1
|
do Nascimento MCA, Smith WJM, Liu Y, Simpson SL, Bivins A, Rahal P, Ahmed W. Development and comparative assessment of RT-qPCR and duplex RT-LAMP assays for the monitoring of Aichi virus A (AiV-A) in untreated wastewater samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175440. [PMID: 39153611 DOI: 10.1016/j.scitotenv.2024.175440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Diverse enteric pathogens, transmitted through human and animal feces, can cause gastroenteritis. Enteric viruses, such as human Aichi virus, specifically genotype A (AiV-A), are emerging pathogens that cause illnesses even at low doses and are spreading globally. This research developed a reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting the 3CD junction and a reverse transcription colorimetric loop-mediated isothermal amplification (RT-cLAMP) duplex assay targeting junctions 2BC and 3CD of the AiV-A genome for rapid and sensitive detection of this virus in metropolitan and regional wastewater samples in Queensland, Australia. The performance of these assays was evaluated using control materials and by analyzing wastewater samples. In serially diluted control materials, RT-qPCR provided quantifiable data (mean 1.51 log10 GC/2 μL of nucleic acid) down to a dilution of 1 × 10-5 pg/μL. In comparison, the duplex RT-cLAMP assay detected down to 1 × 10-4 pg/μL, indicating that its sensitivity was one order of magnitude less than that of RT-qPCR. Of the 38 wastewater samples from 38 metropolitan and regional wastewater treatment plants (WWTPs) in Queensland, Australia, 21 (55.3 %) tested positive by RT-qPCR with concentrations ranging from 3.60 to 6.23 log10 GC/L. In contrast, only 15 (39.5 %) of 38 wastewater samples were positive using the duplex RT-cLAMP assay. The methods demonstrated substantial qualitative agreement (κ = 0.730), with a concordance of 86.5 %, demonstrating the reliability of RT-cLAMP for detecting AiV-A in wastewater samples. The duplex RT-cLAMP assay, despite demonstrating reduced detection sensitivity, has proven effective and holds promise as a supplementary approach, especially in settings with limited resources where rapid and affordable testing is crucial.
Collapse
Affiliation(s)
- Mariah C A do Nascimento
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.; Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Yawen Liu
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.; State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Stuart L Simpson
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Paula Rahal
- Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia..
| |
Collapse
|
2
|
do Nascimento MCA, Smith WJM, Gebrewold M, Liu Y, Simpson SL, Bivins A, Rahal P, Ahmed W. Development and evaluation of a colorimetric LAMP based-assay targeting the Bacteroides HF183 marker for tracking sewage pollution in environmental waters. WATER RESEARCH 2024; 264:122202. [PMID: 39146849 DOI: 10.1016/j.watres.2024.122202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
Surface waters are vulnerable to contamination by human and animal feces, posing risks to human health due to potential exposure to enteric pathogens. This research developed a colorimetric loop-mediated isothermal amplification (cLAMP) assay to detect sewage associated Bacteroides dorei HF183/BacR287 (HF183) marker in wastewater and environmental water samples. The host sensitivity and host specificity of the assay were evaluated, and their performance was compared to the Bacteroides HF183 qPCR assay using control materials (gBlocks), environmental water samples seeded with untreated sewage, and ambient environmental water samples. In serial dilutions of control materials, qPCR produced quantifiable data across all dilutions, while cLAMP detected the marker down to 0.001 pg/µL of control materials, which was two orders of magnitude less sensitive than qPCR. All untreated sewage samples (n = 12) tested positive for HF183 by both the qPCR and cLAMP assays, demonstrating a host sensitivity value of 1.00 (maximum value of 1.00). The host specificity by analysing 70 non-human fecal nucleic acid samples revealed cLAMP's specificity value of 0.81 compared to qPCR's 0.64. When testing sewage-seeded environmental water samples, both methods detected HF183 for the lowest amount of sewage, indicating similar detection sensitivity. The application of cLAMP for tracking sewage pollution in environmental waters showed promising results, with moderate agreement between cLAMP and qPCR (κ = 0.510). However, cLAMP occasionally missed detections compared to qPCR, particularly in low-concentration samples. Overall, the cLAMP HF183 assay demonstrated promising potential as a rapid and sensitive method for detecting sewage pollution, offering a viable alternative to qPCR in certain environmental monitoring scenarios.
Collapse
Affiliation(s)
- Mariah C A do Nascimento
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia; Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | | | - Yawen Liu
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia; State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Stuart L Simpson
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Paula Rahal
- Department of Biology, São Paulo State University - UNESP, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.
