1
|
de Jong M, van der Loeff MFS, Schilperoort R, Vennema H, van der Weijden C, Langeveld J, Welkers M, Prins M, de Roda Husman AM, Fanoy E, Medema G. Use of passive samplers as sewage surveillance tool to monitor a hepatitis A outbreak at a school in Amsterdam, the Netherlands, Oct 2022 - March 2023. BMC Infect Dis 2024; 24:1044. [PMID: 39333937 PMCID: PMC11430438 DOI: 10.1186/s12879-024-09938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Enteric hepatitis A virus (HAV) infections during childhood are often asymptomatic but may cause severe illness in adults. To improve public health surveillance we assessed the applicability of sewage monitoring during an HAV outbreak at a primary school. METHODS Between October 19 and December 27, 2022, five symptomatic HAV cases were notified to the Public Health Service Amsterdam; all attended the same primary school. Passive samplers, small absorbent tools, were deployed in sewage near the school from November 14, 2022, to March 22, 2023. The absorbents were subjected to RNA extraction, HAV PCR testing, and, if positive, sequencing. PCR and sequencing were also performed on plasma and feces samples of HAV cases. RESULTS In 22 out of 88 (25%) of sewage samples, HAV RNA was detected. All HAV-RNA-positive sewage samples until 8 February 2023 were subgenotype IB, matching the strain detected in all cases. Another strain of HAV (subgenotype IA) was detected in sewage from 15 February 2023 onwards, without associated cases. CONCLUSIONS Passive sampler-based sewage monitoring is an effective method to rapidly detect HAV shedding linked to diagnosed cases. It detects unnoticed viral infections and allows monitoring of outbreaks. This suggests that passive sampler-based monitoring is a promising tool supporting the public health response during HAV and other outbreaks.
Collapse
Affiliation(s)
- Maarten de Jong
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands.
| | - Maarten F Schim van der Loeff
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam Infection & Immunity Institute, AmsterdamUMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Harry Vennema
- Department of Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Charlie van der Weijden
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands
| | | | - Matthijs Welkers
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands
- Department of Medical Microbiology & Infection Prevention, AmsterdamUMC, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands
- Department of Internal Medicine, Amsterdam Infection & Immunity Institute, AmsterdamUMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ana Maria de Roda Husman
- Department of Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ewout Fanoy
- Department of Infectious Diseases, Public Health Service Amsterdam (GGD Amsterdam), Amsterdam, the Netherlands
| | - Gertjan Medema
- KWR Water Research Institute, Nieuwegein, the Netherlands
| |
Collapse
|
2
|
Gwenzi W, Adelodun B, Kumar P, Ajibade FO, Silva LFO, Choi KS, Selvarajan R, Abia ALK, Gholipour S, Mohammadi F, Nikaeen M. Human viral pathogens in the wastewater-source water-drinking water continuum: Evidence, health risks, and lessons for future outbreaks in low-income settings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170214. [PMID: 38278242 DOI: 10.1016/j.scitotenv.2024.170214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Human viral pathogens, including SARS-CoV-2 continue to attract public and research attention due to their disruption of society, global health, and the economy. Several earlier reviews have investigated the occurrence and fate of SARS-CoV-2 in wastewater, and the potential to use such data in wastewater-based epidemiology. However, comprehensive reviews tracking SARS-CoV-2 and other viral pathogens in the wastewater-water-drinking water continuum and the associated risk assessment are still lacking. Therefore, to address this gap, the present paper makes the following contributions: (1) critically examines the early empirical results to highlight the occurrence and stability of SARS-CoV-2 in the wastewater-source water-drinking water continuum, (2) discusses the anthropogenic and hydro(geo)logical processes controlling the circulation of SARS-CoV-2 in the wastewater-source water-drinking water continuum, (3) discusses the risky behaviour, drivers and high-risk settings in the wastewater-source water-drinking water continuum, (4) uses the available empirical data on SARS-CoV-2 occurrence in the wastewater-source water-drinking water continuum to discuss human health risks from multiple exposure pathways, gendered aspects of SARS-CoV-2 transmission via shared on-site sanitation systems, and (5) develops and risk mitigation strategy based on the available empirical evidence and quantitative human risk assessment data. Finally, it presents a comprehensive research agenda on SARS-CoV-2/COVID-19 to guide the mitigation of future similar outbreaks in low-income settings.
