1
|
Sellers SC, Gosnell E, Bryant D, Belmonte S, Self S, McCarter MSJ, Kennedy K, Norman RS. Building-level wastewater surveillance of SARS-CoV-2 is associated with transmission and variant trends in a university setting. ENVIRONMENTAL RESEARCH 2022; 215:114277. [PMID: 36084672 PMCID: PMC9448636 DOI: 10.1016/j.envres.2022.114277] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 05/31/2023]
Abstract
The University of South Carolina (UofSC) was among the first universities to include building-level wastewater surveillance of SARS-CoV-2 to complement clinical testing during its reopening in the Fall 2020 semester. In the Spring 2021 semester, 24h composite wastewater samples were collected twice per week from 10 residence halls and the on-campus student isolation and quarantine building. The isolation and quarantine building served as a positive control site. The wastewater was analyzed using RT-ddPCR for the quantification of nucleocapsid genes (N1 and N2) to identify viral transmission trends within residence halls. Log10 SARS-CoV-2 RNA concentrations were compared to both new clinical cases identified in the days following wastewater collection and recovered cases returning to sites during the days preceding sample collection to test temporal and spatial associations. There was a statistically significant positive relationship between the number of cases reported from the sites during the seven-day period following wastewater sampling and the log10 viral RNA copies/L (overall IRR 1.08 (1.02, 1.16) p-value 0.0126). Additionally, a statistically significant positive relationship was identified between the number of cases returning to the residence halls after completing isolation during the seven-day period preceding wastewater sampling and the log10 viral RNA copies/L (overall 1.09 (1.01, 1.17) p-value 0.0222). The statistical significance of both identified cases and recovered return cases on log10 viral RNA copies/L in wastewater indicates the importance of including both types of clinical data in wastewater-based epidemiology (WBE) research. Genetic mutations associated with variants of concern (VOCs) were also monitored. The emergence of the Alpha variant on campus was identified, which contributed to the second wave of COVID-19 cases at UofSC. The study was able to identify sub-community transmission hotspots for targeted intervention in real-time, making WBE cost-effective and creating less of a burden on the general public compared to repeated individual testing methods.
Collapse
Affiliation(s)
- Sarah C Sellers
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC, USA
| | - Emily Gosnell
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC, USA
| | - Dillon Bryant
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC, USA
| | - Stefano Belmonte
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC, USA
| | - Stella Self
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Green Street, Columbia, SC, USA
| | - Maggie S J McCarter
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Green Street, Columbia, SC, USA
| | - Kirsten Kennedy
- Student Housing and Sustainability, Division of Student Affairs and Academic Support, University of South Carolina, 1520 Devine Street, Columbia, SC, USA
| | - R Sean Norman
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Suite 401, Columbia, SC, USA.
| |
Collapse
|
2
|
Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, Larsen DA. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2022; 192:305-322. [PMID: 36227259 PMCID: PMC9620728 DOI: 10.1093/aje/kwac175] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023] Open
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to be a valuable source of information regarding SARS-CoV-2 transmission and coronavirus disease 2019 (COVID-19) cases. Although the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens that have been surveilled through wastewater. Herein we identify the infectious diseases that have been previously studied via wastewater surveillance prior to the COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of wastewater surveillance across 38 countries, as were themes of how wastewater surveillance and other measures of disease transmission were linked. Twenty-five separate pathogen families were identified in the included studies, with the majority of studies examining pathogens from the family Picornaviridae, including polio and nonpolio enteroviruses. Most studies of wastewater surveillance did not link what was found in the wastewater to other measures of disease transmission. Among those studies that did, the value reported varied by study. Wastewater surveillance should be considered as a potential public health tool for many infectious diseases. Wastewater surveillance studies can be improved by incorporating other measures of disease transmission at the population-level including disease incidence and hospitalizations.