| |
Collapse
|
3
|
Zhou Y, Du W, Chen Y, Li L, Xiao X, Xu Y, Yang W, Hu X, Wang B, Zhang J, Jiang Q, Wang Y. Pathogen detection via inductively coupled plasma mass spectrometry analysis with nanoparticles. Talanta 2024; 277:126325. [PMID: 38833906 DOI: 10.1016/j.talanta.2024.126325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/24/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
Infections caused by viruses and bacteria pose a significant threat to global public health, emphasizing the critical importance of timely and precise detection methods. Inductively coupled plasma mass spectrometry (ICP-MS), a contemporary approach for pathogen detection, offers distinct advantages such as high sensitivity, a wide linear range, and multi-index capabilities. This review elucidates the underexplored application of ICP-MS in conjunction with functional nanoparticles (NPs) for the identification of viruses and bacteria. The review commences with an elucidation of the underlying principles, procedures, target pathogens, and NP requirements for this innovative approach. Subsequently, a thorough analysis of the advantages and limitations associated with these techniques is provided. Furthermore, the review delves into a comprehensive examination of the challenges encountered when utilizing NPs and ICP-MS for pathogen detection, culminating in a forward-looking assessment of the potential pathways for advancement in this domain. Thus, this review contributes novel perspectives to the field of pathogen detection in biomedicine by showcasing the promising synergy of ICP-MS and NPs.
Collapse
Affiliation(s)
- Yujie Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Wenli Du
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yuzuo Chen
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lei Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xuefeng Hu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Qing Jiang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China
| |
Collapse
|
4
|
Zhu Y, Xia B, Xu H, Liu Z, Wang R, Cai Q, Zhao P, Qi Z. Rapid detection of human adenovirus subgroup B using recombinase polymerase amplification assay. Virus Genes 2024; 60:18-24. [PMID: 38175387 DOI: 10.1007/s11262-023-02044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024]
Abstract
Human adenovirus subgroup B (HAdV B) is one of the major pathogens of human respiratory virus infections, which has considerable transmission and morbidity in a variety of populations. Therefore, rapid and specific detection of HAdV B in clinical samples is essential for diagnosis. This study aimed to develop a product for rapid nucleic acid detection of HAdV B using recombinase polymerase amplification assay (RPA) and validate the performance of this method by using clinical samples. Results showed that this method achieved a lower limit of detection (LOD) of 10 copies/μL and had no cross-reactivity with other adenovirus subgroups or respiratory pathogens. In addition to high sensitivity, it can be completed within 30 min at 40 °C. There is no need to perform nucleic acid extraction on clinical samples. Taking qPCR as the gold standard, the RPA assay possessed a high concordance (Cohen's kappa, 0.896; 95% CI 0.808-0.984; P < 0.001), with a sensitivity of 87.80% and a specificity of 100.00%. The RPA assay developed in this study provided a simple and highly specific method, making it an important tool for rapid adenovirus nucleic acid detection and facilitating large-scale population screening in resource-limited settings.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China
| | - Binghui Xia
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China
| | - Haizhou Xu
- Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Zengxin Liu
- Genoxor Medical Science and Technology Inc., Shanghai, 201112, China
| | - Ru Wang
- Genoxor Medical Science and Technology Inc., Shanghai, 201112, China
| | - Qingqing Cai
- Genoxor Medical Science and Technology Inc., Shanghai, 201112, China
| | - Ping Zhao
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China.
| | - Zhongtian Qi
- Department of Microbiology, Naval Medical University, No. 800, Xiangyin Road, Shanghai, 200433, China.
| |
Collapse
|
5
|
Akter J, Smith WJM, Gebrewold M, Kim I, Simpson SL, Bivins A, Ahmed W. Evaluation of colorimetric RT-LAMP for screening of SARS-CoV-2 in untreated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167964. [PMID: 37865239 DOI: 10.1016/j.scitotenv.2023.167964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
This study compared reverse transcription-loop-mediated isothermal amplification (RT-LAMP) and three reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays targeting the N and E genes of the SARS-CoV-2 genome for detecting RNA in untreated wastewater samples. RT-qPCR assays exhibited consistent amplification down to 2 × 102 GC/reaction, with greater analytical sensitivity at 2 × 101 GC/reaction by US CDC N1 and US CDC N2 assays. In contrast, RT-LAMP exhibited lower sensitivity, detecting SARS-CoV-2 only at or above 2 × 103 GC/reaction. For SARS-CoV-2 seeded wastewater samples, the US CDC N1 assay exhibited greater analytical sensitivity than the US CDC N2, E_Sarbeco, and RT-LAMP assays. Out of 30 wastewater samples, RT-qPCR detected endogenous SARS-CoV-2 RNA in 29 samples, while RT-LAMP identified 27 positive samples, with 20 displaying consistent amplifications in all three RT-LAMP technical replicates. Agreement analysis revealed a strong concordance between RT-LAMP and the US CDC N1 and E_Sarbeco RT-qPCR assays (κ = 0.474) but lower agreement with the US CDC N2 RT-qPCR assay (κ = 0.359). Quantification of SARS-CoV-2 RNA in positive samples revealed a strong correlation between the US CDC N1 and E_Sarbeco assays, while the US CDC N1 and US CDC N2 assays exhibited weak correlation. Logistic regression analysis indicated that RT-LAMP results correlated with RNA quantified by the US CDC N1 and E_Sarbeco assays, with 95 % limits of detection of 3.99 and 3.47 log10 GC/15 mL, respectively. In conclusion, despite lower sensitivity compared to RT-qPCR assays, RT-LAMP may offer advantages for wastewater surveillance, such as rapid results (estimated as twice as fast), and simplicity, making it a valuable tool in the shifting landscape of COVID-19 wastewater surveillance. Furthermore, LAMP positive wastewater samples might be prioritized for SARS-CoV-2 sequencing due to reduced analytical sensitivity. These findings support the use of RT-LAMP as a specific and efficient method for screening wastewater samples for SARS-CoV-2, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Jesmin Akter
- Department of Civil and Environmental Engineering, University of Science and Technology, Republic of Korea; Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Republic of Korea; CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Metasebia Gebrewold