Collapse
Affiliation(s)
- Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Westgate, Harare, Zimbabwe; Currently Alexander von Humboldt Fellow and Guest/Visiting Professor at: Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Steinstraße 19, D-37213 Witzenhausen, Germany; Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB), Max-Eyth-Allee 100, D-14469, Potsdam, Germany.
| | - Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin 240003, Nigeria; Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar 249404, India; Research and Development Division, Society for AgroEnvironmental Sustainability, Dehradun 248007, India.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, 340001, Nigeria.
| | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlàntico, Colombia.
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, Republic of Korea; Institute of Agricultural Science & Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ramganesh Selvarajan
- Department of Environmental Sciences, College of Agricultural and Environmental Sciences, University of South Africa, Florida branch, Johannesburg, South Africa
| | - Akebe Luther King Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Environmental Research Foundation, Westville 3630, Kwazulu-Natal, South Africa
| | - Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Fantilli A, Cola GD, Castro G, Sicilia P, Cachi AM, de Los Ángeles Marinzalda M, Ibarra G, López L, Valduvino C, Barbás G, Nates S, Masachessi G, Pisano MB, Ré V. Hepatitis A virus monitoring in wastewater: A complementary tool to clinical surveillance. WATER RESEARCH 2023; 241:120102. [PMID: 37262946 DOI: 10.1016/j.watres.2023.120102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Monitoring wastewater is an effective tool for tracking information on trends of enteric viral dissemination. This study aimed to perform molecular detection and genetic characterization of HAV in wastewater and to correlate the results with those obtained from clinical surveillance. Wastewater samples (n=811) of the second most populous city in Argentina were collected from the main wastewater treatment plant (BG-WWTP, n=261), and at 7 local neighborhood collector sewers (LNCS, n=550) during 2017-2022. Clinical samples of acute hepatitis A cases (HA, n=54) were also analyzed. HAV molecular detection was performed by real time RT-PCR, and genetic characterization by RT-Nested PCR, sequencing and phylogenetic analysis. RNA-HAV was detected in sewage samples throughout the entire period studied, and detection frequencies varied according to the location and year (2.9% - 56.5%). In BG-WWTP, 23% of the samples were RNA-HAV+. The highest detection rates were in 2017 (30.0%), 2018 (41.7%) and 2022 (56.5%), which coincides with the highest number of HA cases reported. Twenty-eight (28) sequences were obtained (from clinical and sewage samples), and all were genotype IA. Two monophyletic clusters were identified: one that grouped clinical and wastewater samples from 2017-2018, and another with specimens from 2022, evidencing that environmental surveillance might constitute a replica of viral circulation in the population. These findings evidence that WBE, in a centralized and decentralized sewage monitoring, might be an effective strategy to track HAV circulation trends over time, contributing to the knowledge of HAV in the new post-vaccination epidemiological scenarios in Argentina and in Latin America.
Collapse
Affiliation(s)
- Anabella Fantilli
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina.