Collapse
Affiliation(s)
- Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, United States
| | - Dustin Hill
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Kathryn Anderson
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Mary B Collins
- Department of Environmental Studies, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Hyatt Green
- Department of Environmental Biology, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Brittany L Kmush
- Department of Public Health, Syracuse University, Syracuse, New York, United States
| | - David A Larsen
- Correspondence to Dr. Dave Larsen, Department of Public Health, Syracuse University, 430C White Hall, Syracuse, NY 13244 ()
| |
Collapse
|
3
|
Environmental Monitoring for Enteroviruses in Maputo, Mozambique—2018. Pathogens 2022; 11:pathogens11050527. [PMID: 35631048 PMCID: PMC9147478 DOI: 10.3390/pathogens11050527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Due to the possibility of wild poliovirus importation from endemic regions and the high circulation of vaccine-derived poliovirus type 2 in the African region, Mozambique implemented a surveillance program to monitor the circulation of enteroviruses in the environment. From January to November 2018, a period that immediately preceded the cVDPV outbreak in Africa, 63 wastewater samples were collected from different areas in Maputo city. A total of 25 samples (39.7%) were positive based on cell culture isolation. Non-polio enteroviruses were found in 24 samples (24/25; 96%), whereas 1 Sabin-related poliovirus was isolated. Neither wild nor vaccine-derived poliovirus was detected. High circulation of EVB species was detected. Environmental surveillance in the One Health approach, if effectively applied as support to acute flaccid paralysis, can be a powerful aid to the public health system to monitor poliovirus besides non-polio enteroviruses in polio-free areas.
Collapse
|
4
|
Chacón L, Morales E, Valiente C, Reyes L, Barrantes K. Wastewater-Based Epidemiology of Enteric Viruses and Surveillance of Acute Gastrointestinal Illness Outbreaks in a Resource-Limited Region. Am J Trop Med Hyg 2021; 105:1004-1012. [PMID: 34339385 PMCID: PMC8592140 DOI: 10.4269/ajtmh.21-0050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022] Open
Abstract
Acute gastrointestinal illness (AGI) continues to be an important cause of morbidity and mortality among all ages. This study applied the principles of wastewater-based epidemiology for the preventive identification of potential outbreaks of acute viral gastroenteritis and hepatitis A by analyzing the presence of human enteric viruses in influents of small municipal wastewater treatment plants (WWTPs) handling domestic sewage, together with public health reports of acute diarrheal and hepatitis A disease in Costa Rica during 2013. Raw wastewater samples were collected during four seasonal periods with different rainfall levels. The presence of five human enteric viruses (rotavirus A, norovirus GI, norovirus GII, enterovirus, and hepatitis A virus) was studied by endpoint and real-time polymerase chain reaction in influents of five WWTPs. Cases of AGI were analyzed using historical public health reports of endemic levels and quartile ranges for each administrative and territorial area where the WWTPs are located and for its surrounding counties. A tendency for a higher rate of positive viral tests was present 1 week before an increase of AGI cases. Epidemiological weeks categorized as Outbreak (above the 75th percentile) and Success (below the 25th percentile) showed statistically significant differences in terms of positive viral test rates (Wilcoxon test, P = 0.05). Virological monitoring of wastewater in small WWTPs is an appropriate model for epidemiological surveillance of diarrheal and hepatitis A diseases in low- and middle-resource countries.
Collapse
Affiliation(s)
- Luz Chacón
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Eric Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Carmen Valiente
- Laboratorio Nacional de Aguas (LNA), Instituto Costarricense de Acueductos y Alcantarillados, San José, Costa Rica
| | - Liliana Reyes
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| | - Kenia Barrantes
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
5
|
Rojas-Bonilla M, Coulliette-Salmond A, Belgasmi H, Wong K, Sayyad L, Vega E, Grimoldi F, Oberste MS, Rüttimann R. Environmental Surveillance for Risk Assessment in the Context of a Phase 2 Clinical Trial of Type 2 Novel Oral Polio Vaccine in Panama. Viruses 2021; 13:v13071355. [PMID: 34372561 PMCID: PMC8310065 DOI: 10.3390/v13071355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/12/2023] Open
Abstract
Environmental surveillance was recommended for risk mitigation in a novel oral polio vaccine-2 (nOPV2) clinical trial (M5-ABMG) to monitor excretion, potential circulation, and loss of attenuation of the two nOPV2 candidates. The nOPV2 candidates were developed to address the risk of poliovirus (PV) type 2 circulating vaccine-derived poliovirus (cVDPV) as part of the global eradication strategy. Between November 2018 and January 2020, an environmental surveillance study for the clinical trial was conducted in parallel to the M5-ABMG clinical trial at five locations in Panama. The collection sites were located upstream from local treatment plant inlets, to capture the excreta from trial participants and their community. Laboratory analyses of 49 environmental samples were conducted using the two-phase separation method. Novel OPV2 strains were not detected in sewage samples collected during the study period. However, six samples were positive for Sabin-like type 3 PV, two samples were positive for Sabin-like type 1 PV, and non-polio enteroviruses NPEVs were detected in 27 samples. One of the nOPV2 candidates has been granted Emergency Use Listing by the World Health Organization and initial use started in March 2021. This environmental surveillance study provided valuable risk mitigation information to support the Emergency Use Listing application.
