1
|
Feng Q, Saladin M, Wu C, Cao E, Zheng W, Zhang A, Bhardwaj P, Li X, Shen Q, Kapinos LE, Kozai T, Mariappan M, Lusk CP, Xiong Y, Lim RYH, Lin C. Channel width modulates the permeability of DNA origami-based nuclear pore mimics. SCIENCE ADVANCES 2024; 10:eadq8773. [PMID: 39536094 PMCID: PMC11559598 DOI: 10.1126/sciadv.adq8773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Nucleoporins (nups) in the nuclear pore complex (NPC) form a selective barrier that suppresses the diffusion of most macromolecules while enabling rapid transport of nuclear transport receptor (NTR)-bound cargos. Recent studies have shown that the NPC may dilate and constrict, but how altering the NPC diameter affects its selective barrier properties remains unclear. Here, we build DNA nanopores with programmable diameters and nup arrangements to model the constricted and dilated NPCs. We find that Nup62 proteins form a dynamic cross-channel barrier impermeable to hepatitis B virus (HBV) capsids when grafted inside 60-nm-wide nanopores but not in 79-nm pores, where Nup62 cluster locally. Furthermore, importin-β1 substantially changes the dynamics of Nup62 assemblies and facilitates the passage of HBV capsids through the 60-nm NPC mimics containing Nup62 and Nup153. Our study shows that transport channel width is critical to the permeability of nup barriers and underscores NTRs' role in dynamically remodeling nup assemblies and mediating the nuclear entry of viruses.
Collapse
Affiliation(s)
- Qingzhou Feng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | | | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Eason Cao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Wei Zheng
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Amy Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Pushpanjali Bhardwaj
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Xia Li
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - Qi Shen
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Toshiya Kozai
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Malaiyalam Mariappan
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Roderick Y. H. Lim
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Chenxiang Lin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Zhang Y, Chen Y, Wu T, Han G. Adaptive block imaging based on compressive sensing in AFM. Microsc Res Tech 2024; 87:2555-2579. [PMID: 38877841 DOI: 10.1002/jemt.24618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 10/13/2024]
Abstract
Atomic force microscopy (AFM) is a kind of high-precision instrument to measure the surface morphology of various conductive or nonconductive samples. However, obtaining a high-resolution image with standard AFM scanning requires more time. Using block compressive sensing (BCS) is an effective approach to achieve rapid AFM imaging. But, the routine BCS-AFM imaging is difficult to balance the image quality of each local area. It is easy to lead to excessive sampling in some flat areas, resulting in time-consuming. At the same time, there is a lack of sampling in some areas with significant details, resulting in poor imaging quality. Thus, an innovative adaptive BCS-AFM imaging method is proposed. The overlapped block is used to eliminate blocking artifacts. Characteristic parameters (GTV, Lu, and SD) are used to predict the local morphological characteristics of the samples. Back propagation neural network is employed to acquire the appropriate sampling rate of each sub-block. Sampling points are obtained by pre-scanning and adaptive supplementary scanning. Afterward, all sub-block images are reconstructed using the TVAL3 algorithm. Each sample is capable of achieving uniform, excellent image quality. Image visual effects and evaluation indicators (PSNR and SSIM) are employed for the purpose of evaluating and analyzing the imaging effects of samples. Compared with two nonadaptive and two other adaptive imaging schemes, our proposed scheme has the characteristics of a high degree of automation, uniformly high-quality imaging, and rapid imaging speed. HIGHLIGHTS: The proposed adaptive BCS method can address the issues of uneven image quality and slow imaging speed in AFM. The appropriate sampling rate of each sub-block of the sample can be obtained by BP neural network. The introduction of GTV, Lu, and SD can effectively reveal the morphological features of AFM images. Seven samples with different morphology are used to test the performance of the proposed adaptive algorithm. Practical experiments are carried out with two samples to verify the feasibility of the proposed adaptive algorithm.
Collapse
Affiliation(s)
- Yuchuan Zhang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, People's Republic of China
| | - Yongjian Chen
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, People's Republic of China
| | - Teng Wu
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, People's Republic of China
| | - Guoqiang Han
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, People's Republic of China
| |
Collapse
|
3
|
Shvedov M, Sherstyukova E, Kandrashina S, Inozemtsev V, Sergunova V. Atomic Force Microscopy and Scanning Ion-Conductance Microscopy for Investigation of Biomechanical Characteristics of Neutrophils. Cells 2024; 13:1757. [PMID: 39513864 PMCID: PMC11545488 DOI: 10.3390/cells13211757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Scanning probe microscopy (SPM) is a versatile tool for studying a wide range of materials. It is well suited for investigating living matter, for example, in single-cell neutrophil studies. SPM has been extensively utilized to analyze cell physical properties, providing detailed insights into their structural and functional characteristics at the nanoscale. Its long-standing application in this field highlights its essential role in cell biology and immunology research, significantly contributing to understanding cellular mechanics and interactions. In this review, we discuss the application of SPM techniques, specifically atomic force microscopy (AFM) and scanning ion-conductance microscopy (SICM), to study the fundamental functions of neutrophils. In addition, recent advances in the application of SPM in single-cell immunology are discussed. The application of these techniques allows for obtaining data on the morphology, topography, and mechanical and electrochemical properties of neutrophils with high accuracy.
Collapse
Affiliation(s)
- Mikhail Shvedov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Ekaterina Sherstyukova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Snezhanna Kandrashina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| | - Vladimir Inozemtsev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
- Koltzov Institute of Development Biology of Russia Academy of Science, 119334 Moscow, Russia
| | - Viktoria Sergunova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, V.A. Negovsky Research Institute of General Reanimatology, 107031 Moscow, Russia; (E.S.); (S.K.); (V.I.)
| |
Collapse
|
4
|
Wu X, Miyashita O, Tama F. Modeling Conformational Transitions of Biomolecules from Atomic Force Microscopy Images using Normal Mode Analysis. J Phys Chem B 2024; 128:9363-9372. [PMID: 39319845 PMCID: PMC11457880 DOI: 10.1021/acs.jpcb.4c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
Abstract
Observing a single biomolecule performing its function is fundamental in biophysics as it provides important information for elucidating the mechanism. High-speed atomic force microscopy (HS-AFM) is a unique and powerful technique that allows the observation of biomolecular motion in a near-native environment. However, the spatial resolution of HS-AFM is limited by the physical size of the cantilever tip, which restricts the ability to obtain atomic details of molecules. In this study, we propose a novel computational algorithm designed to derive atomistic models of conformational dynamics from AFM images. Our method uses normal-mode analysis to describe the expected motions of the molecule, allowing these motions to be represented with a limited number of coordinates. This approach mitigates the problem of overinterpretation inherent in the analysis of AFM images with limited resolution. We demonstrate the effectiveness of our algorithm, NMFF-AFM, using synthetic data sets for three proteins that undergo significant conformational changes. NMFF-AFM is a fast and user-friendly program that requires minimal setup and has the potential to be a valuable tool for biophysical studies using HS-AFM.
Collapse
Affiliation(s)
- Xuan Wu
- Department
of Physics, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Osamu Miyashita
- RIKEN
Center for Computational Science, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Florence Tama
- Department
of Physics, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- RIKEN
Center for Computational Science, 6-7-1 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Institute
of Transformative Bio-Molecules, Nagoya
University, Furo-cho,
Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
5
|
Gregorat L, Cautero M, Carrato S, Giuressi D, Panighel M, Cautero G, Esch F. Design of an FPGA-Based Controller for Fast Scanning Probe Microscopy. SENSORS (BASEL, SWITZERLAND) 2024; 24:6108. [PMID: 39338853 PMCID: PMC11435870 DOI: 10.3390/s24186108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Atomic-scale imaging using scanning probe microscopy is a pivotal method for investigating the morphology and physico-chemical properties of nanostructured surfaces. Time resolution represents a significant limitation of this technique, as typical image acquisition times are on the order of several seconds or even a few minutes, while dynamic processes-such as surface restructuring or particle sintering, to be observed upon external stimuli such as changes in gas atmosphere or electrochemical potential-often occur within timescales shorter than a second. In this article, we present a fully redesigned field programmable gate array (FPGA)-based instrument that can be integrated into most commercially available standard scanning probe microscopes. This instrument not only significantly accelerates the acquisition of atomic-scale images by orders of magnitude but also enables the tracking of moving features such as adatoms, vacancies, or clusters across the surface ("atom tracking") due to the parallel execution of sophisticated control and acquisition algorithms and the fast exchange of data with an external processor. Each of these measurement modes requires a complex series of operations within the FPGA that are explained in detail.