| | - Guadalupe Di Cola
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Gonzalo Castro
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba ´ X5000HVE, Argentina
| | - Paola Sicilia
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba ´ X5000HVE, Argentina
| | - Ariana Mariela Cachi
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Cívico, Córdoba X5010, Argentina; Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aérea Argentina 5011, Córdoba X5000, Argentina
| | - María de Los Ángeles Marinzalda
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Cívico, Córdoba X5010, Argentina; Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aérea Argentina 5011, Córdoba X5000, Argentina
| | - Gustavo Ibarra
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Laura López
- Área de Epidemiología, Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Celina Valduvino
- Área de Epidemiología, Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Gabriela Barbás
- Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina. Ministerio de Salud de la Provincia de Córdoba, Argentina Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Silvia Nates
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina
| | - Gisela Masachessi
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - María Belén Pisano
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Viviana Ré
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| |
Collapse
|
4
|
Yin L, Li Y, Zhang W, Han X, Wu Q, Xie Y, Fan J, Ma L. Detection Methods for Foodborne Viruses: Current State-of-Art and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3551-3563. [PMID: 36657010 DOI: 10.1021/acs.jafc.2c06537] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Foodborne viruses have been recognized as important threats to food safety and human health. Rapid and accurate detection is one of the most crucial measures for food safety control. With the development of biology, chemistry, nanoscience, and related interdisciplines, detection strategies have been devised and advanced continuously. This review mainly focuses on the progress of detection methods for foodborne viruses. The current detection methods for foodborne viruses are summarized, including traditional electron microscopy and cultural isolation, immunoassay, molecular technology, biosensors, and newly emerging CRISPR/Cas-based detection technology. Furthermore, a comparison of the detection methods was objectively discussed. This review provides a comprehensive account of foodborne virus detection methods from fundamentals to state-of-the-art and illustrates the advantages and disadvantages of the current methods and proposes the future trends and directions for foodborne virus detection. It is hoped that this review can update current knowledge and present blueprints in order to accelerate futuristic development.
Collapse
Affiliation(s)
- Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yaru Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenlu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiao Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qiankun Wu
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Yanyan Xie
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jingjing Fan
- Beijing Kwinbon Biotechnology Co., Ltd, Beijing, 102200, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
5
|
Takuissu GR, Kenmoe S, Ebogo-Belobo JT, Kengne-Ndé C, Mbaga DS, Bowo-Ngandji A, Ndzie Ondigui JL, Kenfack-Momo R, Tchatchouang S, Kenfack-Zanguim J, Lontuo Fogang R, Zeuko’o Menkem E, Kame-Ngasse GI, Magoudjou-Pekam JN, Veneri C, Mancini P, Bonanno Ferraro G, Iaconelli M, Orlandi L, Del Giudice C, Suffredini E, La Rosa G. Occurrence of Hepatitis A Virus in Water Matrices: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1054. [PMID: 36673812 PMCID: PMC9859052 DOI: 10.3390/ijerph20021054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Hepatitis A is a common form of viral hepatitis. It is usually transmitted through the ingestion of contaminated food and water. This systematic review was carried out to summarise the overall prevalence of Hepatitis A virus (HAV) in different water matrices: untreated and treated wastewater, surface water, groundwater, drinking water, and others (e.g., irrigation water and floodwater). The literature search was performed in four databases: PubMed, Web of Science, Global Index Medicus, and Excerpta Medica Database. Heterogeneity (I2) was assessed using the χ2 test on the Cochran Q statistic and H parameters. A total of 200 prevalence data from 144 articles were included in this meta-analysis. The overall prevalence of HAV in water matrices was 16.7% (95% CI: 13.4−20.3). The prevalence for individual matrix was as follows: 31.4% (95% CI: 23.0−40.4) untreated wastewater, 18.0% (95% CI: 9.5−28.2) treated wastewater, 15.0% (95% CI: 10.1−20.5) surface water, 2.3% (95% CI: 0.1−6.0) in groundwater, 0.3% (95% CI: 0.0−1.7) in drinking water, and 8.5% (95% CI: 3.1−15.6) in other matrices. The prevalence was higher in low-income economies (29.0%). Africa and Eastern Mediterranean were the regions with higher HAV prevalence values. This study showed a high heterogeneity (I2 > 75%) with a significant publication bias (p value Egger test < 0.001). The results of this review suggest that water matrices could be an important route of HAV transmission even in industrialized countries, despite the lower prevalence compared to less industrialized countries, and the availability of advanced water management systems. More effective water/wastewater treatment strategies are needed in developing countries to limit the environmental circulation of HAV.