Collapse
Affiliation(s)
- Magda Rojas-Bonilla
- Hospital de Especialidades Pediátricas, Servicio de Infectología Pediátrica, Panama City, Panama;
| | - Angela Coulliette-Salmond
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30329, USA; (E.V.); (M.S.O.)
- United States Public Health Service, Rockville, MD 20852, USA
- Correspondence:
| | - Hanen Belgasmi
- IHRC, Inc., Atlanta, GA 30303, USA; Contracting Agency to the Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA; (H.B.); (K.W.)
| | - Kimberly Wong
- IHRC, Inc., Atlanta, GA 30303, USA; Contracting Agency to the Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA; (H.B.); (K.W.)
- Cherokee Nation Assurance, Tulsa, OK 74116, USA; Contracting Agency to the Division of Viral Diseases, Centers for Diseases Control, and Prevention, Atlanta, GA 30329, USA;
| | - Leanna Sayyad
- Cherokee Nation Assurance, Tulsa, OK 74116, USA; Contracting Agency to the Division of Viral Diseases, Centers for Diseases Control, and Prevention, Atlanta, GA 30329, USA;
| | - Everardo Vega
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30329, USA; (E.V.); (M.S.O.)
| | - Fabian Grimoldi
- DVM, Quality Assurance Manager, VacciNet, Panama City, Panama;
| | - M. Steven Oberste
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30329, USA; (E.V.); (M.S.O.)
| | - Ricardo Rüttimann
- Fighting Infectious Diseases in Emerging Countries, Miami, FL 33145, USA;
| |
Collapse
|
6
|
Alfaro-Murillo JA, Ávila-Agüero ML, Fitzpatrick MC, Crystal CJ, Falleiros-Arlant LH, Galvani AP. The case for replacing live oral polio vaccine with inactivated vaccine in the Americas. Lancet 2020; 395:1163-1166. [PMID: 32247397 PMCID: PMC8572547 DOI: 10.1016/s0140-6736(20)30213-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 01/24/2020] [Indexed: 11/21/2022]
Affiliation(s)
- Jorge A Alfaro-Murillo
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | - Marí L Ávila-Agüero
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA; Paediatric Infectious Diseases Department, Hospital Nacional de Niños "Dr Carlos Sáenz Herrera", San José, Costa Rica.
| | - Meagan C Fitzpatrick
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Caroline J Crystal
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA
| | | | - Alison P Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
7
|
Aggarwal A, Bhalla M, Fatima KH. Detection of New Delhi metallo-beta-lactamase enzyme gene bla NDM-1 associated with the Int-1 gene in Gram-negative bacteria collected from the effluent treatment plant of a tuberculosis care hospital in Delhi, India. Access Microbiol 2020; 2:acmi000125. [PMID: 32974589 PMCID: PMC7494198 DOI: 10.1099/acmi.0.000125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/05/2020] [Indexed: 12/23/2022] Open
Abstract
Background Organisms possessing the blaNDM-1 gene (responsible for carbapenem resistance) with a class-1 integron can acquire many other antibiotic resistance genes from the community sewage pool and become multidrug-resistant superbugs. In this regard, hospital sewage, which contains a large quantity of residual antibiotics, metals and disinfectants, is being recognized as a significant cause of antimicrobial resistance (AMR) origination and spread across the major centres of the world and is thus routinely investigated as a marker for tracing the origin of drug resistance. Therefore, in this study, an attempt has been made to identify and characterize the carbapenem-resistant microbes associated with integron genes amongst the organisms isolated from the effluent treatment plant (ETP) installed in a tertiary respiratory care hospital in Delhi, India. Methods One hundred and thirty-eight organisms belonging to Escherichia, Klebsiella, Pseudomonas and Acinetobacter spp. were collected from the incoming and outgoing sewage lines of the ETP. Carbapenem sensitivity and characterization was performed by the imipenem and imipenem-EDTA disc diffusion method. Later DNA extraction and PCR steps were performed for the Int-1 and blaNDM-1 genes. Results Of the 138 organisms, 86 (62.3 %) were imipenem-resistant (P<0.05). One hundred and twenty-four (89.9 %) organisms had one or both of the genes. Overall, the blaNDM-1 gene (genotypic resistance) was present in 71 % (98/138) of organisms. 53.6 % (74/138) organisms were double gene-positive (blaNDM-1 + Int-1), of which 40 were producing the metallo-beta-lactamase enzyme, making up almost 28.9 % (40/138) of the collected organisms. Conclusion The current study strengthens the hypothesis that Carbapenem resistant organisms are in a high-circulation burden through the human gut and hospital ETPs are providing an environment for resistance origination and amplification.