Collapse
Affiliation(s)
- Leonardo Gregorat
- DIA (Dipartimento di Ingegneria e Architettura), University of Trieste, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A. Science Park, Strada Statale 14, km 163.5, 34149 Basovizza, Italy
| | - Marco Cautero
- Elettra-Sincrotrone Trieste S.C.p.A. Science Park, Strada Statale 14, km 163.5, 34149 Basovizza, Italy
- Dipartimento di Fisica, University of Trieste, 34127 Trieste, Italy
| | - Sergio Carrato
- DIA (Dipartimento di Ingegneria e Architettura), University of Trieste, 34127 Trieste, Italy
| | - Dario Giuressi
- Elettra-Sincrotrone Trieste S.C.p.A. Science Park, Strada Statale 14, km 163.5, 34149 Basovizza, Italy
| | - Mirco Panighel
- Laboratorio TASC, CNR-IOM (Istituto Officina dei Materiali), Strada Statale 14, km 163.5, 34149 Basovizza, Italy
| | - Giuseppe Cautero
- Elettra-Sincrotrone Trieste S.C.p.A. Science Park, Strada Statale 14, km 163.5, 34149 Basovizza, Italy
- INFN (Istituto Nazionale di Fisica Nucleare), Sez. di Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Friedrich Esch
- Chair of Physical Chemistry and Catalysis Research Center, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
6
|
Son A, Kim W, Park J, Lee W, Lee Y, Choi S, Kim H. Utilizing Molecular Dynamics Simulations, Machine Learning, Cryo-EM, and NMR Spectroscopy to Predict and Validate Protein Dynamics. Int J Mol Sci 2024; 25:9725. [PMID: 39273672 PMCID: PMC11395565 DOI: 10.3390/ijms25179725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
Protein dynamics play a crucial role in biological function, encompassing motions ranging from atomic vibrations to large-scale conformational changes. Recent advancements in experimental techniques, computational methods, and artificial intelligence have revolutionized our understanding of protein dynamics. Nuclear magnetic resonance spectroscopy provides atomic-resolution insights, while molecular dynamics simulations offer detailed trajectories of protein motions. Computational methods applied to X-ray crystallography and cryo-electron microscopy (cryo-EM) have enabled the exploration of protein dynamics, capturing conformational ensembles that were previously unattainable. The integration of machine learning, exemplified by AlphaFold2, has accelerated structure prediction and dynamics analysis. These approaches have revealed the importance of protein dynamics in allosteric regulation, enzyme catalysis, and intrinsically disordered proteins. The shift towards ensemble representations of protein structures and the application of single-molecule techniques have further enhanced our ability to capture the dynamic nature of proteins. Understanding protein dynamics is essential for elucidating biological mechanisms, designing drugs, and developing novel biocatalysts, marking a significant paradigm shift in structural biology and drug discovery.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, San Diego, CA 92037, USA
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Wonseok Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Yerim Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Seongyun Choi
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
7
|
Eliahoo P, Setayesh H, Hoffman T, Wu Y, Li S, Treweek JB. Viscoelasticity in 3D Cell Culture and Regenerative Medicine: Measurement Techniques and Biological Relevance. ACS MATERIALS AU 2024; 4:354-384. [PMID: 39006396 PMCID: PMC11240420 DOI: 10.1021/acsmaterialsau.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 07/16/2024]
Abstract
The field of mechanobiology is gaining prominence due to recent findings that show cells sense and respond to the mechanical properties of their environment through a process called mechanotransduction. The mechanical properties of cells, cell organelles, and the extracellular matrix are understood to be viscoelastic. Various technologies have been researched and developed for measuring the viscoelasticity of biological materials, which may provide insight into both the cellular mechanisms and the biological functions of mechanotransduction. Here, we explain the concept of viscoelasticity and introduce the major techniques that have been used to measure the viscoelasticity of various soft materials in different length- and timescale frames. The topology of the material undergoing testing, the geometry of the probe, the magnitude of the exerted stress, and the resulting deformation should be carefully considered to choose a proper technique for each application. Lastly, we discuss several applications of viscoelasticity in 3D cell culture and tissue models for regenerative medicine, including organoids, organ-on-a-chip systems, engineered tissue constructs, and tunable viscoelastic hydrogels for 3D bioprinting and cell-based therapies.
Collapse
Affiliation(s)
- Payam Eliahoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Hesam Setayesh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Jennifer B Treweek
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| |
Collapse
|
8
|
Cheng P, Li Y, Lin R, Hu Y, Gao X, Qian J, Sun W, Yuan Q. Adaptive under-sampling strategy for fast imaging in compressive sensing-based atomic force microscopy. Ultramicroscopy 2024; 261:113964. [PMID: 38579523 DOI: 10.1016/j.ultramic.2024.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Compressive sensing (CS) can reconstruct the rest information almost without distortion by advanced computational algorithm, which significantly simplifies the process of atomic force microscope (AFM) scanning with high imaging quality. In common CS-AFM, the partial measurements randomly come from the whole region to be measured, which easily leads to detail loss and poor image quality in regions of interest (ROIs). Consequently, important microscopic phenomena are missed probably. In this paper, we developed an adaptive under-sampling strategy for CS-AFM to optimize the process of sampling. Under a certain under-sampling ratio, the weight coefficient of ROIs and regions of base (ROBs) were set to control the distribution of under-sampling points and corresponding measurement matrix. A series of simulations were completed to demonstrate the relationship between the weight coefficient of ROIs and image quality. After that, we verified the effectiveness of the method on our homemade AFM. Through a lot of simulations and experiments, we demonstrated how the proposed method optimized the sampling process of CS-AFM, which speeded up the process of AFM imaging with high quality.
Collapse
Affiliation(s)
- Peng Cheng
- School of Physics, Beihang University, Beijing 100191, China
| | - Yingzi Li
- School of Physics, Beihang University, Beijing 100191, China; Fujian Engineering and Research Center of Green and Environment-Friendly Functional Footwear Materials, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China.
| | - Rui Lin
- School of Physics, Beihang University, Beijing 100191, China
| | - Yifan Hu
- School of Physics, Beihang University, Beijing 100191, China
| | - Xiaodong Gao
- School of Physics, Beihang University, Beijing 100191, China
| | - Jianqiang Qian
- School of Physics, Beihang University, Beijing 100191, China
| | - Wendong Sun
- School of Physics, Beihang University, Beijing 100191, China
| | - Quan Yuan
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
9
|
Medina-Ramirez IE, Macias-Diaz JE, Masuoka-Ito D, Zapien JA. Holotomography and atomic force microscopy: a powerful combination to enhance cancer, microbiology and nanotoxicology research. DISCOVER NANO 2024; 19:64. [PMID: 38594446 PMCID: PMC11003950 DOI: 10.1186/s11671-024-04003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Modern imaging strategies are paramount to studying living systems such as cells, bacteria, and fungi and their response to pathogens, toxicants, and nanomaterials (NMs) as modulated by exposure and environmental factors. The need to understand the processes and mechanisms of damage, healing, and cell survivability of living systems continues to motivate the development of alternative imaging strategies. Of particular interest is the use of label-free techniques (microscopy procedures that do not require sample staining) that minimize interference of biological processes by foreign marking substances and reduce intense light exposure and potential photo-toxicity effects. This review focuses on the synergic capabilities of atomic force microscopy (AFM) as a well-developed and robust imaging strategy with demonstrated applications to unravel intimate details in biomedical applications, with the label-free, fast, and enduring Holotomographic Microscopy (HTM) strategy. HTM is a technique that combines holography and tomography using a low intensity continuous illumination laser to investigate (quantitatively and non-invasively) cells, microorganisms, and thin tissue by generating three-dimensional (3D) images and monitoring in real-time inner morphological changes. We first review the operating principles that form the basis for the complementary details provided by these techniques regarding the surface and internal information provided by HTM and AFM, which are essential and complimentary for the development of several biomedical areas studying the interaction mechanisms of NMs with living organisms. First, AFM can provide superb resolution on surface morphology and biomechanical characterization. Second, the quantitative phase capabilities of HTM enable superb modeling and quantification of the volume, surface area, protein content, and mass density of the main components of cells and microorganisms, including the morphology of cells in microbiological systems. These capabilities result from directly quantifying refractive index changes without requiring fluorescent markers or chemicals. As such, HTM is ideal for long-term monitoring of living organisms in conditions close to their natural settings. We present a case-based review of the principal uses of both techniques and their essential contributions to nanomedicine and nanotoxicology (study of the harmful effects of NMs in living organisms), emphasizing cancer and infectious disease control. The synergic impact of the sequential use of these complementary strategies provides a clear drive for adopting these techniques as interdependent fundamental tools.
Collapse
Affiliation(s)
- Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| | - J E Macias-Diaz
- Department of Mathematics and Physics, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - David Masuoka-Ito
- Department of Stomatology, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
10
|
Harano K, Nakamuro T, Nakamura E. Cinematographic study of stochastic chemical events at atomic resolution. Microscopy (Oxf) 2024; 73:101-116. [PMID: 37864546 DOI: 10.1093/jmicro/dfad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023] Open
Abstract
The advent of single-molecule atomic-resolution time-resolved electron microscopy (SMART-EM) has created a new field of 'cinematic chemistry,' allowing for the cinematographic recording of dynamic behaviors of organic and inorganic molecules and their assembly. However, the limited electron dose per frame of video images presents a major challenge in SMART-EM. Recent advances in direct electron counting cameras and techniques to enhance image quality through the implementation of a denoising algorithm have enabled the tracking of stochastic molecular motions and chemical reactions with sub-millisecond temporal resolution and sub-angstrom localization precision. This review showcases the development of dynamic molecular imaging using the SMART-EM technique, highlighting insights into nanomechanical behavior during molecular shuttle motion, pathways of multistep chemical reactions, and elucidation of crystallization processes at the atomic level.
Collapse
Affiliation(s)
- Koji Harano
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Weaver DR, Schaefer KG, King GM. Atomic force microscope kymograph analysis: A case study of two membrane proteins. Methods 2024; 223:83-94. [PMID: 38286332 DOI: 10.1016/j.ymeth.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
Kymograph analysis is employed across the biological atomic force microscopy (AFM) community to boost temporal resolution. The method is well suited for revealing protein dynamics at the single molecule level in near-native conditions. Yet, kymograph analysis comes with limitations that depend on several factors including protein geometry and instrumental drift. This work focuses on conformational dynamics of difficult-to-study sparse distributions of membrane proteins. We compare and contrast AFM kymograph analysis for two proteins, one of which (SecDF) exhibits conformational dynamics primarily in the vertical direction (normal to the membrane surface) and the other (Pgp) exhibits a combination of lateral dynamics and vertical motion. Common experimental issues are analyzed including translational and rotational drift. Conformational transition detection is evaluated via kymograph simulations followed by state detection algorithms. We find that kymograph analysis is largely robust to lateral drift. Displacement of the AFM line scan trajectory away from the protein center of mass by a few nanometers, roughly half of the molecule diameter, does not significantly affect transition detection nor generate undue dwell time errors. On the other hand, for proteins like Pgp that exhibit significant azimuthal maximum height dependence, rotational drift can potentially produce artifactual transitions. Measuring the height of a membrane protein protrusion is generally superior to measurement of width, confirming intuition based on vertical resolution superiority. In low signal-to-noise scenarios, common state detection algorithms struggle with transition detection as opposed to infinite hidden Markov models. AFM kymography represents a valuable addition to the membrane biophysics toolkit; continued hardware and software improvements are poised to expand the method's impact in the field.