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Ilho Kim
- Department of Civil and Environmental Engineering, University of Science and Technology, Republic of Korea; Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology (KICT), Republic of Korea
| | | | - Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| |
Collapse
|
6
|
Kim TY, Zhu X, Kim SM, Lim JA, Woo MA, Lim MC, Luo K. A review of nucleic acid-based detection methods for foodborne viruses: Sample pretreatment and detection techniques. Food Res Int 2023; 174:113502. [PMID: 37986417 DOI: 10.1016/j.foodres.2023.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Viruses are major pathogens that cause food poisoning when ingested via contaminated food and water. Therefore, the development of foodborne virus detection technologies that can be applied throughout the food distribution chain is essential for food safety. A common nucleic acid-based detection method is polymerase chain reaction (PCR), which has become the gold standard for monitoring food contamination by viruses due to its high sensitivity, and availability of commercial kits. However, PCR-based methods are labor intensive and time consuming, and are vulnerable to inhibitors that may be present in food samples. In addition, the methods are restricted with regard to site of analysis due to the requirement of expensive and large equipment for sophisticated temperature regulation and signal analysis procedures. To overcome these limitations, optical and electrical readout biosensors based on nucleic acid isothermal amplification technology and nanomaterials have emerged as alternatives for nucleic acid-based detection of foodborne viruses. Biosensors are promising portable detection tools owing to their easy integration into compact platforms and ability to be operated on-site. However, the complexity of food components necessitates the inclusion of tedious preprocessing steps, and the lack of stability studies on residual food components further restricts the practical application of biosensors as a universal detection method. Here, we summarize the latest advances in nucleic acid-based strategies for the detection of foodborne viruses, including PCR-based and isothermal amplification-based methods, gene amplification-free methods, as well as food pretreatment methods. The principles, strengths/disadvantages, and performance of each method, problems to be solved, and future prospects for the development of a universal detection method are discussed.
Collapse
Affiliation(s)
- Tai-Yong Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Xiaoning Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Se-Min Kim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jeong-A Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Ah Woo
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Cheol Lim
- Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science and Technology, Daejeon-si 34113, Republic of Korea.
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
7
|
Zhang X, Chen Y, Pan Y, Ma X, Hu G, Li S, Deng Y, Chen Z, Chen H, Wu Y, Jiang Z, Li Z. Research progress of severe acute respiratory syndrome coronavirus 2 on aerosol collection and detection. CHINESE CHEM LETT 2023; 35:108378. [PMID: 37362323 PMCID: PMC10039702 DOI: 10.1016/j.cclet.2023.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 06/28/2023]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 has negatively affected people's lives and productivity. Because the mode of transmission of SARS-CoV-2 is of great concern, this review discusses the sources of virus aerosols and possible transmission routes. First, we discuss virus aerosol collection methods, including natural sedimentation, solid impact, liquid impact, centrifugal, cyclone and electrostatic adsorption methods. Then, we review common virus aerosol detection methods, including virus culture, metabolic detection, nucleic acid-based detection and immunology-based detection methods. Finally, possible solutions for the detection of SARS-CoV-2 aerosols are introduced. Point-of-care testing has long been a focus of attention. In the near future, the development of an instrument that integrates sampling and output results will enable the real-time, automatic monitoring of patients.
Collapse
Affiliation(s)
- Xinyu Zhang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yuting Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yueying Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xinye Ma
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Gui Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007, China
| | - Yanqi Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
- Shenzhen Lemniscare Med Technol Co. Ltd., Shenzhen, 518000, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Zhiyang Li
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
8
|
Prakash S, Aasarey R, Pandey PK, Mathur P, Arulselvi S. An inexpensive and rapid diagnostic method for detection of SARS-CoV-2 RNA by loop-mediated isothermal amplification (LAMP). MethodsX 2023; 10:102011. [PMID: 36643803 PMCID: PMC9831977 DOI: 10.1016/j.mex.2023.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
SARS-CoV-2 is a public pandemic health concern globally. Nasopharyngeal and oropharyngeal swab samples are used for Covid-19 viral detection. Sample collection procedure was tedious and uncomfortable and unsuitable for biochemical and CBC analysis in swab samples. Biochemistry and CBC tests are key determinant in management of Covid-19 patients. We developed a LAMP test to detect viral RNA in blood samples. LAMP is required four specific primers targeting the internal transcribed S-region and loop primers for viral RNA amplification. RNA was extracted from blood samples by TRIzol method. LAMP reaction was performed at 60 °C for 1 hour and amplicons were visualized in HNB dye. No cross-reactivity was seen with HBV, HCV, and HIV infected sample. Out of 40 blood samples, 33 samples were positive for LAMP and Q-PCR analysis, one sample was positive for LAMP and negative for Q-PCR, two samples were negative for LAMP but positive for Q-PCR, and four blood samples were negative for LAMP and Q-PCR. LAMP method has an accuracy of 92.50%, with sensitivity and specificity of 94.28% and 80%, respectively. Thus, LAMP diagnostic test has proved reliable, fast, inexpensive and can be useful for detection where the limited resources available.•LAMP method is a potential tool for detection of SARS-CoV-2.•Blood samples are the key determinant for routine diagnostics as well as molecular diagnostics.•LAMP assay is an appropriate diagnostics method which offers greater simplicity, low cost, sensitivity, and specificity than other methods in molecular diagnostics.