Collapse
Affiliation(s)
- Amit Aggarwal
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Delhi, India
| | - Manpreet Bhalla
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Delhi, India
| | - Khan Hena Fatima
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Diseases, Delhi, India
| |
Collapse
|
8
|
González MM, Fonseca MC, Rodríguez CA, Giraldo AM, Vila JJ, Castaño JC, Padilla L, Sarmiento L. Environmental Surveillance of Polioviruses in Armenia, Colombia before Trivalent Oral Polio Vaccine Cessation. Viruses 2019; 11:E775. [PMID: 31450757 PMCID: PMC6783851 DOI: 10.3390/v11090775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 11/16/2022] Open
Abstract
Although acute flaccid paralysis (AFP) surveillance is the "gold standard" for detecting cases of polio, environmental surveillance can provide supplementary information in the absence of paralytic poliomyelitis cases. This study aimed to detect the introduction and/or circulation of wild poliovirus or vaccine-derived polioviruses (VDPV) in wastewater, covering a significant population of Armenia, Colombia, before trivalent oral polio vaccine (OPV) cessation. Between March and September 2015, 24 wastewater samples were collected from eight study sites in eight communes of Armenia, Colombia. Virus detection and characterization were performed using both cell culture (i.e., RD or L20B cells) and RT-PCR. Polioviruses were isolated in 11 (45.8%) of 24 wastewater samples. All isolates were identified as Sabin strains (type 1 = 9, type 3 = 2) by intratypic differentiation. Type 2 poliovirus was not detected in any of the samples. No wild poliovirus or VDPV was detected among the isolates. Non-polio enterovirus was identified in 8.3% (2/24) of the samples. This study revealed the excretion of Sabin poliovirus from OPV-immunized individuals, as well as the absence of VDPV and wild poliovirus in wastewaters of Armenia, Colombia. This confirms that environmental surveillance is an effective method, as an additional support to AFP surveillance, to monitor poliovirus during the OPV-to-IPV (inactivated polio vaccine) transition period.
Collapse
Affiliation(s)
- María Mercedes González
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia.
| | - Magile C Fonseca
- Enterovirus Laboratory, Department of Virology, Pedro Kourí Institute of Tropical Medicine, Havana 11400, Cuba
| | - Carlos Andrés Rodríguez
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia
| | - Alejandra María Giraldo
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia
| | - José Joaquín Vila
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia
| | - Jhon Carlos Castaño
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia
| | - Leonardo Padilla
- Center of Biomedical Research, Faculty of Health Sciences, Universidad del Quindío, Armenia 630003, Colombia
| | - Luis Sarmiento
- Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmo 21428, Sweden.
| |
Collapse
|
9
|
Sadeuh-Mba SA, Kavunga-Membo H, Joffret ML, Yogolelo R, Endegue-Zanga MC, Bessaud M, Njouom R, Muyembe-Tamfu JJ, Delpeyroux F. Genetic landscape and macro-evolution of co-circulating Coxsackieviruses A and Vaccine-derived Polioviruses in the Democratic Republic of Congo, 2008-2013. PLoS Negl Trop Dis 2019; 13:e0007335. [PMID: 31002713 PMCID: PMC6505894 DOI: 10.1371/journal.pntd.0007335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/06/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Enteroviruses (EVs) are among the most common viruses infecting humans worldwide
but only a few Non-Polio Enterovirus (NPEV) isolates have been characterized in
the Democratic Republic of Congo (DR Congo). Moreover, circulating
vaccine-derived polioviruses (PVs) [cVDPVs] isolated during multiple outbreaks
in DR Congo from 2004 to 2018 have been characterized so far only by the
sequences of their VP1 capsid coding gene. This study was carried to i)
investigate the circulation and genetic diversity of NPEV and polio vaccine
isolates recovered from healthy children and Acute Flaccid Paralysis (AFP)
patients, ii) evaluate the occurrence of genetic recombination among EVs
belonging to the Enterovirus C species (including PVs) and iii)
identify the virological factors favoring multiple emergences of cVDPVs in DR
Congo. The biological material considered in this study included i) a collection
of 91 Sabin-like PVs, 54 cVDPVs and 150 NPEVs isolated from AFP patients between
2008 and 2012 in DR Congo and iii) a collection of 330 stool specimens collected
from healthy children in 2013 in the Kasai Oriental and Maniema provinces of DR
Congo. Studied virus isolates were sequenced in four distinct sub-genomic
regions 5’-UTR, VP1, 2CATPase and 3Dpol. Resulting
sequences were compared through comparative phylogenetic analyses. Virus
isolation showed that 19.1% (63/330) healthy children were infected by EVs
including 17.9% (59/330) of NPEVs and 1.2% (4/330) of type 3 Sabin-like PVs.