Collapse
Affiliation(s)
- Dylan R Weaver
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia MO 65211 USA; Joint with Department of Biochemistry, University of Missouri-Columbia, Columbia MO 65211 USA.
| |
Collapse
|
12
|
Allen FI, De Teresa JM, Onoa B. Focused Helium Ion and Electron Beam-Induced Deposition of Organometallic Tips for Dynamic Atomic Force Microscopy of Biomolecules in Liquid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4439-4448. [PMID: 38244049 DOI: 10.1021/acsami.3c16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
We demonstrate the fabrication of sharp nanopillars of high aspect ratio onto specialized atomic force microscopy (AFM) microcantilevers and their use for high-speed AFM of DNA and nucleoproteins in liquid. The fabrication technique uses localized charged-particle-induced deposition with either a focused beam of helium ions or electrons in a helium ion microscope (HIM) or scanning electron microscope (SEM). This approach enables customized growth onto delicate substrates with nanometer-scale placement precision and in situ imaging of the final tip structures using the HIM or SEM. Tip radii of <10 nm are obtained and the underlying microcantilever remains intact. Instead of the more commonly used organic precursors employed for bio-AFM applications, we use an organometallic precursor (tungsten hexacarbonyl) resulting in tungsten-containing tips. Transmission electron microscopy reveals a thin layer of carbon on the tips. The interaction of the new tips with biological specimens is therefore likely very similar to that of standard carbonaceous tips, with the added benefit of robustness. A further advantage of the organometallic tips is that compared to carbonaceous tips they better withstand UV-ozone cleaning treatments to remove residual organic contaminants between experiments, which are inevitable during the scanning of soft biomolecules in liquid. Our tips can also be grown onto the blunted tips of previously used cantilevers, thus providing a means to recycle specialized cantilevers and restore their performance to the original manufacturer specifications. Finally, a focused helium ion beam milling technique to reduce the tip radii and thus further improve lateral spatial resolution in the AFM scans is demonstrated.
Collapse
Affiliation(s)
- Frances I Allen
- Department of Materials Science and Engineering, University of California, Berkeley, California 97420, United States
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 97420, United States
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 97420, United States
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Bibiana Onoa
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 97420, United States
| |
Collapse
|
13
|
Nishiyama A, Shimizu M, Narita T, Kodera N, Ozeki Y, Yokoyama A, Mayanagi K, Yamaguchi T, Hakamata M, Shaban A, Tateishi Y, Ito K, Matsumoto S. Dynamic action of an intrinsically disordered protein in DNA compaction that induces mycobacterial dormancy. Nucleic Acids Res 2024; 52:816-830. [PMID: 38048321 PMCID: PMC10810275 DOI: 10.1093/nar/gkad1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
Mycobacteria are the major human pathogens with the capacity to become dormant persisters. Mycobacterial DNA-binding protein 1 (MDP1), an abundant histone-like protein in dormant mycobacteria, induces dormancy phenotypes, e.g. chromosome compaction and growth suppression. For these functions, the polycationic intrinsically disordered region (IDR) is essential. However, the disordered property of IDR stands in the way of clarifying the molecular mechanism. Here we clarified the molecular and structural mechanism of DNA compaction by MDP1. Using high-speed atomic force microscopy, we observed that monomeric MDP1 bundles two adjacent DNA duplexes side-by-side via IDR. Combined with coarse-grained molecular dynamics simulation, we revealed the novel dynamic DNA cross-linking model of MDP1 in which a stretched IDR cross-links two DNA duplexes like double-sided tape. IDR is able to hijack HU function, resulting in the induction of strong mycobacterial growth arrest. This IDR-mediated reversible DNA cross-linking is a reasonable model for MDP1 suppression of the genomic function in the resuscitable non-replicating dormant mycobacteria.
Collapse
Affiliation(s)
- Akihito Nishiyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Masahiro Shimizu
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
- Division of Quantum Beam Material Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-Nishi, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Tomoyuki Narita
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Akira Yokoyama
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kouta Mayanagi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiro Yamaguchi
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Pharmacology, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Mariko Hakamata
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Department of Respiratory Medicine and Infectious Disease, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Amina Kaboso Shaban
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Yoshitaka Tateishi
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Kosuke Ito
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
- Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl. Mulyorejo, Surabaya, East Java 60115, Indonesia
- Division of Research Aids, Hokkaido University Institute for Vaccine Research & Development, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan
| |
Collapse
|
14
|
Liu Y, Liu X, Su A, Gong C, Chen S, Xia L, Zhang C, Tao X, Li Y, Li Y, Sun T, Bu M, Shao W, Zhao J, Li X, Peng Y, Guo P, Han Y, Zhu Y. Revolutionizing the structural design and determination of covalent-organic frameworks: principles, methods, and techniques. Chem Soc Rev 2024; 53:502-544. [PMID: 38099340 DOI: 10.1039/d3cs00287j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Covalent organic frameworks (COFs) represent an important class of crystalline porous materials with designable structures and functions. The interconnected organic monomers, featuring pre-designed symmetries and connectivities, dictate the structures of COFs, endowing them with high thermal and chemical stability, large surface area, and tunable micropores. Furthermore, by utilizing pre-functionalization or post-synthetic functionalization strategies, COFs can acquire multifunctionalities, leading to their versatile applications in gas separation/storage, catalysis, and optoelectronic devices. Our review provides a comprehensive account of the latest advancements in the principles, methods, and techniques for structural design and determination of COFs. These cutting-edge approaches enable the rational design and precise elucidation of COF structures, addressing fundamental physicochemical challenges associated with host-guest interactions, topological transformations, network interpenetration, and defect-mediated catalysis.
Collapse
Affiliation(s)
- Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaona Liu
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - An Su
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengtao Gong
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Shenwei Chen
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Liwei Xia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Chengwei Zhang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaohuan Tao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yue Li
- Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311121, China
| | - Yonghe Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Tulai Sun
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Mengru Bu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Wei Shao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Jia Zhao
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Xiaonian Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Yongwu Peng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Peng Guo
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yu Han
- School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
15
|
Feng Y, Roos WH. Atomic Force Microscopy: An Introduction. Methods Mol Biol 2024; 2694:295-316. [PMID: 37824010 DOI: 10.1007/978-1-0716-3377-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Imaging of nano-sized particles and sample features is crucial in a variety of research fields, for instance, in biological sciences, where it is paramount to investigate structures at the single particle level. Often, two-dimensional images are not sufficient, and further information such as topography and mechanical properties are required. Furthermore, to increase the biological relevance, it is desired to perform the imaging in close to physiological environments. Atomic force microscopy (AFM) meets these demands in an all-in-one instrument. It provides high-resolution images including surface height information leading to three-dimensional information on sample morphology. AFM can be operated both in air and in buffer solutions. Moreover, it has the capacity to determine protein and membrane material properties via the force spectroscopy mode. Here we discuss the principles of AFM operation and provide examples of how biomolecules can be studied. New developments in AFM are discussed, and by including approaches such as bimodal AFM and high-speed AFM (HS-AFM), we show how AFM can be used to study a variety of static and dynamic single biomolecules and biomolecular assemblies.
Collapse
Affiliation(s)
- Yuzhen Feng
- Moleculaire Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| |
Collapse
|
16
|
Melters DP, Neuman KC, Bentahar RS, Rakshit T, Dalal Y. Single molecule analysis of CENP-A chromatin by high-speed atomic force microscopy. eLife 2023; 12:e86709. [PMID: 37728600 PMCID: PMC10511241 DOI: 10.7554/elife.86709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Chromatin accessibility is modulated in a variety of ways to create open and closed chromatin states, both of which are critical for eukaryotic gene regulation. At the single molecule level, how accessibility is regulated of the chromatin fiber composed of canonical or variant nucleosomes is a fundamental question in the field. Here, we developed a single-molecule tracking method where we could analyze thousands of canonical H3 and centromeric variant nucleosomes imaged by high-speed atomic force microscopy. This approach allowed us to investigate how changes in nucleosome dynamics in vitro inform us about transcriptional potential in vivo. By high-speed atomic force microscopy, we tracked chromatin dynamics in real time and determined the mean square displacement and diffusion constant for the variant centromeric CENP-A nucleosome. Furthermore, we found that an essential kinetochore protein CENP-C reduces the diffusion constant and mobility of centromeric nucleosomes along the chromatin fiber. We subsequently interrogated how CENP-C modulates CENP-A chromatin dynamics in vivo. Overexpressing CENP-C resulted in reduced centromeric transcription and impaired loading of new CENP-A molecules. From these data, we speculate that factors altering nucleosome mobility in vitro, also correspondingly alter transcription in vivo. Subsequently, we propose a model in which variant nucleosomes encode their own diffusion kinetics and mobility, and where binding partners can suppress or enhance nucleosome mobility.