Collapse
Affiliation(s)
- S Prakash
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - R Aasarey
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - P K Pandey
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - P Mathur
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - S Arulselvi
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
9
|
Gholipour S, Hosseini M, Nikaeen M, Hadi M, Sarmadi M, Saderi H, Hassanzadeh A. Quantification of human adenovirus in irrigation water-soil-crop continuum: are consumers of wastewater-irrigated vegetables at risk? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54561-54570. [PMID: 35304720 DOI: 10.1007/s11356-022-19588-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Because of health concerns regarding the presence of enteric viruses in wastewater effluents, this study was designed to investigate the occurrence of human adenovirus (HAdV) in the irrigation water-soil-crop continuum. Viral particles were extracted from wastewater and wastewater- or water-irrigated soil and crop samples and analyzed using real-time PCR. Concentration of fecal indicator bacteria (FIB) were also determined. Quantitative microbial risk assessment was performed to determine the HAdV illness risk associated with the consumption of wastewater-irrigated vegetables. HAdV-F was detected in 74% of wastewater effluent samples with a mean concentration of 38 Genomic Copy (GC)/mL. HAdV was also detected in wastewater-irrigated soil (2 × 102 GC/g) and crop (< 10 GC/g) samples, with no statistically significant difference in concentrations between wastewater- and freshwater-irrigated samples. The results showed no correlation between concentrations of FIB and HAdV in the analyzed samples. Mean probability of illness risk from consumption of wastewater-irrigated vegetables was 4 × 10-1 per person per year (pppy) which was about two orders of magnitude higher than the proposed value by WHO (10-3 pppy) for safe reuse of wastewater. This finding suggests that the wastewater reuse for irrigation of vegetables eaten raw could pose a threat to human health with respect to the risk of viral illness, signifying stricter management of wastewater reuse. However, because of uncertainties in the QMRA model, particularly the ratio of infectious to non-infectious virus particles, more data is required to validate the predicted risk. This information is especially important in arid and semi-arid regions where high temperatures, UV radiation intensity, and desiccation can efficiently inactivate microorganisms in the environment.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mona Hosseini
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Sarmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Horieh Saderi
- Molecular Microbiology Research Center (MMRC), Shahed University, Tehran, Iran
| | - Akbar Hassanzadeh
- Department of Statistics & Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Xiao F, Zhou J, Sun C, Huang X, Zheng B, Fu J, Jia N, Xu Z, Cui X, Wang Y. Loop-Mediated Isothermal Amplification Coupled With Nanoparticle-Based Biosensor: A Rapid and Sensitive Method to Detect Mycoplasma pneumoniae. Front Cell Infect Microbiol 2022; 12:882855. [PMID: 35873146 PMCID: PMC9299420 DOI: 10.3389/fcimb.2022.882855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma pneumoniae (MP), the causative agent of MP pneumonia (MPP), has posed a substantial burden to public health owing to a lack of rapid and effective diagnostic methods. Here, we designed a loop-mediated isothermal amplification (LAMP)-based assay, termed LAMP, combined with a nanoparticle-based lateral flow biosensor (LAMP-LFB) for rapid and sensitive diagnosis of MP.-LAMP-LFB included a set of six primers targeting the community-acquired respiratory distress syndrome (CARDS) toxin gene and was performed optimally at 63°C for only 30 min. The resulting LAMP products could be visually indicated by LFB within 2 min, thus the whole process could be accomplished within an hour. MP-LAMP-LFB's sensitivity was 50 fg per reaction, which was in complete accordance with these results obtained from real-time turbidity and visual detection reagent (VDR). MP-LAMP-LFB had no cross-reactivity with other pathogens that had similar clinical presentations. Our assay was further validated using 100 nasopharyngeal swab samples collected from children suspected of MPP, and the result was compared with the real-time PCR method. With a positive rate of 50%, the data indicated that MP-LAMP-LFB is a sensitive test for MP detection in clinical settings. Collectively, the MP-LAMP-LFB assay targeting the CARDS toxin gene was a rapid, highly sensitive, and specific test that could be widely applied in point-of-care settings and basic medical facilities in rural areas.