Collapse
Affiliation(s)
- Guy Roussel Takuissu
- Centre for Food, Food Security and Nutrition Research, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Sebastien Kenmoe
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Epidemiological Surveillance, Evaluation and Research Unit, National AIDS Control Committee, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | | | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Carolina Veneri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Pamela Mancini
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giusy Bonanno Ferraro
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Marcello Iaconelli
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Lidia Orlandi
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudia Del Giudice
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
6
|
Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, Larsen DA. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2022; 192:305-322. [PMID: 36227259 PMCID: PMC9620728 DOI: 10.1093/aje/kwac175] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023] Open
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to be a valuable source of information regarding SARS-CoV-2 transmission and coronavirus disease 2019 (COVID-19) cases. Although the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens that have been surveilled through wastewater. Herein we identify the infectious diseases that have been previously studied via wastewater surveillance prior to the COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of wastewater surveillance across 38 countries, as were themes of how wastewater surveillance and other measures of disease transmission were linked. Twenty-five separate pathogen families were identified in the included studies, with the majority of studies examining pathogens from the family Picornaviridae, including polio and nonpolio enteroviruses. Most studies of wastewater surveillance did not link what was found in the wastewater to other measures of disease transmission. Among those studies that did, the value reported varied by study. Wastewater surveillance should be considered as a potential public health tool for many infectious diseases. Wastewater surveillance studies can be improved by incorporating other measures of disease transmission at the population-level including disease incidence and hospitalizations.
Collapse
Affiliation(s)
- Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, United States
| | - Dustin Hill
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Kathryn Anderson
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Mary B Collins
- Department of Environmental Studies, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Hyatt Green
- Department of Environmental Biology, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Brittany L Kmush
- Department of Public Health, Syracuse University, Syracuse, New York, United States
| | - David A Larsen
- Correspondence to Dr. Dave Larsen, Department of Public Health, Syracuse University, 430C White Hall, Syracuse, NY 13244 ()
| |
Collapse
|
7
|
Dzinamarira T, Pierre G, Iradukunda PG, Tungwarara N, Mukwenha S, Mpabuka E, Mataruka K, Chitungo I, Musuka G, Murewanhema G. Epidemiological surveillance of enteric viral diseases using wastewater in Africa - A rapid review. J Infect Public Health 2022; 15:703-707. [PMID: 35661916 DOI: 10.1016/j.jiph.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022] Open
Abstract
Viral enteric pathogens remain an important cause of diarrhoeal outbreaks among children in sub-Saharan Africa (SSA). Consequently, diarrhoeal illness remains a significant cause of morbidity and mortality in the under-fives in SSA. These outbreaks associated with viral pathogens tend to be seasonal and early warning systems for impending outbreaks could be very crucial for triggering preventive public health response and building public health resilience to deal with increased demand for medical services. Wastewater surveillance for pathogens is an important epidemiological component that could inform early warning systems. The objective of this rapid review was to evaluate the use of wastewater for epidemiology surveillance of enteric viral pathogens. Nine studies met the inclusion criteria. Eight viral pathogens were reviewed and analysed from 6 countries that performed wastewater analysis. Six studies explored the epidemiologic significance of viral pathogens in wastewater. The findings of this review revealed that monitoring of wastewater can provide an additional tool to determine the epidemiology of viral pathogens circulating in the community thereby providing early warning of potential outbreaks using wastewater-based epidemiology methods. Five of the included studies revealed the occurrence of viral pathogens in raw sewage and treated wastewater as an indication of inefficient elimination of viruses leading to potential release into water sources which presents a public health risk, increasing the risk of inducing gastroenteritis in the population. Six studies revealed the need for public health authorities to realise the potential benefit of environmental surveillance (ES) as an additional tool to determine the epidemiology of viral pathogens circulating in each community. Despite the significant public health challenge associated with enteric viral pathogens in sub-Saharan Africa, there remains remarkable underinvestment in potentially epidemiologically beneficial research, including wastewater-based epidemiology for these infections.