Collapse
Affiliation(s)
- Daniël P Melters
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| | - Keir C Neuman
- National Heart, Lung, and Blood Institute, Laboratory of Single Molecule BiophysicsBethesdaUnited States
| | - Reda S Bentahar
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| | - Tatini Rakshit
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
- Department of Chemistry, Shiv Nadar UniversityDadriIndia
| | - Yamini Dalal
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| |
Collapse
|
17
|
Mondaca-Medina E, García-Carrillo R, Lee H, Wang Y, Zhang H, Ren H. Nanoelectrochemistry in electrochemical phase transition reactions. Chem Sci 2023; 14:7611-7619. [PMID: 37476712 PMCID: PMC10355110 DOI: 10.1039/d3sc01857a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Electrochemical phase transition is important in a range of processes, including gas generation in fuel cells and electrolyzers, as well as in electrodeposition in battery and metal production. Nucleation is the first step in these phase transition reactions. A deep understanding of the kinetics, and mechanism of the nucleation and the structure of the nuclei and nucleation sites is fundamentally important. In this perspective, theories and methods for studying electrochemical nucleation are briefly reviewed, with an emphasis on nanoelectrochemistry and single-entity electrochemistry approaches. Perspectives on open questions and potential future approaches are also discussed.
Collapse
Affiliation(s)
- Elías Mondaca-Medina
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Roberto García-Carrillo
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Yufei Wang
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - He Zhang
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin 105 E 24th St Austin TX 78712 USA
| |
Collapse
|
18
|
Schaefer KG, Roberts AG, King GM. Advantages and potential limitations of applying AFM kymograph analysis to pharmaceutically relevant membrane proteins in lipid bilayers. Sci Rep 2023; 13:11427. [PMID: 37454132 PMCID: PMC10349840 DOI: 10.1038/s41598-023-37910-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Membrane proteins play critical roles in disease and in the disposition of many pharmaceuticals. A prime example is P-glycoprotein (Pgp) which moves a diverse range of drugs across membranes and out of the cell before a therapeutic payload can be delivered. Conventional structural biology methods have provided a valuable framework for comprehending the complex conformational changes underlying Pgp function, which also includes ATPase activity, but the lack of real-time information hinders understanding. Atomic force microscopy (AFM) is a single-molecule technique that is well-suited for studying active membrane proteins in bilayers and is poised to advance the field beyond static snapshots. After verifying Pgp activity in surface-support bilayers, we used kymograph analysis in conjunction with AFM imaging and simulations to study structural transitions at the 100 ms timescale. Though kymographs are frequently employed to boost temporal resolution, the limitations of the method have not been well characterized, especially for sparse non-crystalline distributions of pharmaceutically relevant membrane proteins like Pgp. Common experimental challenges are analyzed, including protein orientation, instrument noise, and drift. Surprisingly, a lateral drift of 75% of the protein dimension leads to only a 12% probability of erroneous state transition detection; average dwell time error achieves a maximum value of 6%. Rotational drift of proteins like Pgp, with azimuthally-dependent maximum heights, can lead to artifactual transitions. Torsional constraints can alleviate this potential pitfall. Confidence in detected transitions can be increased by adding conformation-altering ligands such as non-hydrolysable analogs. Overall, the data indicate that AFM kymographs are a viable method to access conformational dynamics for Pgp, but generalizations of the method should be made with caution.
Collapse
Affiliation(s)
- Katherine G Schaefer
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Arthur G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA.
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA.
- Joint With Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
19
|
Farokh Payam A, Passian A. Imaging beyond the surface region: Probing hidden materials via atomic force microscopy. SCIENCE ADVANCES 2023; 9:eadg8292. [PMID: 37379392 DOI: 10.1126/sciadv.adg8292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Probing material properties at surfaces down to the single-particle scale of atoms and molecules has been achieved, but high-resolution subsurface imaging remains a nanometrology challenge due to electromagnetic and acoustic dispersion and diffraction. The atomically sharp probe used in scanning probe microscopy (SPM) has broken these limits at surfaces. Subsurface imaging is possible under certain physical, chemical, electrical, and thermal gradients present in the material. Of all the SPM techniques, atomic force microscopy has entertained unique opportunities for nondestructive and label-free measurements. Here, we explore the physics of the subsurface imaging problem and the emerging solutions that offer exceptional potential for visualization. We discuss materials science, electronics, biology, polymer and composite sciences, and emerging quantum sensing and quantum bio-imaging applications. The perspectives and prospects of subsurface techniques are presented to stimulate further work toward enabling noninvasive high spatial and spectral resolution investigation of materials including meta- and quantum materials.
Collapse
Affiliation(s)
- Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre, School of Engineering, Ulster University, Belfast, UK
| | - Ali Passian
- Quantum Computing and Sensing, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
20
|
Kähler H, Arthaber H, Winkler R, West RG, Ignat I, Plank H, Schmid S. Transduction of Single Nanomechanical Pillar Resonators by Scattering of Surface Acoustic Waves. NANO LETTERS 2023; 23:4344-4350. [PMID: 37167540 DOI: 10.1021/acs.nanolett.3c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One of the challenges of nanoelectromechanical systems (NEMS) is the effective transduction of the tiny resonators. Vertical structures, such as nanomechanical pillar resonators, which are exploited in optomechanics, acoustic metamaterials, and nanomechanical sensing, are particularly challenging to transduce. Existing electromechanical transduction methods are ill-suited as they put constraints on the pillars' material and do not enable a transduction of freestanding pillars. Here, we present an electromechanical transduction method for single nanomechanical pillar resonators based on surface acoustic waves (SAWs). We demonstrate the transduction of freestanding nanomechanical platinum-carbon pillars in the first-order bending and compression mode. Since the principle of the transduction method is based on resonant scattering of a SAW by a nanomechanical resonator, our transduction method is independent of the pillar's material and not limited to pillar-shaped geometries. It represents a general method to transduce vertical mechanical resonators with nanoscale lateral dimensions.
Collapse
Affiliation(s)
- Hendrik Kähler
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Holger Arthaber
- Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Gusshausstrasse 25, 1040 Vienna, Austria
| | - Robert Winkler
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nanoprobes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
| | - Robert G West
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Ioan Ignat
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| | - Harald Plank
- Christian Doppler Laboratory for Direct-Write Fabrication of 3D Nanoprobes (DEFINE), Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria
- Graz Centre for Electron Microscopy, Steyrergasse 17, 8010 Graz, Austria
| | - Silvan Schmid
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria
| |
Collapse
|
21
|
Kato S, Takada S, Fuchigami S. Particle Smoother to Assimilate Asynchronous Movie Data of High-Speed AFM with MD Simulations. J Chem Theory Comput 2023. [PMID: 37097918 DOI: 10.1021/acs.jctc.2c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
High-speed (HS) atomic force microscopy (AFM) can be used to observe structural dynamics of biomolecules under near-physiological conditions. In the AFM measurement, the probe tip scans an area of interest and acquires height data pixel by pixel so that the obtained AFM image contains a measurement time difference. In this study, to integrate molecular dynamics simulations with asynchronous HS-AFM movie data, we developed a particle smoother (PS) method for Bayesian data assimilation, one of the machine learning approaches, by extending the previous particle filter method. With a twin experiment with an asynchronous pseudo HS-AFM movie of a nucleosome, we found that the PS method with the pixel-by-pixel data acquisition reproduced the dynamic behavior of a nucleosome better than the previous particle filter method that ignored the data asynchronicity. We examined several frequencies of particle resampling in the PS method, and found that resampling once per one frame was optimal for reproducing the dynamic behavior. Thus, we found that the PS method with an appropriate resampling frequency is a powerful method for estimating the dynamic behavior of a target molecule from HS-AFM data with low spatiotemporal resolution.
Collapse
Affiliation(s)
- Suguru Kato
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Sotaro Fuchigami
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
22
|
Kozai T, Fernandez-Martinez J, van Eeuwen T, Gallardo P, Kapinos LE, Mazur A, Zhang W, Tempkin J, Panatala R, Delgado-Izquierdo M, Raveh B, Sali A, Chait BT, Veenhoff LM, Rout MP, Lim RYH. Dynamic molecular mechanism of the nuclear pore complex permeability barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535055. [PMID: 37066338 PMCID: PMC10103940 DOI: 10.1101/2023.03.31.535055] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Nuclear pore complexes (NPCs) mediate nucleocytoplasmic transport of specific macromolecules while impeding the exchange of unsolicited material. However, key aspects of this gating mechanism remain controversial. To address this issue, we determined the nanoscopic behavior of the permeability barrier directly within yeast S. cerevisiae NPCs at transport-relevant timescales. We show that the large intrinsically disordered domains of phenylalanine-glycine repeat nucleoporins (FG Nups) exhibit highly dynamic fluctuations to create transient voids in the permeability barrier that continuously shape-shift and reseal, resembling a radial polymer brush. Together with cargo-carrying transport factors the FG domains form a feature called the central plug, which is also highly dynamic. Remarkably, NPC mutants with longer FG domains show interweaving meshwork-like behavior that attenuates nucleocytoplasmic transport in vivo. Importantly, the bona fide nanoscale NPC behaviors and morphologies are not recapitulated by in vitro FG domain hydrogels. NPCs also exclude self-assembling FG domain condensates in vivo, thereby indicating that the permeability barrier is not generated by a self-assembling phase condensate, but rather is largely a polymer brush, organized by the NPC scaffold, whose dynamic gating selectivity is strongly enhanced by the presence of transport factors.