Collapse
Affiliation(s)
- Fei Xiao
- Experimental research center, Capital Institute of pediatrics, Beijing, China
| | - Juan Zhou
- Experimental research center, Capital Institute of pediatrics, Beijing, China
| | - Chunrong Sun
- Experimental research center, Capital Institute of pediatrics, Beijing, China
| | - Xiaolan Huang
- Experimental research center, Capital Institute of pediatrics, Beijing, China
| | - Baoying Zheng
- Department of Respiratory Disease, Capital Institute of pediatrics, Beijing, China
| | - Jin Fu
- Experimental research center, Capital Institute of pediatrics, Beijing, China
| | - Nan Jia
- Experimental research center, Capital Institute of pediatrics, Beijing, China
| | - Zheng Xu
- Experimental research center, Capital Institute of pediatrics, Beijing, China
| | - Xiaodai Cui
- Experimental research center, Capital Institute of pediatrics, Beijing, China
| | - Yi Wang
- Experimental research center, Capital Institute of pediatrics, Beijing, China
| |
Collapse
|
11
|
Development and application of LAMP assays for the detection of enteric adenoviruses in feces. Microbiol Spectr 2022; 10:e0051622. [PMID: 35862966 PMCID: PMC9430467 DOI: 10.1128/spectrum.00516-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Loop-mediated isothermal amplification (LAMP) is an alternative to PCR that is faster and requires fewer resources. Here, we describe two LAMP assays for the detection of human adenoviruses in the feces of children with acute intestinal infections. We designed сolorimetric LAMP (c-LAMP) and real-time LAMP (f-LAMP) with fluorescent probes to detect the DNA of the adenovirus F human adenovirus 40/41 (hAdV40/41) hexon gene. The detection limit of both developed methods was 103 copies/mL, which is comparable to the sensitivity of PCR. The specificities of both c-LAMP and f-LAMP were high, with no false-positive results for clinical samples that do not contain adenovirus F, when testing other viruses and microorganisms. Comparative tests of PCR and LAMP on clinical samples from patients with acute gastroenteritis were carried out. For all samples with a PCR threshold cycle (CT) of up to 36, the PCR and LAMP results completely coincided; however, at low viral loads, the diagnostic sensitivity of LAMP, especially c-LAMP with colorimetric detection, was inferior to that of PCR. The combination of LAMP with modern methods of nucleic acid extraction, both in manual and automatic modes, can reduce the time for a complete study, including extraction of nucleic acid material and amplification, to 60 min. IMPORTANCE In April 2022, several cases of acute hepatitis of unknown origin were reported in children from 12 countries. In many cases, enteric adenovirus or SARS-CoV-2 and adenovirus coinfection were detected. It is known that human adenoviruses can cause different infections of varying severity, from asymptomatic to severe cases with lethal outcomes. There is a need to increase the diagnostic capabilities of clinical laboratories to identify such an underestimated pathogen as adenovirus. Although PCR remains the gold standard for pathogen detection, this method requires specialized equipment and has a long turnaround time to process samples. Previously, LAMP assays for the detection of human adenovirus have been based on measuring the turbidity, the fluorescence of intercalated dyes, or electrophoretic separation. Herein, we present LAMP-based assays with colorimetric or fluorescent detection and perform a detailed assessment of their sensitivity, specificity, and diagnostic performance.
Collapse
|
12
|
Suther C, Stoufer S, Zhou Y, Moore MD. Recent Developments in Isothermal Amplification Methods for the Detection of Foodborne Viruses. Front Microbiol 2022; 13:841875. [PMID: 35308332 PMCID: PMC8930189 DOI: 10.3389/fmicb.2022.841875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
Foodborne and enteric viruses continue to impose a significant public health and economic burden globally. As many of these viruses are highly transmissible, the ability to detect them portably, sensitively, and rapidly is critical to reduce their spread. Although still considered a gold standard for detection of these viruses, real time polymerase chain reaction (PCR)-based technologies have limitations such as limited portability, need for extensive sample processing/extraction, and long time to result. In particular, the limitations related to the susceptibility of real time PCR methods to potential inhibitory substances present in food and environmental samples is a continuing challenge, as the need for extensive nucleic acid purification prior to their use compromises the portability and rapidity of such methods. Isothermal amplification methods have been the subject of much investigation for these viruses, as these techniques have been found to be comparable to or better than established PCR-based methods in portability, sensitivity, specificity, rapidity, and simplicity of sample processing. The purpose of this review is to survey and compare reports of these isothermal amplification methods developed for foodborne and enteric viruses, with a special focus on the performance of these methods in the presence of complex matrices.
Collapse
Affiliation(s)
- Cassandra Suther
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Sloane Stoufer
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
13
|
Hong L, Li J, Lv J, Chao S, Xu Y, Zou D, Du J, Lu B, Pang Z, Li W, Liu W, Ke Y, Hou S. Development and evaluation of a loop-mediated isothermal amplification assay for clinical diagnosis of respiratory human adenoviruses emergent in China. Diagn Microbiol Infect Dis 2021; 101:115401. [PMID: 34087512 DOI: 10.1016/j.diagmicrobio.2021.115401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
Three human adenovirus (HAdV) genotypes, HAdV-7, HAdV-14, and HAdV-55, emerged as the most prevalent variants in China over the past decade and caused both sporadic, fatal cases and frequent, large outbreaks. Early diagnosis is essential to control infections and endemics. Here, we established a loop-mediated isothermal amplification (LAMP) assay coupled with an instrument-free nucleic acid extraction device recently developed by our group; the assay could detect all the 3 prevalent HAdV genotypes. Specificity analysis showed no cross-reactivity with other common respiratory pathogens and the analytical sensitivity was as low as 10 copies/μL. All detection steps could be completed within 1 hour. The assay's performance was evaluated using clinical samples and compared with the gold standard RT-PCR method, showing highly consistent results. The LAMP assay developed here could be readily used in basic laboratory facilities and with minimal DNA extraction equipment, and as a reliable screening test in a resource-limited setting.