Collapse
Affiliation(s)
- Tafadzwa Dzinamarira
- School of Health Systems & Public Health, University of Pretoria, Pretoria 0002, South Africa; ICAP at Columbia University, Kigali, Rwanda.
| | - Gashema Pierre
- College of Medicine and Veterinary Medicine, University of Edinburgh, UK
| | | | - Nigel Tungwarara
- Department of Health Studies, University of South Africa, South Africa
| | | | | | - Kidson Mataruka
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Itai Chitungo
- College of Medicine and Health Sciences, Faculty of Medicine, University of Zimbabwe, Harare, Zimbabwe
| | | | - Grant Murewanhema
- College of Medicine and Health Sciences, Faculty of Medicine, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
8
|
Upfold NS, Luke GA, Knox C. Occurrence of Human Enteric Viruses in Water Sources and Shellfish: A Focus on Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:1-31. [PMID: 33501612 PMCID: PMC7837882 DOI: 10.1007/s12560-020-09456-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/16/2020] [Indexed: 05/02/2023]
Abstract
Enteric viruses are a diverse group of human pathogens which are primarily transmitted by the faecal-oral route and are a major cause of non-bacterial diarrhoeal disease in both developed and developing countries. Because they are shed in high numbers by infected individuals and can persist for a long time in the environment, they pose a serious threat to human health globally. Enteric viruses end up in the environment mainly through discharge or leakage of raw or inadequately treated sewage into water sources such as springs, rivers, dams, or marine estuaries. Human exposure then follows when contaminated water is used for drinking, cooking, or recreation and, importantly, when filter-feeding bivalve shellfish are consumed. The human health hazard posed by enteric viruses is particularly serious in Africa where rapid urbanisation in a relatively short period of time has led to the expansion of informal settlements with poor sanitation and failing or non-existent wastewater treatment infrastructure, and where rural communities with limited or no access to municipal water are dependent on nearby open water sources for their subsistence. The role of sewage-contaminated water and bivalve shellfish as vehicles for transmission of enteric viruses is well documented but, to our knowledge, has not been comprehensively reviewed in the African context. Here we provide an overview of enteric viruses and then review the growing body of research where these viruses have been detected in association with sewage-contaminated water or food in several African countries. These studies highlight the need for more research into the prevalence, molecular epidemiology and circulation of these viruses in Africa, as well as for development and application of innovative wastewater treatment approaches to reduce environmental pollution and its impact on human health on the continent.
Collapse
Affiliation(s)
- Nicole S Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, UK
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
9
|
Kuodi P, Patterson J, Silal S, Hussey GD, Kagina BM. Characterisation of the environmental presence of hepatitis A virus in low-income and middle-income countries: a systematic review and meta-analysis. BMJ Open 2020; 10:e036407. [PMID: 32988941 PMCID: PMC7523219 DOI: 10.1136/bmjopen-2019-036407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To characterise the environmental presence of hepatitis A virus (HAV) in low- and middle-income countries (LMICs). DESIGN Systematic review and meta-analysis. DATA SOURCES EBSCOhost, PubMed, Scopus, ScienceDirect, Clinical Key and Web of Science were searched. Grey literature was sourced by searching the following electronic databases: Open Grey, National Health Research Database and Mednar. ELIGIBILITY CRITERIA FOR INCLUDING STUDIES Cross-sectional and ecological studies reporting HAV environmental presence and conducted in LMICs between January 2005 and May 2019, irrespective of language of publication. DATA EXTRACTION AND DATA SYNTHESIS Relevant data were extracted from articles meeting the inclusion criteria, and two reviewers independently assessed the studies for risk of bias. High heterogeneity of the extracted data led to the results being reported narratively. RESULTS A total of 2092 records were retrieved, of which 33 met the inclusion criteria. 21 studies were conducted in Tunisia, India and South Africa, and the rest were from Philippines, Pakistan, Morocco, Chad, Mozambique, Kenya and Uganda. In Tunisian raw sewage samples, the prevalence of HAV ranged from 12% to 68%, with an estimated average detection rate of 50% (95% CI 25 to 75), whereas HAV detection in treated sewage in Tunisia ranged from 23% to 65%, with an estimated average detection rate of 38% (95% CI 20 to 57). The prevalence of HAV detection in South African treated sewage and surface water samples ranged from 4% to 37% and from 16% to 76%, with an estimated average detection rates of 15% (95% CI 1 to 29) and 51% (95% CI 21 to 80), respectively. Over the review period, the estimated average detection rate of environmental HAV presence appeared to have declined by 10%. CONCLUSION The quality of included studies was fair, but sampling issues and paucity of data limited the strength of the review findings. PROSPERO REGISTRATION NUMBER CRD42019119592.