Collapse
Affiliation(s)
- Toshiya Kozai
- Biozentrum, University of Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Javier Fernandez-Martinez
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, U.S.A
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940, Leioa, Spain
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, U.S.A
| | - Paola Gallardo
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Netherlands
| | | | - Adam Mazur
- Biozentrum, University of Basel, Switzerland
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, U.S.A
| | - Jeremy Tempkin
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, U.S.A. Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA. Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | - Barak Raveh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, U.S.A. Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA. Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, U.S.A
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Netherlands
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, U.S.A
| | - Roderick Y. H. Lim
- Biozentrum, University of Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Switzerland
| |
Collapse
|
23
|
Lostao A, Lim K, Pallarés MC, Ptak A, Marcuello C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy. Int J Biol Macromol 2023; 238:124089. [PMID: 36948336 DOI: 10.1016/j.ijbiomac.2023.124089] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain; Fundación ARAID, Aragón, Spain.
| | - KeeSiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Ishikawa 920-1192, Japan
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-925, Poland
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
24
|
Bhalla N, Payam AF. Addressing the Silent Spread of Monkeypox Disease with Advanced Analytical Tools. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206633. [PMID: 36517107 DOI: 10.1002/smll.202206633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Monkeypox disease is caused by a virus which belongs to the orthopoxvirus genus of the poxviridae family. This disease has recently spread out to several non-endemic countries. While some cases have been linked to travel from endemic regions, more recent infections are thought to have spread in the community without any travel links, raising the risks of a wider outbreak. This state of public health represents a highly unusual event which requires urgent surveillance. In this context, the opportunities and technological challenges of current bio/chemical sensors, nanomaterials, nanomaterial characterization instruments, and artificially intelligent biosystems collectively called "advanced analytical tools" are reviewed here, which will allow early detection, characterization, and inhibition of the monkeypox virus (MPXV) in the community and limit its expansion from endemic to pandemic. A summary of background information is also provided from biological and epidemiological perspective of monkeypox to support the scientific case for its holistic management using advanced analytical tools.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
- Healthcare Technology Hub, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
| | - Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
- Healthcare Technology Hub, Ulster University, York St., BT15 1ED Belfast, Northern Ireland, UK
| |
Collapse
|
25
|
Characterization of structures and molecular interactions of RNA and lipid carriers using atomic force microscopy. Adv Colloid Interface Sci 2023; 313:102855. [PMID: 36774766 DOI: 10.1016/j.cis.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Ribonucleic acid (RNA) and lipid are essential biomolecules in many biological processes, and hold a great prospect for biomedical applications, such as gene therapy, vaccines and therapeutic drug delivery. The characterization of morphology and intra-/inter-molecular interactions of RNA and lipid molecules is critical for understanding their functioning mechanisms. Atomic force microscopy (AFM) is a sophisticated technique for characterizing biomolecules featured by its piconewton force sensitivity, sub-nanometer spatial resolution, and flexible operation conditions in both air and liquid. The goal of this review is to highlight the representative and outstanding discoveries of the characterization of RNA and lipid molecules through morphology identification, physicochemical property determination and intermolecular force measurements by AFM. The first section introduces the AFM imaging of RNA molecules to obtain high-resolution morphologies and nanostructures in air and liquid, followed by the discussion of employing AFM force spectroscopy in understanding the nanomechanical properties and intra-/inter-molecular interactions of RNA molecules, including RNA-RNA and RNA-biomolecule interactions. The second section focuses on the studies of lipid and RNA encapsulated in lipid carrier (RNA-lipid) by AFM as well as the sample preparation and factors influencing the morphology and structure of lipid/RNA-lipid complexes. Particularly, the nanomechanical properties of lipid and RNA-lipid characterized by nanomechanical imaging and force measurements are discussed. The future perspectives and remaining challenges on the characterization of RNA and lipid offered by the versatile AFM techniques are also discussed. This review provides useful insights on the characterization of RNA and lipids nanostructures along with their molecular interactions, and also enlightens the application of AFM techniques in investigating a broad variety of biomolecules.
Collapse
|
26
|
Matusovsky OS, Månsson A, Rassier DE. Cooperativity of myosin II motors in the non-regulated and regulated thin filaments investigated with high-speed AFM. J Gen Physiol 2023; 155:213801. [PMID: 36633585 PMCID: PMC9859764 DOI: 10.1085/jgp.202213190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/09/2022] [Accepted: 11/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skeletal myosins II are non-processive molecular motors that work in ensembles to produce muscle contraction while binding to the actin filament. Although the molecular properties of myosin II are well known, there is still debate about the collective work of the motors: is there cooperativity between myosin motors while binding to the actin filaments? In this study, we use high-speed AFM to evaluate this issue. We observed that the initial binding of small arrays of myosin heads to the non-regulated actin filaments did not affect the cooperative probability of subsequent bindings and did not lead to an increase in the fractional occupancy of the actin binding sites. These results suggest that myosin motors are independent force generators when connected in small arrays, and that the binding of one myosin does not alter the kinetics of other myosins. In contrast, the probability of binding of myosin heads to regulated thin filaments under activating conditions (at high Ca2+ concentration in the presence of 2 μM ATP) was increased with the initial binding of one myosin, leading to a larger occupancy of available binding sites at the next half-helical pitch of the filament. The result suggests that myosin cooperativity is observed over five pseudo-repeats and defined by the activation status of the thin filaments.
Collapse
Affiliation(s)
- Oleg S. Matusovsky
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Dilson E. Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Québec, Canada,Correspondence to Dilson E. Rassier:
| |
Collapse
|
27
|
End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images. Sci Rep 2023; 13:129. [PMID: 36599879 DOI: 10.1038/s41598-022-27057-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Observing the structural dynamics of biomolecules is vital to deepening our understanding of biomolecular functions. High-speed (HS) atomic force microscopy (AFM) is a powerful method to measure biomolecular behavior at near physiological conditions. In the AFM, measured image profiles on a molecular surface are distorted by the tip shape through the interactions between the tip and molecule. Once the tip shape is known, AFM images can be approximately deconvolved to reconstruct the surface geometry of the sample molecule. Thus, knowing the correct tip shape is an important issue in the AFM image analysis. The blind tip reconstruction (BTR) method developed by Villarrubia (J Res Natl Inst Stand Technol 102:425, 1997) is an algorithm that estimates tip shape only from AFM images using mathematical morphology operators. While the BTR works perfectly for noise-free AFM images, the algorithm is susceptible to noise. To overcome this issue, we here propose an alternative BTR method, called end-to-end differentiable BTR, based on a modern machine learning approach. In the method, we introduce a loss function including a regularization term to prevent overfitting to noise, and the tip shape is optimized with automatic differentiation and backpropagations developed in deep learning frameworks. Using noisy pseudo-AFM images of myosin V motor domain as test cases, we show that our end-to-end differentiable BTR is robust against noise in AFM images. The method can also detect a double-tip shape and deconvolve doubled molecular images. Finally, application to real HS-AFM data of myosin V walking on an actin filament shows that the method can reconstruct the accurate surface geometry of actomyosin consistent with the structural model. Our method serves as a general post-processing for reconstructing hidden molecular surfaces from any AFM images. Codes are available at https://github.com/matsunagalab/differentiable_BTR .
Collapse
|
28
|
Kikuchi Y, Toyofuku M, Ichinaka Y, Kiyokawa T, Obana N, Nomura N, Taoka A. Physical Properties and Shifting of the Extracellular Membrane Vesicles Attached to Living Bacterial Cell Surfaces. Microbiol Spectr 2022; 10:e0216522. [PMID: 36383005 PMCID: PMC9769862 DOI: 10.1128/spectrum.02165-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial cells release nanometer-sized extracellular membrane vesicles (MVs) to deliver cargo molecules for use in mediating various biological processes. However, the detailed processes of transporting these cargos from MVs to recipient cells remain unclear because of the lack of imaging techniques to image nanometer-sized fragile vesicles in a living bacterial cell surface. Herein, we quantitatively demonstrated that the direct binding of MV to the cell surface significantly promotes hydrophobic quorum-sensing signal (C16-HSL) transportation to the recipient cells. Moreover, we analyzed the MV-binding process in the Paracoccus denitrificans cell surface using high-speed atomic force microscopy phase imaging. Although MV shapes were unaltered after binding to the cell surface, the physical properties of a group of single MV particles were shifted. Additionally, the phase shift values of MVs were higher than that of the cell's surfaces upon binding, whereas the phase shift values of the group of MVs were decreased during observation. The shifting physical properties occurred irreversibly only once for each MV during the observations. The decreasing phase shift values indicated alterations of chemical components in the MVs as well, thereby suggesting the dynamic process in which single MV particles deliver their hydrophobic cargo into the recipient cell. IMPORTANCE Compared to the increasing knowledge about MV release mechanisms from donor cells, the mechanism by which recipient cells receive cargo from MVs remains unknown. Herein, we have successfully imaged single MV-binding processes in living bacterial cell surfaces. Accordingly, we confirmed the shift in the MV hydrophobic properties after landing on the cell surface. Our results showed the detailed states and the attaching process of a single MV into the cell surface and can aid the development of a new model for MV reception into Gram-negative bacterial cell surfaces. The insight provided by this study is significant for understanding MV-mediated cell-cell communication mechanisms. Moreover, the AFM technique presented for nanometer-scaled mapping of dynamic physical properties alteration on a living cell could be applied for the analyses of various biological phenomena occurring on the cell surface, and it gives us a new view into the understanding of the phenotypes of the bacterial cell surface.
Collapse
Affiliation(s)
- Yousuke Kikuchi
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Japan
| | - Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tennodai, Tsukuba, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Seika, Kyoto, Japan
| | - Yuki Ichinaka
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Japan
| | - Tatsunori Kiyokawa
- Graduate of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Nozomu Obana
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tennodai, Tsukuba, Japan
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tennodai, Tsukuba, Japan
| | - Azuma Taoka
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa, Japan
| |
Collapse
|
29
|
Xia F, Youcef-Toumi K. Review: Advanced Atomic Force Microscopy Modes for Biomedical Research. BIOSENSORS 2022; 12:1116. [PMID: 36551083 PMCID: PMC9775674 DOI: 10.3390/bios12121116] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Visualization of biomedical samples in their native environments at the microscopic scale is crucial for studying fundamental principles and discovering biomedical systems with complex interaction. The study of dynamic biological processes requires a microscope system with multiple modalities, high spatial/temporal resolution, large imaging ranges, versatile imaging environments and ideally in-situ manipulation capabilities. Recent development of new Atomic Force Microscopy (AFM) capabilities has made it such a powerful tool for biological and biomedical research. This review introduces novel AFM functionalities including high-speed imaging for dynamic process visualization, mechanobiology with force spectroscopy, molecular species characterization, and AFM nano-manipulation. These capabilities enable many new possibilities for novel scientific research and allow scientists to observe and explore processes at the nanoscale like never before. Selected application examples from recent studies are provided to demonstrate the effectiveness of these AFM techniques.