Collapse
Affiliation(s)
- Lei Hong
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, P. R. China; Department of Orthopedic Surgery, Fourth center of Chinese PLA General Hospital, Beijing, P. R. China
| | - Jingyuan Li
- Department of Orthopaedics, Air Force Clinical College(Air Force Medical Center) of Anhui Medical University, Beijing, P. R. China
| | - Junping Lv
- Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing, P. R. China
| | - Siqi Chao
- Center for Disease Prevention and Control of PLA, Beijing, P. R. China
| | - Yaqing Xu
- Center for Disease Prevention and Control of PLA, Beijing, P. R. China
| | - Dayang Zou
- Center for Disease Prevention and Control of PLA, Beijing, P. R. China
| | - Junjie Du
- Department of Orthopaedics, Air Force Clinical College(Air Force Medical Center) of Anhui Medical University, Beijing, P. R. China
| | - Binan Lu
- Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing, P. R. China
| | - Zongran Pang
- Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing, P. R. China
| | - Wenfeng Li
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, P. R. China; Department of Orthopedic Surgery, Fourth center of Chinese PLA General Hospital, Beijing, P. R. China
| | - Wei Liu
- Center for Disease Prevention and Control of PLA, Beijing, P. R. China.
| | - Yuehua Ke
- Center for Disease Prevention and Control of PLA, Beijing, P. R. China.
| | - Shuxun Hou
- Department of Orthopedic Surgery, Chinese PLA General Hospital, Beijing, P. R. China; Department of Orthopedic Surgery, Fourth center of Chinese PLA General Hospital, Beijing, P. R. China.
| |
Collapse
|
14
|
Reta DH, Tessema TS, Ashenef AS, Desta AF, Labisso WL, Gizaw ST, Abay SM, Melka DS, Reta FA. Molecular and Immunological Diagnostic Techniques of Medical Viruses. Int J Microbiol 2020; 2020:8832728. [PMID: 32908530 PMCID: PMC7474384 DOI: 10.1155/2020/8832728] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 08/15/2020] [Indexed: 01/12/2023] Open
Abstract
Viral infections are causing serious problems in human population worldwide. The recent outbreak of coronavirus disease 2019 caused by SARS-CoV-2 is a perfect example how viral infection could pose a great threat to global public health and economic sectors. Therefore, the first step in combating viral pathogens is to get a timely and accurate diagnosis. Early and accurate detection of the viral presence in patient sample is crucial for appropriate treatment, control, and prevention of epidemics. Here, we summarize some of the molecular and immunological diagnostic approaches available for the detection of viral infections of humans. Molecular diagnostic techniques provide rapid viral detection in patient sample. They are also relatively inexpensive and highly sensitive and specific diagnostic methods. Immunological-based techniques have been extensively utilized for the detection and epidemiological studies of human viral infections. They can detect antiviral antibodies or viral antigens in clinical samples. There are several commercially available molecular and immunological diagnostic kits that facilitate the use of these methods in the majority of clinical laboratories worldwide. In developing countries including Ethiopia where most of viral infections are endemic, exposure to improved or new methods is highly limited as these methods are very costly to use and also require technical skills. Since researchers and clinicians in all corners of the globe are working hard, it is hoped that in the near future, they will develop good quality tests that can be accessible in low-income countries.
Collapse
Affiliation(s)
- Daniel Hussien Reta
- School of Veterinary Medicine, Wollo University, Dessie, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | - Adey Feleke Desta
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wajana Lako Labisso
- Department of Pathology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Mequanente Abay
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Daniel Seifu Melka
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Fisseha Alemu Reta
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Jigjiga University, Jigjiga, Ethiopia
| |
Collapse
|
15
|
Abstract
Viruses, which are the most abundant biological entities on the planet, have been regarded as the "dark matter" of biology in the sense that despite their ubiquity and frequent presence in large numbers, their detection and analysis are not always straightforward. The majority of them are very small (falling under the limit of 0.5 μm), and collectively, they are extraordinarily diverse. In fact, the majority of the genetic diversity on the planet is found in the so-called virosphere, or the world of viruses. Furthermore, the most frequent viral agents of disease in humans display an RNA genome, and frequently evolve very fast, due to the fact that most of their polymerases are devoid of proofreading activity. Therefore, their detection, genetic characterization, and epidemiological surveillance are rather challenging. This review (part of the Curated Collection on Advances in Molecular Epidemiology of Infectious Diseases) describes many of the methods that, throughout the last few decades, have been used for viral detection and analysis. Despite the challenge of having to deal with high genetic diversity, the majority of these methods still depend on the amplification of viral genomic sequences, using sequence-specific or sequence-independent approaches, exploring thermal profiles or a single nucleic acid amplification temperature. Furthermore, viral populations, and especially those with RNA genomes, are not usually genetically uniform but encompass swarms of genetically related, though distinct, viral genomes known as viral quasispecies. Therefore, sequence analysis of viral amplicons needs to take this fact into consideration, as it constitutes a potential analytic problem. Possible technical approaches to deal with it are also described here. *This article is part of a curated collection.