Only one EV-C type, EV-C99 was identified among the NPEV collection from AFP
patients whereas 27.5% of the 69 NPEV isolates typed in healthy children
belonged to the EV-C species: CV-A13 (13/69), A20 (5/69) and A17 (1/69).
Interestingly, 50 of the 54 cVDPVs featured recombinant genomes containing
exogenous sequences in at least one of the targeted non-structural regions of
their genomes: 5’UTR, 2CATPase and 3Dpol. Some of these
non-vaccine sequences of the recombinant cVDPVs were strikingly related to
homologous sequences from co-circulating CV-A17 and A20 in the
2CATPase region as well as to those from co-circulating CV-A13,
A17 and A20 in the 3Dpol region. This study provided the first
evidence uncovering CV-A20 strains as major recombination partners of PVs. High
quality AFP surveillance, sensitive environmental surveillance and efficient
vaccination activities remain essential to ensure timely detection and efficient
response to recombinant cVDPVs outbreaks in DR Congo. Such needs are valid for
any epidemiological setting where high frequency and genetic diversity of
Coxsackieviruses A13, A17 and A20 provide a conducive viral ecosystem for the
emergence of virulent recombinant cVDPVs. The strategy of the Global Polio Eradication Initiative is based on the
surveillance of patients suffering from Acute Flaccid Paralysis (AFP) and mass
vaccination with live-attenuated vaccine strains of polioviruses (PVs) in
endemic areas. However, vaccine strains of PVs can circulate and replicate for a
long time when the vaccine coverage of the population is low. Such prolonged
circulation and replication of vaccine strains of PVs can result to the
emergence of circulating vaccine-derived polioviruses [cVDPVs] that are as
virulent as wild PVs. In this study, we performed the molecular characterization
of a large collection of 377 virus isolates recovered from paralyzed patients
between 2008 and 2012 in DR Congo and healthy children in 2013 in the Kasai
Oriental and Maniema provinces of DR Congo. We found that the genetic diversity
of enteroviruses of the species Enterovirus C is more important
than previously reported. Interestingly, 50 of the 54 cVDPVs featured
recombinant genomes containing exogenous sequences of the 2C ATPase and/or 3D
polymerase coding genes acquired from co-circulating Coxsackieviruses A13, A17
and A20. Coxsackieviruses A20 strains were identified for the first time as
major partners of genetic recombination with co-circulating live-attenuated
polio vaccine strains. Our findings highlight the need to reinforce and maintain high quality
surveillance of PVs and efficient immunization activities in order to ensure
early detection and control of emerging cVDPVs in all settings where high
frequency and diversity of Coxsackieviruses A13, A17 and A20 have been
documented.