Collapse
|
30
|
Glia A, Deliorman M, Qasaimeh MA. 3D Generation of Multipurpose Atomic Force Microscopy Tips. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201489. [PMID: 35853246 PMCID: PMC9507387 DOI: 10.1002/advs.202201489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/24/2022] [Indexed: 05/02/2023]
Abstract
In this work, 3D polymeric atomic force microscopy (AFM) tips, referred to as 3DTIPs, are manufactured with great flexibility in design and function using two-photon polymerization. With the technology holding a great potential in developing next-generation AFM tips, 3DTIPs prove effective in obtaining high-resolution and high-speed AFM images in air and liquid environments, using common AFM modes. In particular, it is shown that the 3DTIPs provide high-resolution imaging due to their extremely low Hamaker constant, high speed scanning rates due to their low quality factor, and high durability due to their soft nature and minimal isotropic tip wear; the three important features for advancing AFM studies. It is also shown that refining the tip end of the 3DTIPs by focused ion beam etching and by carbon nanotube inclusion substantially extends their functionality in high-resolution AFM imaging, reaching angstrom scales. Altogether, the multifunctional capabilities of 3DTIPs can bring next-generation AFM tips to routine and advanced AFM applications, and expand the fields of high speed AFM imaging and biological force measurements.
Collapse
Affiliation(s)
- Ayoub Glia
- Division of EngineeringNew York University Abu Dhabi (NYUAD)Abu DhabiUAE
| | | | - Mohammad A. Qasaimeh
- Division of EngineeringNew York University Abu Dhabi (NYUAD)Abu DhabiUAE
- Department of Mechanical and Aerospace EngineeringNew York UniversityBrooklynNY11201USA
| |
Collapse
|
31
|
The conformations and basal conformational dynamics of translocation factor SecDF vary with translocon SecYEG interaction. J Biol Chem 2022; 298:102412. [PMID: 36007614 PMCID: PMC9508474 DOI: 10.1016/j.jbc.2022.102412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
The general secretory, or Sec, system is a primary protein export pathway from the cytosol of Escherichia coli and all eubacteria. Integral membrane protein complex SecDF is a translocation factor that enhances polypeptide secretion, which is driven by the Sec translocase, consisting of translocon SecYEG and ATPase SecA. SecDF is thought to utilize a proton gradient to effectively pull precursor proteins from the cytoplasm into the periplasm. Working models have been developed to describe the structure and function of SecDF, but important mechanistic questions remain unanswered. Atomic force microscopy (AFM) is a powerful technique for studying the dynamics of single-molecule systems including membrane proteins in near-native conditions. The sharp tip of the AFM provides direct access to membrane-external protein conformations. Here, we acquired AFM images and kymographs (∼100 ms resolution) to visualize SecDF protrusions in near-native supported lipid bilayers and compared the experimental data to simulated AFM images based on static structures. When studied in isolation, SecDF exhibited a stable and compact conformation close to the lipid bilayer surface, indicative of a resting state. Interestingly, upon SecYEG introduction, we observed changes in both SecDF conformation and conformational dynamics. The population of periplasmic protrusions corresponding to an intermediate form of SecDF, which is thought to be active in precursor protein handling, increased >9-fold. In conjunction, our dynamics measurements revealed an enhancement in the transition rate between distinct SecDF conformations when the translocon was present. Together, this work provides a novel vista of basal-level SecDF conformational dynamics in near-native conditions.
Collapse
|
32
|
Tsuji A, Yamashita H, Hisatomi O, Abe M. Dimerization processes for light-regulated transcription factor Photozipper visualized by high-speed atomic force microscopy. Sci Rep 2022; 12:12903. [PMID: 35941201 PMCID: PMC9359980 DOI: 10.1038/s41598-022-17228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Dimerization is critical for transcription factors (TFs) to bind DNA and regulate a wide variety of cellular functions; however, the molecular mechanisms remain to be completely elucidated. Here, we used high-speed atomic force microscopy (HS-AFM) to observe the dimerization process for a photoresponsive TF Photozipper (PZ), which consists of light–oxygen–voltage-sensing (LOV) and basic-region-leucine-zipper (bZIP) domains. HS-AFM visualized not only the oligomeric states of PZ molecules forming monomers and dimers under controlled dark–light conditions but also the domain structures within each molecule. Successive AFM movies captured the dimerization process for an individual PZ molecule and the monomer–dimer reversible transition during dark–light cycling. Detailed AFM images of domain structures in PZ molecules demonstrated that the bZIP domain entangled under dark conditions was loosened owing to light illumination and fluctuated around the LOV domain. These observations revealed the role of the bZIP domain in the dimerization processes of a TF.
Collapse
Affiliation(s)
- Akihiro Tsuji
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Hayato Yamashita
- Graduate School of Engineering Science, Osaka University, Osaka, Japan.
| | - Osamu Hisatomi
- Graduate School of Science, Osaka University, Osaka, Japan
| | - Masayuki Abe
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
33
|
Ngo KX, Nguyen PDN, Furusho H, Miyata M, Shimonaka T, Chau NNB, Vinh NP, Nghia NA, Mohammed TO, Ichikawa T, Kodera N, Konno H, Fukuma T, Quoc NB. Unraveling the Host-Selective Toxic Interaction of Cassiicolin with Lipid Membranes and Its Cytotoxicity. PHYTOPATHOLOGY 2022; 112:1524-1536. [PMID: 35238604 DOI: 10.1094/phyto-09-21-0397-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cassiicolin (Cas), a toxin produced by Corynespora cassiicola, is responsible for Corynespora leaf fall disease in susceptible rubber trees. Currently, the molecular mechanisms of the cytotoxicity of Cas and its host selectivity have not been fully elucidated. Here, we analyzed the binding of Cas1 and Cas2 to membranes consisting of different plant lipids and their membrane disruption activities. Using high-speed atomic force microscopy and confocal microscopy, we reveal that the binding and disruption activities of Cas1 and Cas2 on lipid membranes are strongly dependent on the specific plant lipids. The negative phospholipids, glycerolipids, and sterols are more sensitive to membrane damage caused by Cas1 and Cas2 than neutral phospholipids and betaine lipids. Mature Cas1 and Cas2 play an essential role in causing membrane disruption. Cytotoxicity tests on rubber leaves of Rubber Research Institute of Vietnam (RRIV) 1, RRIV 4, and Prang Besar (PB) 255 clones suggest that the toxins cause necrosis of rubber leaves, except for the strong resistance of PB 255 against Cas2. Cryogenic scanning electron microscopy analyses of necrotic leaf tissues treated with Cas1 confirm that cytoplasmic membranes are vulnerable to the toxin. Thus, the host selectivity of Cas toxin is attained by the lipid-dependent binding activity of Cas to the membrane, and the cytotoxicity of Cas arises from its ability to form biofilm-like structures and to disrupt specific membranes.
Collapse
Affiliation(s)
- Kien Xuan Ngo
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Phuong Doan N Nguyen
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Hirotoshi Furusho
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Tomomi Shimonaka
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Nguyen Ngoc Bao Chau
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | | | | | - Tareg Omer Mohammed
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Takehiko Ichikawa
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Takeshi Fukuma
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Nguyen Bao Quoc
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
- Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Vietnam
| |
Collapse
|
34
|
Unksov IN, Korosec CS, Surendiran P, Verardo D, Lyttleton R, Forde NR, Linke H. Through the Eyes of Creators: Observing Artificial Molecular Motors. ACS NANOSCIENCE AU 2022; 2:140-159. [PMID: 35726277 PMCID: PMC9204826 DOI: 10.1021/acsnanoscienceau.1c00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Inspired by molecular motors in biology, there has been significant progress in building artificial molecular motors, using a number of quite distinct approaches. As the constructs become more sophisticated, there is also an increasing need to directly observe the motion of artificial motors at the nanoscale and to characterize their performance. Here, we review the most used methods that tackle those tasks. We aim to help experimentalists with an overview of the available tools used for different types of synthetic motors and to choose the method most suited for the size of a motor and the desired measurements, such as the generated force or distances in the moving system. Furthermore, for many envisioned applications of synthetic motors, it will be a requirement to guide and control directed motions. We therefore also provide a perspective on how motors can be observed on structures that allow for directional guidance, such as nanowires and microchannels. Thus, this Review facilitates the future research on synthetic molecular motors, where observations at a single-motor level and a detailed characterization of motion will promote applications.