Collapse
|
16
|
Wu T, Wu H, Zhao K, Hu C, Ge Y, Zhu X, Zhang X, Zhou M, Zhu F, Cui L. Rapid detection of human mastadenovirus species B by recombinase polymerase amplification assay. BMC Microbiol 2019; 19:8. [PMID: 30621594 PMCID: PMC6325725 DOI: 10.1186/s12866-018-1365-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/02/2018] [Indexed: 11/11/2022] Open
Abstract
Background As an important component of the causative agent of respiratory tract infections, enteric and eye infections, Human mastadenoviruses (HAdVs) species B spread easily in the crowd. In this study, we developed a recombinase polymerase amplification (RPA) assay for rapidly detecting HAdVs species B which was comprised of two different formats (real-time and lateral-flow device). Results This assay was confirmed to be able to detect 5 different HAdVs species B subtypes (HAdV-B3, HAdV-B7, HAdV-B11, HAdV-B14 and HAdV-B55) without cross-reactions with other subtypes and other respiratory tract pathogens. This RPA assay has not only highly sensitivity with low detection limit of 50 copies per reaction but also short reaction time (< 15 min per detection). Furthermore, the real-time RPA assay has excellent correlation with real-time PCR assay for detection of HAdVs species B presented in clinical samples. Conclusions Thus, the RPA assay developed in this study provides an effective and portable approach for the rapid detection of HAdVs species B.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Haizhen Wu
- Kunshan Municipal Center for Disease Control and Prevention, Kunshan, 215300, China
| | - Kangchen Zhao
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Chaoyou Hu
- Kunshan Municipal Center for Disease Control and Prevention, Kunshan, 215300, China
| | - Yiyue Ge
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Xiaojuan Zhu
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Xingchen Zhang
- Kunshan Municipal Center for Disease Control and Prevention, Kunshan, 215300, China
| | - Minghao Zhou
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Fengcai Zhu
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Lunbiao Cui
- Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health), Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China. .,Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, 210029, China. .,Jiangsu Provincial Center for Disease Prevention and Control, 172 JiangSu Road, Nanjing, 210009, China.
| |
Collapse
|
17
|
Abstract
Foodborne pathogens cause acute and chronic health outcomes of very different durations, severity and mortality, resulting in high costs and burdens to society. The issues of food safety and food poisoning are being increasingly emphasised, particularly in developed countries. Infection/contamination with many agents i.e., bacterial, parasitic and viral entities can result in foodborne illness. This article will focus mainly on viral agents of infection. A range of different viruses can cause food poisoning/foodborne infection, and infection can result in a myriad of symptoms, ranging from mild, acute disease to chronic, debilitating disease and even death. Due to the inherent differences between bacteria and viruses, namely the fact that viruses do not replicate in food, while bacteria do, viruses are frequently difficult to detect. This is compounded by the fact that many of the viruses associated with enteric disease do not replicate in cell culture. These factors can lead to a lag between reporting, detection and analysis of foodborne viruses versus bacterial agents. Despite these constraints, it is now evident that there are both well-established and emerging viruses implicated in foodborne infections, and the role of molecular detection and characterisation is becoming increasingly important.
Collapse
|
18
|
Wang R, Zhao R, Li Y, Kong W, Guo X, Yang Y, Wu F, Liu W, Song H, Hao R. Rapid detection of multiple respiratory viruses based on microfluidic isothermal amplification and a real-time colorimetric method. LAB ON A CHIP 2018; 18:3507-3515. [PMID: 30351335 DOI: 10.1039/c8lc00841h] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Respiratory viruses are major threats causing development of acute respiratory tract infections, which are common causes of illness and death throughout the world. Here, an integrated microsystem based on real-time colorimetry was developed for diagnosing multiple respiratory viruses. The microsystem employed magnetic beads for nucleic acid extraction and an eight-channel microfluidic array chip integrated with a loop-mediated isothermal amplification system for point-of-care screening of respiratory viruses. The overall detection process (including sample collection, nucleic acid extraction, sample loading, real-time detection, and signal output) could be completed within 1 h. Our results show that the developed method could specifically recognize influenza A virus subtypes (H1N1, H3N2, H5N1, and H7N9), influenza B virus, and human adenoviruses. The results obtained with 109 clinical samples indicate that the developed method has high specificity (100%, confidence interval 94.9-100.0) and sensitivity (96%, confidence interval 78.1-99.9). The integration of magnetic bead-based pre-treatment techniques and microfluidic isothermal amplification provides an effective solution for rapidly detecting etiological agents of respiratory diseases. The strategy of using a closed chip system and real-time colorimetry reduced aerosol contamination and ensured the accuracy of the results. The developed method provides an effective alternative for rapid point-of-care screening for viruses that cause respiratory disease syndromes and further aids in accurate and timely detection to control and prevent the spread of respiratory diseases caused by such pathogens.