Collapse
Affiliation(s)
- Paul Kuodi
- Faculty of Health Sciences, Department of Public Health, Lira University, Lira, Uganda
- School of Public Health and Family Medicine, University of Cape Town, Rondebosch, South Africa
| | - Jenna Patterson
- School of Public Health and Family Medicine, University of Cape Town, Rondebosch, South Africa
- Vaccines for Africa Initiative, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Sheetal Silal
- Department of Statistical Sciences, University of Cape Town, Rondebosch, South Africa
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gregory D Hussey
- Vaccines for Africa Initiative, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Benjamin M Kagina
- School of Public Health and Family Medicine, University of Cape Town, Rondebosch, South Africa
- Vaccines for Africa Initiative, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| |
Collapse
|
10
|
Environmental and Adaptive Changes Necessitate a Paradigm Shift for Indicators of Fecal Contamination. Microbiol Spectr 2020. [DOI: 10.1128/microbiolspec.erv-0001-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT
Changes in the occurrence, distribution, and seasonal variation of waterborne pathogens due to global climate change may increase the risk of human exposure to these microorganisms, thus heightening the need for more reliable surveillance systems. Routine monitoring of drinking water supplies and recreational waters is performed using fecal indicator microorganisms, such as
Escherichia coli
,
Enterococcus
spp., and coliphages. However, the presence and numbers of these indicators, especially
E. coli
and
Enterococcus
spp., do not correlate well with those of other pathogens, especially enteric viruses, which are a major cause of waterborne outbreaks associated with contaminated water and food, and recreational use of lakes, ponds, rivers, and estuarine waters. For that reason, there is a growing need for a surveillance system that can detect and quantify viral pathogens directly in water sources to reduce transmission of pathogens associated with fecal transmission. In this review, we present an updated overview of relevant waterborne enteric viruses that we believe should be more commonly screened to better evaluate water quality and to determine the safety of water use and reuse and of epidemiological data on viral outbreaks. We also discuss current methodologies that are available to detect and quantify these viruses in water resources. Finally, we highlight challenges associated with virus monitoring. The information presented in this review is intended to aid in the assessment of human health risks due to contact with water sources, especially since current environmental and adaptive changes may be creating the need for a paradigm shift for indicators of fecal contamination.
Collapse
|
11
|
Haramoto E, Kitajima M, Hata A, Torrey JR, Masago Y, Sano D, Katayama H. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. WATER RESEARCH 2018; 135:168-186. [PMID: 29471200 DOI: 10.1016/j.watres.2018.02.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 05/17/2023]
Abstract
Waterborne human enteric viruses, such as noroviruses and adenoviruses, are excreted in the feces of infected individuals and transmitted via the fecal-oral route including contaminated food and water. Since viruses are normally present at low concentrations in aquatic environments, they should be concentrated into smaller volumes prior to downstream molecular biological applications, such as quantitative polymerase chain reaction (qPCR). This review describes recent progress made in the development of concentration and detection methods of human enteric viruses in water, and discusses their applications for providing a better understanding of the prevalence of the viruses in various types of water worldwide. Maximum concentrations of human enteric viruses in water that have been reported in previous studies are summarized to assess viral abundances in aquatic environments. Some descriptions are also available on recent applications of sequencing analyses used to determine the genetic diversity of viral genomes in water samples, including those of novel viruses. Furthermore, the importance and significance of utilizing appropriate process controls during viral analyses are discussed, and three types of process controls are considered: whole process controls, molecular process controls, and (reverse transcription (RT)-)qPCR controls. Although no standards have been established for acceptable values of virus recovery and/or extraction-(RT-)qPCR efficiency, use of at least one of these appropriate control types is highly recommended for more accurate interpretation of observed data.