Collapse
Affiliation(s)
- Ivan N. Unksov
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Chapin S. Korosec
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | | | - Damiano Verardo
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- AlignedBio
AB, Medicon Village, Scheeletorget 1, 223 63 Lund, Sweden
| | - Roman Lyttleton
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Nancy R. Forde
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | - Heiner Linke
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
35
|
Moraille P, Abdali Z, Ramkaran M, Polcari D, Patience GS, Dorval Courchesne N, Badia A. Experimental Methods in Chemical Engineering: Atomic force microscopy—
AFM. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Zahra Abdali
- Chemical Engineering, McGill University Québec Canada
| | | | | | | | | | | |
Collapse
|
36
|
Pérez-Domínguez S, Caballero-Mancebo S, Marcuello C, Martínez-Júlvez M, Medina M, Lostao A. Nanomechanical Study of Enzyme: Coenzyme Complexes: Bipartite Sites in Plastidic Ferredoxin-NADP+ Reductase for the Interaction with NADP+. Antioxidants (Basel) 2022; 11:antiox11030537. [PMID: 35326186 PMCID: PMC8944804 DOI: 10.3390/antiox11030537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022] Open
Abstract
Plastidic ferredoxin-NADP+ reductase (FNR) transfers two electrons from two ferredoxin or flavodoxin molecules to NADP+, generating NADPH. The forces holding the Anabaena FNR:NADP+ complex were analyzed by dynamic force spectroscopy, using WT FNR and three C-terminal Y303 variants, Y303S, Y303F, and Y303W. FNR was covalently immobilized on mica and NADP+ attached to AFM tips. Force–distance curves were collected for different loading rates and specific unbinding forces were analyzed under the Bell–Evans model to obtain the mechanostability parameters associated with the dissociation processes. The WT FNR:NADP+ complex presented a higher mechanical stability than that reported for the complexes with protein partners, corroborating the stronger affinity of FNR for NADP+. The Y303 mutation induced changes in the FNR:NADP+ interaction mechanical stability. NADP+ dissociated from WT and Y303W in a single event related to the release of the adenine moiety of the coenzyme. However, two events described the Y303S:NADP+ dissociation that was also a more durable complex due to the strong binding of the nicotinamide moiety of NADP+ to the catalytic site. Finally, Y303F shows intermediate behavior. Therefore, Y303, reported as crucial for achieving catalytically competent active site geometry, also regulates the concerted dissociation of the bipartite nucleotide moieties of the coenzyme.
Collapse
Affiliation(s)
- Sandra Pérez-Domínguez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (S.P.-D.); (S.C.-M.); (C.M.)
| | - Silvia Caballero-Mancebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (S.P.-D.); (S.C.-M.); (C.M.)
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (S.P.-D.); (S.C.-M.); (C.M.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50018 Zaragoza, Spain;
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50018 Zaragoza, Spain;
- Correspondence: (M.M.); (A.L.); Tel.: +34-976762476 (M.M.); +34-876555357 (A.L.)
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (S.P.-D.); (S.C.-M.); (C.M.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Correspondence: (M.M.); (A.L.); Tel.: +34-976762476 (M.M.); +34-876555357 (A.L.)
| |
Collapse
|
37
|
Amara U, Rashid S, Mahmood K, Nawaz MH, Hayat A, Hassan M. Insight into prognostics, diagnostics, and management strategies for SARS CoV-2. RSC Adv 2022; 12:8059-8094. [PMID: 35424750 PMCID: PMC8982343 DOI: 10.1039/d1ra07988c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
The foremost challenge in countering infectious diseases is the shortage of effective therapeutics. The emergence of coronavirus disease (COVID-19) outbreak has posed a great menace to the public health system globally, prompting unprecedented endeavors to contain the virus. Many countries have organized research programs for therapeutics and management development. However, the longstanding process has forced authorities to implement widespread infrastructures for detailed prognostic and diagnostics study of severe acute respiratory syndrome (SARS CoV-2). This review discussed nearly all the globally developed diagnostic methodologies reported for SARS CoV-2 detection. We have highlighted in detail the approaches for evaluating COVID-19 biomarkers along with the most employed nucleic acid- and protein-based detection methodologies and the causes of their severe downfall and rejection. As the variable variants of SARS CoV-2 came into the picture, we captured the breadth of newly integrated digital sensing prototypes comprised of plasmonic and field-effect transistor-based sensors along with commercially available food and drug administration (FDA) approved detection kits. However, more efforts are required to exploit the available resources to manufacture cheap and robust diagnostic methodologies. Likewise, the visualization and characterization tools along with the current challenges associated with waste-water surveillance, food security, contact tracing, and their role during this intense period of the pandemic have also been discussed. We expect that the integrated data will be supportive and aid in the evaluation of sensing technologies not only in current but also future pandemics.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Sidra Rashid
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Maria Hassan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
| |
Collapse
|
38
|
Kobayashi K, Kodera N, Miyata M. High-speed Atomic Force Microscopy Observation of Internal Structure Movements in Living Mycoplasma. Bio Protoc 2022; 12:e4344. [PMID: 35592604 PMCID: PMC8918226 DOI: 10.21769/bioprotoc.4344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/12/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Dozens of Mycoplasma species belonging to the class Mollicutes bind to solid surfaces through the organelle formed at a cell pole and glide in its direction by a unique mechanism. In Mycoplasma mobile, the fastest gliding species in Mycoplasma, the force for gliding is generated by ATP hydrolysis on an internal structure. However, the spatial and temporal behaviors of the internal structures in living cells were unclear. High-speed atomic force microscopy (HS-AFM) is a powerful method to monitor the dynamic behaviors of biomolecules and cells that can be captured while maintaining their active state in aqueous solution. In this protocol, we describe a method to detect their movements using HS-AFM. This protocol should be useful for the studies of many kinds of microorganisms. Graphic abstract: Scanning Mycoplasma cell.
Collapse
Affiliation(s)
- Kohei Kobayashi
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Makoto Miyata
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
,
*For correspondence:
| |
Collapse
|
39
|
Sharma S, Ganjoo R, Thakur A, Kumar A. Electrochemical characterization and surface morphology techniques for corrosion inhibition—a review. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2039913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shveta Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Richika Ganjoo
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
40
|
Schaefer KG, Pittman AE, Barrera FN, King GM. Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling. Methods 2022; 197:20-29. [PMID: 33164792 DOI: 10.1016/j.ymeth.2020.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
A number of peptides are known to bind lipid bilayer membranes and cause these natural barriers to leak in an uncontrolled manner. Though membrane permeabilizing peptides play critical roles in cellular activity and may have promising future applications in the therapeutic arena, significant questions remain about their mechanisms of action. The atomic force microscope (AFM) is a single molecule imaging tool capable of addressing lipid bilayers in near-native fluid conditions. The apparatus complements traditional assays by providing local topographic maps of bilayer remodeling induced by membrane permeabilizing peptides. The information garnered from the AFM includes direct visualization and statistical analyses of distinct bilayer remodeling modes such as highly localized pore-like voids in the bilayer and dispersed thinned membrane regions. Colocalization of distinct remodeling modes can be studied. Here we examine recent work in the field and outline methods used to achieve precise AFM image data. Experimental challenges and common pitfalls are discussed as well as techniques for unbiased analysis including the Hessian blob detection algorithm, bootstrapping, and the Bayesian information criterion. When coupled with robust statistical analyses, high precision AFM data is poised to advance understanding of an important family of peptides that cause poration of membrane bilayers.
Collapse
Affiliation(s)
- K G Schaefer
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - A E Pittman
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - F N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - G M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211, USA; Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
41
|
Sunder M, Mumbrekar KD, Mazumder N. Gamma radiation as a modifier of starch – Physicochemical perspective. Curr Res Food Sci 2022; 5:141-149. [PMID: 35059645 PMCID: PMC8760443 DOI: 10.1016/j.crfs.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/30/2021] [Accepted: 01/02/2022] [Indexed: 11/06/2022] Open
Abstract
Starch is one of the most common and abundantly found carbohydrates in cereals, roots, legumes, and some fruits. It is a tasteless, colorless, and odorless source of energy that is present in the amyloplasts of plants. Native starch comprises amylose, a linear α-glucan having α-1,4-linkage and amylopectin, a branched polysaccharide with both α-1,4-linkage and α-1,6-linkage. Due to the low solubility, high viscosity, and unstable pasting property of native starch, it has been restricted from its application in industries. Although native starch has been widely used in various industries, modification of the same by various chemical, enzymatic and physical methods have been carried out to alter its properties for better performance in several industrial aspects. Physical modification like gamma radiation is frequently used as it is rapid, penetrates deeper, less toxic, and cost-effective. Starch when irradiated with gamma rays is observed to produce free radicals, generate sugars owing to cleavage of amylopectin branches, and exhibit variation in enzymatic digestion, amylose content, morphology, crystallinity, thermal property, and chemical composition. These physicochemical properties of the starch due to gamma radiation are assessed using optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and its application are discussed. Assessment and comparison of morphological features of native and gamma-irradiated starch. Investigation of crystallinity and structural type of crystalline domains through XRD. FTIR spectroscopy confirmed the changes in chemical composition of gamma-irradiated and native starch. DSC analysis revealed the changes in gelatinization temperature of gamma-irradiated and native starch.
Collapse
|
42
|
Toyofuku M, Kikuchi Y, Taoka A. A Single Shot of Vesicles. Microbes Environ 2022; 37. [PMID: 36504177 PMCID: PMC10037094 DOI: 10.1264/jsme2.me22083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria communicate through signaling molecules that coordinate group behavior. Hydrophobic signals that do not diffuse in aqueous environments are used as signaling molecules by several bacteria. However, limited information is currently available on the mechanisms by which these molecules are transported between cells. Membrane vesicles (MVs) with diverse functions play important roles in the release and delivery of hydrophobic signaling molecules, leading to differences in the dynamics of signal transportation from those of free diffusion. Studies on Paracoccus denitrificans, which produces a hydrophobic long-chain N-acyl homoserine lactone (AHL), showed that signals were loaded into MVs at a concentration with the potential to trigger the quorum sensing (QS) response with a "single shot" to the cell. Furthermore, stimulating the formation of MVs increased the release of signals from the cell; therefore, a basic understanding of MV formation is important. Novel findings revealed the formation of MVs through different routes, resulting in the production of different types of MVs. Methods such as high-speed atomic force microscopy (AFM) phase imaging allow the physical properties of MVs to be analyzed at a nanometer resolution, revealing their heterogeneity. In this special minireview, we introduce the role of MVs in bacterial communication and highlight recent findings on MV formation and their physical heterogeneity by referring to our research. We hope that this minireview will provide basic information for understanding the functionality of MVs in ecological systems.