Collapse
Affiliation(s)
- Ruili Wang
- Institute of Disease Control and Prevention, PLA, Beijing 100071, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wong YP, Othman S, Lau YL, Radu S, Chee HY. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J Appl Microbiol 2018; 124:626-643. [PMID: 29165905 PMCID: PMC7167136 DOI: 10.1111/jam.13647] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
Loop‐mediated isothermal amplification (LAMP) amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions by using a DNA polymerase with high displacement strand activity and a set of specifically designed primers to amplify targeted DNA strands. Following its first discovery by Notomi et al. (2000Nucleic Acids Res 28: E63), LAMP was further developed over the years which involved the combination of this technique with other molecular approaches, such as reverse transcription and multiplex amplification for the detection of infectious diseases caused by micro‐organisms in humans, livestock and plants. In this review, available types of LAMP techniques will be discussed together with their applications in detection of various micro‐organisms. Up to date, there are varieties of LAMP detection methods available including colorimetric and fluorescent detection, real‐time monitoring using turbidity metre and detection using lateral flow device which will also be highlighted in this review. Apart from that, commercialization of LAMP technique had also been reported such as lyophilized form of LAMP reagents kit and LAMP primer sets for detection of pathogenic micro‐organisms. On top of that, advantages and limitations of this molecular detection method are also described together with its future potential as a diagnostic method for infectious disease.
Collapse
Affiliation(s)
- Y-P Wong
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - S Othman
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Y-L Lau
- Department of Parasitology, Faculty of Medicine, Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - S Radu
- Centre of Excellence for Food Safety Research (FOSREC), Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - H-Y Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
20
|
Iaconelli M, Valdazo-González B, Equestre M, Ciccaglione AR, Marcantonio C, Della Libera S, La Rosa G. Molecular characterization of human adenoviruses in urban wastewaters using next generation and Sanger sequencing. WATER RESEARCH 2017; 121:240-247. [PMID: 28550812 DOI: 10.1016/j.watres.2017.05.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 05/18/2023]
Abstract
Human adenoviruses (HAdVs) are of major public health importance and are associated with a variety of clinical manifestations, including gastroenteritis, respiratory, ocular and urinary tract infections. To study the occurrence, prevalence and diversity of HAdV species and types circulating in Italy, we conducted a large-scale molecular-epidemiological investigation, a yearlong monitoring of 22 wastewater treatment plants, covering 10 Italian regions, representative of northern, central, and southern Italy. A total of 141 raw sewage samples were collected from January to December 2013, and processed to detect and characterize by phylogenetic analysis a fragment of the hexon coding region of HAdVs. Nested PCR results showed the presence of HAdVs in 85 out of 141 samples (60% of samples). Fifty-nine samples were characterized by conventional Sanger sequencing as belonging to four HAdV species and four types: A (type 12, 5 samples), B (type 3, 8 samples), C (type 5, 1 sample) and F (type 41, 45 samples). The remaining 26 samples could not be characterized because of uninterpretable (mixed) electropherograms suggesting the presence of multiple species and/or types. Pools of characterized and uncharacterized PCR amplicons were further analyzed by next-generation sequencing (NGS). NGS results revealed a marked HAdV diversity with 16 additional types detected beyond the four types found by Sanger sequencing. Overall, 19 types were identified, belonging to HAdV species A-F: types 12 and 31 (species A), type 3 (species B), types 1, 2, and 5 (species C), types 9, 17, 24, 26, 37, 38, 42, 44, 48, and 70 (species D), type 4 (species E), and types 40 and 41(species F). An untypeable HAdV was also detected, showing similar percentages of identity with more than one prototype (types 15, 30, 56, and 59). Our findings documented the circulation of a wide variety of species and types in raw sewage, potentially able to affect other surface water environments and hence human health. Next-generation sequencing proved to be an effective strategy for HAdV genotyping in wastewater samples. It was able to detect a wide range of "less prevalent" types unidentified by conventional Sanger sequencing, confirming that studies based on conventional technologies may grossly underestimate the existence of some, possibly less common, types. Knowledge of the distribution of HAdV species and types would improve our understanding of waterborne HAdV-related health risks.
Collapse
Affiliation(s)
- M Iaconelli
- Istituto Superiore di Sanità, Department of Environment and Health, Rome, Italy
| | - B Valdazo-González
- The National Institute for Biological Standards and Control, Potters Bar, United Kingdom
| | - M Equestre
- Istituto Superiore di Sanità, Department of Cell Biology and Neurosciences, Rome, Italy
| | - A R Ciccaglione
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immune-Mediated Diseases, Rome, Italy
| | - C Marcantonio
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immune-Mediated Diseases, Rome, Italy
| | - S Della Libera
- Istituto Superiore di Sanità, Department of Environment and Health, Rome, Italy
| | - G La Rosa
- Istituto Superiore di Sanità, Department of Environment and Health, Rome, Italy.
| |
Collapse
|