Collapse
Affiliation(s)
- Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Akihiko Hata
- Integrated Research System for Sustainability Science, Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Jason R Torrey
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Yoshifumi Masago
- Institute for the Advanced Study of Sustainability, United Nations University, 5-53-70 Jingumae, Shibuya-ku, Tokyo 150-8925, Japan.
| | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| | - Hiroyuki Katayama
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Vietnam Japan University, Luu Huu Phuoc Road, My Dinh 1 Ward, Nam Tu Liem District, Ha Noi, Vietnam.
| |
Collapse
|
12
|
Qiao Y, Sui Z, Hu G, Cao H, Yang G, Li Y, Lei Y, Zhao L, Chen Q. Comparison of concentration methods for detection of hepatitis A virus in water samples. Virol Sin 2016; 31:331-8. [PMID: 27535067 DOI: 10.1007/s12250-016-3786-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022] Open
Abstract
Hepatitis A virus is a pathogen associated with water pollution. Contaminated drinking water can cause hepatitis A outbreaks, lead to economic losses, and even threaten human lives. It is difficult to detect low levels of hepatitis A virus in water, so the virus must be concentrated in order to quantify it accurately. Here, we present a simple, rapid, efficient technique for the concentration and detection of hepatitis A virus in water. Our data showed that adding phosphate-buffered saline to the water, pre-filtering the water, and adding Trizol reagent directly to the filtration membrane can significantly improve concentration efficiency. Of three types of filtration membranes studied (mixed cellulose ester membrane, polyvinylidene fluoride membrane, and nylon membrane), the concentration efficiency using mixed cellulose ester membrane with a 0.1-μm pore size was the highest, reaching 92.62 ± 5.17%. This method was used to concentrate hepatitis A virus in water samples from Donghu Lake. Using SYBR Green real-time reverse transcription polymerase chain reaction analysis, the detection sensitivity of this method reached 10(1) copies/μL and its concentration efficiency reached 79.45 ± 9.88%.
Collapse
Affiliation(s)
- Yuting Qiao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhiwei Sui
- National Institute of Metrology, Beijing, 100013, China
| | - Guoliang Hu
- College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huabin Cao
- College of Animal Science and Technology, Institute of Animal Population Health, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guoxiang Yang
- Hubei Wildlife Epidemic Focus and Disease Surveillance Center, Wuhan, 430075, China
| | - Yong Li
- Hubei Wildlife Epidemic Focus and Disease Surveillance Center, Wuhan, 430075, China
| | - Yongsong Lei
- Hubei Wildlife Epidemic Focus and Disease Surveillance Center, Wuhan, 430075, China
| | - Lihua Zhao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
13
|
Ouardani I, Turki S, Aouni M, Romalde JL. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments. Appl Environ Microbiol 2016; 82:3834-3845. [PMID: 27107113 PMCID: PMC4907194 DOI: 10.1128/aem.00619-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 10(3) genome copies [GC]/ml) and influents (2.7 × 10(3) GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. IMPORTANCE This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level, sanitary conditions in the communities, sewage facilities, the locality, and the climate. The wide dispersion of HAV in effluents proves the inefficacity of the current wastewater treatment processes used in Tunisia to remove virus; therefore, establishment of tertiary treatment processes or replacement of the medium-charge activated sludge (conventional activated sludge) by the low-charge version (oxidation ditch activated sludge) is absolutely needed. Rapid detection of the HAV genome in wastewater may provide a timely warning sign to health authorities to implement population protection measures.