Collapse
Affiliation(s)
- Masanori Toyofuku
- Faculty of Life and Environmental Sciences, University of Tsukuba
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba
| | - Yousuke Kikuchi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| | - Azuma Taoka
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
- Institute of Science and Engineering, Kanazawa University
| |
Collapse
|
43
|
Pan J, Kmieciak T, Liu YT, Wildenradt M, Chen YS, Zhao Y. Quantifying molecular- to cellular-level forces in living cells. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2021; 54:483001. [PMID: 34866655 PMCID: PMC8635116 DOI: 10.1088/1361-6463/ac2170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanical cues have been suggested to play an important role in cell functions and cell fate determination, however, such physical quantities are challenging to directly measure in living cells with single molecule sensitivity and resolution. In this review, we focus on two main technologies that are promising in probing forces at the single molecule level. We review their theoretical fundamentals, recent technical advancements, and future directions, tailored specifically for interrogating mechanosensitive molecules in live cells.
Collapse
Affiliation(s)
- Jason Pan
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Tommy Kmieciak
- Department of Engineering Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yen-Ting Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Matthew Wildenradt
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N. Wright Street, Urbana, IL 61801, United States of America
| |
Collapse
|
44
|
Han G, Chen Y, Wu T, Li H, Luo J. Adaptive AFM imaging based on object detection using compressive sensing. Micron 2021; 154:103197. [DOI: 10.1016/j.micron.2021.103197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
|
45
|
Cha W, Campbell MF, Hasz K, Nicaise SM, Lilley DE, Sato T, Carpick RW, Bargatin I. Hollow Atomic Force Microscopy Cantilevers with Nanoscale Wall Thicknesses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102979. [PMID: 34713587 DOI: 10.1002/smll.202102979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/02/2021] [Indexed: 06/13/2023]
Abstract
In atomic force microscopy, the cantilever probe is a critical component whose properties determine the resolution and speed at which images with nanoscale resolution can be obtained. Traditional cantilevers, which have moderate resonant frequencies and high quality factors, have relatively long response times and low bandwidths. In addition, cantilevers can be easily damaged by excessive deformation, and tips can be damaged by wear, requiring them to be replaced frequently. To address these issues, new cantilever probes that have hollow cross-sections and walls of nanoscale thicknesses made of alumina deposited by atomic layer deposition are introduced. It is demonstrated that the probes exhibit spring constants up to ≈100 times lower and bandwidths up to ≈50 times higher in air than their typical solid counterparts, allowing them to react to topography changes more quickly. Moreover, it is shown that the enhanced robustness of the hollow cantilevers enables them to withstand large bending displacements more readily and to be more resistant to tip wear.
Collapse
Affiliation(s)
- Wujoon Cha
- Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew F Campbell
- Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathryn Hasz
- Material Science & Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel M Nicaise
- Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Drew E Lilley
- Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Takaaki Sato
- Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert W Carpick
- Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Igor Bargatin
- Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
46
|
Parreira P, Martins MCL. The biophysics of bacterial infections: Adhesion events in the light of force spectroscopy. Cell Surf 2021; 7:100048. [PMID: 33665520 PMCID: PMC7898176 DOI: 10.1016/j.tcsw.2021.100048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 08/10/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Bacterial infections are the most eminent public health challenge of the 21st century. The primary step leading to infection is bacterial adhesion to the surface of host cells or medical devices, which is mediated by a multitude of molecular interactions. At the interface of life sciences and physics, last years advances in atomic force microscopy (AFM)-based force spectroscopy techniques have made possible to measure the forces driving bacteria-cell and bacteria-materials interactions on a single molecule/cell basis (single molecule/cell force spectroscopy). Among the bacteria-(bio)materials surface interactions, the life-threatening infections associated to medical devices involving Staphylococcus aureus and Escherichia coli are the most eminent. On the other hand, Pseudomonas aeruginosa binding to the pulmonary and urinary tract or the Helicobacter pylori binding to the gastric mucosa, are classical examples of bacteria-host cell interactions that end in serious infections. As we approach the end of the antibiotic era, acquisition of a deeper knowledge of the fundamental forces involved in bacteria - host cells/(bio)materials surface adhesion is crucial for the identification of new ligand-binding events and its assessment as novel targets for alternative anti-infective therapies. This article aims to highlight the potential of AFM-based force spectroscopy for new targeted therapies development against bacterial infections in which adhesion plays a pivotal role and does not aim to be an extensive overview on the AFM technical capabilities and theory of single molecule force spectroscopy.
Collapse
Affiliation(s)
- Paula Parreira
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
| | - M. Cristina L. Martins
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| |
Collapse
|
47
|
Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture. Nat Commun 2021; 12:6180. [PMID: 34702818 PMCID: PMC8548535 DOI: 10.1038/s41467-021-26329-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Discovering mechanisms governing organelle assembly is a fundamental pursuit in biology. The centriole is an evolutionarily conserved organelle with a signature 9-fold symmetrical chiral arrangement of microtubules imparted onto the cilium it templates. The first structure in nascent centrioles is a cartwheel, which comprises stacked 9-fold symmetrical SAS-6 ring polymers emerging orthogonal to a surface surrounding each resident centriole. The mechanisms through which SAS-6 polymerization ensures centriole organelle architecture remain elusive. We deploy photothermally-actuated off-resonance tapping high-speed atomic force microscopy to decipher surface SAS-6 self-assembly mechanisms. We show that the surface shifts the reaction equilibrium by ~104 compared to solution. Moreover, coarse-grained molecular dynamics and atomic force microscopy reveal that the surface converts the inherent helical propensity of SAS-6 polymers into 9-fold rings with residual asymmetry, which may guide ring stacking and impart chiral features to centrioles and cilia. Overall, our work reveals fundamental design principles governing centriole assembly. The centriole exhibits an evolutionarily conserved 9-fold radial symmetry that stems from a cartwheel containing vertically stacked ring polymers that harbor 9 homodimers of the protein SAS-6. Here the authors show how dual properties inherent to surface-guided SAS-6 self-assembly possess spatial information that dictates correct scaffolding of centriole architecture.
Collapse
|
48
|
Nasrin SR, Ganser C, Nishikawa S, Kabir AMR, Sada K, Yamashita T, Ikeguchi M, Uchihashi T, Hess H, Kakugo A. Deformation of microtubules regulates translocation dynamics of kinesin. SCIENCE ADVANCES 2021; 7:eabf2211. [PMID: 34644102 PMCID: PMC10763888 DOI: 10.1126/sciadv.abf2211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Microtubules, the most rigid components of the cytoskeleton, can be key transduction elements between external forces and the cellular environment. Mechanical forces induce microtubule deformation, which is presumed to be critical for the mechanoregulation of cellular events. However, concrete evidence is lacking. In this work, with high-speed atomic force microscopy, we unravel how microtubule deformation regulates the translocation of the microtubule-associated motor protein kinesin-1, responsible for intracellular transport. Our results show that the microtubule deformation by bending impedes the translocation dynamics of kinesins along them. Molecular dynamics simulation shows that the hindered translocation of kinesins can be attributed to an enhanced affinity of kinesins to the microtubule structural units in microtubules deformed by bending. This study advances our understanding of the role of cytoskeletal components in mechanotransduction.
Collapse
Affiliation(s)
| | - Christian Ganser
- Department of Creative Research, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Seiji Nishikawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | | | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takayuki Uchihashi
- Department of Creative Research, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
49
|
Konrad SF, Vanderlinden W, Lipfert J. A High-throughput Pipeline to Determine DNA and Nucleosome Conformations by AFM Imaging. Bio Protoc 2021; 11:e4180. [PMID: 34722827 DOI: 10.21769/bioprotoc.4180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 11/02/2022] Open
Abstract
Atomic force microscopy (AFM) is a powerful tool to image macromolecular complexes with nanometer resolution and exquisite single-molecule sensitivity. While AFM imaging is well-established to investigate DNA and nucleoprotein complexes, AFM studies are often limited by small datasets and manual image analysis that is slow and prone to user bias. Recently, we have shown that a combination of large scale AFM imaging and automated image analysis of nucleosomes can overcome these previous limitations of AFM nucleoprotein studies. Using our high-throughput imaging and analysis pipeline, we have resolved nucleosome wrapping intermediates with five base pair resolution and revealed how distinct nucleosome variants and environmental conditions affect the unwrapping pathways of nucleosomal DNA. Here, we provide a detailed protocol of our workflow to analyze DNA and nucleosome conformations focusing on practical aspects and experimental parameters. We expect our protocol to drastically enhance AFM analyses of DNA and nucleosomes and to be readily adaptable to a wide variety of other protein and protein-nucleic acid complexes.
Collapse
Affiliation(s)
- Sebastian F Konrad
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Jan Lipfert
- Department of Physics and Center for Nanoscience, LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|
50
|
Yu Y, Yoshimura SH. Investigating the morphological dynamics of the plasma membrane by high-speed atomic force microscopy. J Cell Sci 2021; 134:272010. [PMID: 34468000 DOI: 10.1242/jcs.243584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite numerous recent developments in bioimaging techniques, nanoscale and live-cell imaging of the plasma membrane has been challenging because of the insufficient z-resolution of optical microscopes, as well as the lack of fluorescent probes to specifically label small membrane structures. High-speed atomic force microscopy (HS-AFM) is a powerful tool for visualising the dynamics of a specimen surface and is therefore suitable for observing plasma membrane dynamics. Recent developments in HS-AFM for live-cell imaging have enabled the visualisation of the plasma membrane and the network of cortical actin underneath the membrane in a living cell. Furthermore, correlative imaging with fluorescence microscopy allows for the direct visualisation of morphological changes of the plasma membrane together with the dynamic assembly or disassembly of proteins during the entire course of endocytosis in a living cell. Here, we review these recent advances in HS-AFM in order to analyse various cellular events occurring at the cell surface.
Collapse
Affiliation(s)
- Yiming Yu
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|