK, Gunalan S, Shanmugam G, Kothandan G. Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:599-608. [PMID: 30836241 DOI: 10.1016/j.envpol.2019.02.080] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Growth of textile industries led to production of enormous dye varieties. These textile dyes are largely used, chemically stable and easy to synthesize. But they are recalcitrant and persist as less biodegradable pollutants when discharged into waterbodies. Potential use of enzyme-linked bioremediation of textile dyes will control their toxicity in waterbodies. Bioinformatics and Molecular docking tool provides an insight into remediation mechanism by predicting susceptibility of dye degradation using oxidoreductive enzymes. In this study, six dyes, Reactive Red F3B, Remazol Red RGB, Joyfix Red RB, Joyfix Yellow MR, Remazol Blue RGB and Turquoise CL-5B of azo, anthraquinone and phthalocyanine molecular class were identified as potential targets for degradation by laccase and azoreductase of Aeromonas hydrophila in addition to Lysinibacillus sphaericus through in silico docking tool BioSolveIT-FlexX. Azoreductase breaks azo bonds by ping-pong mechanism whereas laccase decolorizes dyes by free radical mechanism which is not specific in nature. Results were analyzed based on parameters like stability, catalytic action and selectivity for enzyme-dye interactions. Amino acids of enzymes interacted with several dyes substantiating variations in active site for enzyme-ligand binding affinity. This suggests the role of enzymes in decolorizing an extensive variety of textile dyes, thereby, aiding in understanding the enzyme mechanisms in Bioremediation.
Collapse
Affiliation(s)
- Shantkriti Srinivasan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamil Nadu, India; PG & Research Department of Biotechnology, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India.
| | - Senthil Kumar Sadasivam
- Geobiotechnology Laboratory, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India; PG & Research Department of Botany, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India
| | - Seshan Gunalan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, 600025, Tamil Nadu, India
| | - Gnanendra Shanmugam
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Gugan Kothandan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, 600025, Tamil Nadu, India
| |
Collapse
|
7
|
Qi L, Knapton EK, Zhang X, Zhang T, Gu C, Zhao Y. Pre-culture Sudan Black B treatment suppresses autofluorescence signals emitted from polymer tissue scaffolds. Sci Rep 2017; 7:8361. [PMID: 28827657 PMCID: PMC5567053 DOI: 10.1038/s41598-017-08723-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/17/2017] [Indexed: 01/21/2023] Open
Abstract
In tissue engineering, autofluorescence of polymer scaffolds often lowers the image contrast, making it difficult to examine cells and subcellular structures. Treating the scaffold materials with Sudan Black B (SBB) after cell fixation can effectively suppress autofluorescence, but this approach is not conducive to live cell imaging. Post-culture SBB treatment also disrupts intracellular structures and leads to reduced fluorescence intensity of the targets of interest. In this study, we introduce pre-culture SBB treatment to suppress autofluorescence, where SBB is applied to polymeric scaffold materials before cell seeding. The results show that the autofluorescence signals emitted from polycaprolactone (PCL) scaffolds in three commonly used fluorescence channels effectively decrease without diminishing the fluorescence signals emitted from the cells. The pre-culture SBB treatment does not significantly affect cell viability. The autofluorescence suppressive effect does not substantially diminish during the culturing period up to 28 days. The results also show that cell migration, proliferation, and myogenic differentiation in pre-culture SBB-treated groups do not exhibit statistical difference from the non-treated groups. As such, this approach greatly improves the fluorescence image quality for examining live cell behaviors and dynamics while the cells are cultured within autofluorescent polymer scaffolds.
Collapse
Affiliation(s)
- Lin Qi
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Erin K Knapton
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Xu Zhang
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Tongwen Zhang
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Yi Zhao
- Laboratory for Biomedical Microsystems, Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
8
|
Kausar S, Asif M, Bibi N, Rashid S. Comparative molecular docking analysis of cytoplasmic dynein light chain DYNLL1 with pilin to explore the molecular mechanism of pathogenesis caused by Pseudomonas aeruginosa PAO. PLoS One 2013; 8:e76730. [PMID: 24098557 PMCID: PMC3789673 DOI: 10.1371/journal.pone.0076730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic dynein light chain 1 (DYNLL1) is a component of large protein complex, which is implicated in cargo transport processes, and is known to interact with many cellular and viral proteins through its short consensus motif (K/R)XTQT. Still, it remains to be explored that bacterial proteins also exhibit similar recognition sequences to make them vulnerable to host defense mechanism. We employed multiple docking protocols including AUTODOCK, PatchDock, ZDOCK, DOCK/PIERR and CLUSPRO to explore the DYNLL1 and Pilin interaction followed by molecular dynamics simulation assays. Subsequent structural comparison of the predicted binding site for DYNLL1-Pilin complex against the experimentally verified DYNLL1 binding partners was performed to cross check the residual contributions and to determine the binding mode. On the basis of in silico analysis, here we describe a novel interaction of DYNLL1 and receptor binding domain of Pilin (the main protein constituent of bacterial type IV Pili) of gram negative bacteria Pseudomonas aeruginosa (PAO), which is the third most common nosocomial pathogen associated with the life-threatening infections. Evidently, our results underscore that Pilin specific motif (KSTQD) exhibits a close structural similarity to that of Vaccinia virus polymerase, P protein Rabies and P protein Mokola viruses. We speculate that binding of DYNLL1 to Pilin may trigger an uncontrolled inflammatory response of the host immune system during P. aeruginosa chronic infections thereby opening a new pioneering area to investigate the role of DYNLL1 in gram negative bacterial infections other than viral infections. Moreover, by manifesting a strict correspondence between sequence and function, our study anticipates a novel drug target site to control the complications caused by P. aeruginosa infections.
Collapse
Affiliation(s)
- Samina Kausar
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Asif
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nousheen Bibi
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
9
|
Abstract
Azo and diazo compounds include Sudan dyes, which were widely used in industry. Although they are not permitted in food, they had been found contaminating different food products and their presence is investigated regularly (since 2003) in these products. Sudan III, as well as Sudan Black B, was included in different laboratory techniques for tissue ceroid and lipofucsin analysis and blood-cell staining. Also, Sudan Black B has been recently included in in vivo evaluations in human beings (through oral intake), and Sudan III is still allowed in cosmetics. These azo dyes were metabolized to possible carcinogenic colorless amines, both in the liver of mammalians and by the micro flora present in human skin and the gastrointestinal tract. Both human and laboratory animal cytochrome P450s (CYPs) were able to oxidize Sudan I, whereas Sudan III modified CYP activities. In vitro genotoxic effects were reported for Sudan I, and some DNA adducts formed through exposure to its metabolites were identified. Sudan I was also found to be carcinogenic in the rat, but not in the mouse. The aim of the present review is to put together the most relevant information concerning Sudan dye uses and toxicity to provide some tools for the identification of the risk they represent for human health.
Collapse
Affiliation(s)
- Teresa M Fonovich
- School of Science and Technology, University of General San Martin, San Martin, Buenos Aires, Argentina.
| |
Collapse
|