Collapse
Affiliation(s)
- Imen Ouardani
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Syrine Turki
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Mahjoub Aouni
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Faculté de Pharmacie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
Migration pattern of hepatitis A virus genotype IA in North-Central Tunisia. Virol J 2015; 12:17. [PMID: 25886374 PMCID: PMC4327963 DOI: 10.1186/s12985-015-0249-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/28/2015] [Indexed: 01/20/2023] Open
Abstract
Background Hepatitis A virus (HAV) epidemiology in Tunisia has changed from high to intermediate endemicity in the last decades. However, several outbreaks continue to occur. The last reported sequences from Tunisian HAV strains date back to 2006. In order to provide an updated overview of the strains currently circulating in Tunisia, a large-scale molecular analysis of samples from hepatitis A cases was performed, the first in Tunisia. Results Biological samples were collected from patients with laboratory confirmed hepatitis A: 145 sera samples in Tunis, Monastir, Sousse and Kairouan from 2008 to 2013 and 45 stool samples in Mahdia in 2009. HAV isolates were characterised by nested RT-PCR (VP1/2A region) and sequencing. The sequences finally obtained from 81 samples showed 78 genotype IA and 3 genotype IB isolates. A Tunisian genotype IA sequence dataset, including both the 78 newly obtained IA sequences and 51 sequences retrieved from GenBank, was used for phylogenetic investigation, including analysis of migration pattern among six towns. Virus gene flow from Sfax and Monastir was directed to all other towns; in contrast, the gene flows from Sousse, Tunis, Mahdia and Kairouan were directed to three, two, one and no towns, respectively. Conclusions Several different HAV strains co-circulate in Tunisia, but the predominant genotype still continues to be IA (78/81, 96% isolates). A complex gene flow (migration) of HAV genotype IA was observed, with Sfax and Monastir showing gene flows to all other investigated towns. This approach coupled to a wider sampling can prove useful to investigate the factors underlying the spread of HAV in Tunisia and, thus, to implement appropriate preventing measures.
Collapse
|
15
|
Béji-Hamza A, Hassine-Zaafrane M, Khélifi-Gharbi H, Della Libera S, Iaconelli M, Muscillo M, Petricca S, Ciccaglione AR, Bruni R, Taffon S, Aouni M, La Rosa G. Hepatitis E virus genotypes 1 and 3 in wastewater samples in Tunisia. Arch Virol 2014; 160:183-9. [PMID: 25307960 DOI: 10.1007/s00705-014-2251-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Hepatitis E represents an important public-health concern throughout the world. It is one of the leading causes of hepatitis in North Africa, Asia and the Middle East. In Tunisia, the true burden of HEV infection is still unknown. The objectives of the present study were to assess the occurrence of hepatitis E virus in Tunisia through the monitoring of urban sewage and to characterize the strains identified using molecular assays. A total of 150 sewage samples (raw and treated) were collected from three wastewater treatment plants located in the regions of Monastir and Mahdia and analyzed by nested RT-PCR using a qualitative assay targeting the methyltransferase gene in ORF1. Of these, only three samples (2 %) were found to be positive for HEV, one belonging to genotype 1 and two to genotype 3. The results of the present study indicate a low level of virus excretion among the Tunisian population. Both genotypes 1 and 3 are circulating in this country, however, possibly causing sporadic infections. The presence of the zoonotic genotype 3, known to be transmitted to humans mainly by swine and demonstrated in Tunisia for the first time in this work, raises the question of possible reservoir species, since pork products are not consumed in this country, pigs are not bred, and wild boar is not endemic. Further studies will be needed to gather information on the occurrence and diversity of HEV strains circulating among humans and animals in Tunisia, and on possible animal reservoirs.
Collapse
Affiliation(s)
- A Béji-Hamza
- Laboratory of Transmissible Diseases and Biological Active Substances, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|