Collapse
Affiliation(s)
- Serge Alain Sadeuh-Mba
- Virology Service, Centre Pasteur of Cameroon, Yaounde, Centre region,
Cameroon
- * E-mail: ,
| | - Hugo Kavunga-Membo
- Virology Department, Institut National de Recherche Biomédicale,
Kinshasa, Democratic Republic of Congo
| | - Marie-Line Joffret
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| | - Riziki Yogolelo
- Virology Department, Institut National de Recherche Biomédicale,
Kinshasa, Democratic Republic of Congo
| | | | - Maël Bessaud
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| | - Richard Njouom
- Virology Service, Centre Pasteur of Cameroon, Yaounde, Centre region,
Cameroon
| | | | - Francis Delpeyroux
- Biology of Enteric Viruses Unit, Institut Pasteur, Paris,
France
- INSERM U994 Unit, INSERM, Paris, France
| |
Collapse
|
10
|
Werneck LMC, Baptista ML, Miagostovich MP, da Silva EE. Dissemination of enteroviruses in the production chain of organic lettuce in Rio de Janeiro, Brazil. Microbiologyopen 2019; 8:e00653. [PMID: 30112824 PMCID: PMC6436427 DOI: 10.1002/mbo3.653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 11/29/2022] Open
Abstract
This study aimed to survey the environmental dissemination of enterovirus (EV) in a site of organic lettuce situated in the mountainous region of the state of Rio de Janeiro, Brazil. For this purpose, a total of 96 environmental samples, including water and lettuce samples obtained in different stages of the production chain (e.g., irrigation water, seedlings, lettuces grown, and washed lettuces ready-to-eat), were analyzed. EV genomes were detected in 12.5% (12/96) of the tested samples (eight from irrigation water and 4 from lettuce samples). Levels of viral concentration ranged from 3.37 × 103 to 4.72 × 106 genomic copies per liter (gc L-1 ) and from 2.14 × 104 to 5.56 × 104 genome copies per 25 grams (gc 25 g-1 ) for the water and lettuce samples, respectively. Such findings suggest that the use of viruses as human fecal contamination markers must be considered in order to improve food safety in organic supply chains.
Collapse
Affiliation(s)
- Lucia M. C. Werneck
- Oswaldo Cruz Foundation (Fiocruz) ‐ National Institute of Quality Control in Health (INCQS)Rio de JaneiroBrazil
| | | | | | | |
Collapse
|
11
|
Lizasoain A, Burlandy FM, Victoria M, Tort LFL, da Silva EE, Colina R. An Environmental Surveillance in Uruguay Reveals the Presence of Highly Divergent Types of Human Enterovirus Species C and a High Frequency of Species A and B Types. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:343-352. [PMID: 29907902 DOI: 10.1007/s12560-018-9351-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Information about Human Enterovirus circulation in Uruguay is scarce. The aim of this study was to generate the first description about their circulation in the country through the study of sewage samples collected before and after the switch from Oral Poliovirus Vaccine to Inactivated Poliovirus Vaccine. Viruses were concentrated by an adsorption-elution to a negatively charged membrane, and real-time quantitative PCR and qualitative PCR methods were used to detect, quantify, and characterize enteroviruses. Positive samples were inoculated in RD cells and two passages were performed. Additionally, RD+ samples were subsequently passed onto L20B cells. Human Enteroviruses were detected in 67.6% of the samples, with concentrations between 4.9 and 6.6 Log10 genomic copies per liter. 10% of positive samples replicated in RD cells, of which none in L20B cells. Molecular characterization of Human Enterovirus strains directly detected from sewage sample concentrates allowed the identification of highly divergent members of species C such as Enterovirus C99 and Coxsackievirus A13, as well as the frequent detection of species A and B members (particularly Coxsackievirus A16 and Echovirus 6, respectively). Other detected types were Coxsackievirus A2, A22, B1, B5, Echovirus 5, and 9. The characterization of viruses isolated in cell culture revealed the presence of Echovirus 6 and Coxsackievirus B3. Despite the absence of poliovirus, a wide circulation of different enterovirus types was evidenced in Uruguayan sewage samples, highlighting that the local populations are exposed to different kinds of diseases originated by several human enterovirus.
Collapse
Affiliation(s)
- Andrés Lizasoain
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Fernanda M Burlandy
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avda. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Matías Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Luis F López Tort
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay
| | - Edson E da Silva
- Laboratório de Enterovírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avda. Brasil 4365, Rio de Janeiro, 21040-360, Brazil
| | - Rodney Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Gral. Rivera 1350, 50000, Salto, Uruguay.
| |
Collapse
|
12
|
Duintjer Tebbens RJ, Zimmermann M, Pallansch M, Thompson KM. Insights from a Systematic Search for Information on Designs, Costs, and Effectiveness of Poliovirus Environmental Surveillance Systems. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:361-382. [PMID: 28687986 PMCID: PMC7879701 DOI: 10.1007/s12560-017-9314-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/30/2017] [Indexed: 05/20/2023]
Abstract
Poliovirus surveillance plays a critical role in achieving and certifying eradication and will play a key role in the polio endgame. Environmental surveillance can provide an opportunity to detect circulating polioviruses prior to the observation of any acute flaccid paralysis cases. We completed a systematic review of peer-reviewed publications on environmental surveillance for polio including the search terms "environmental surveillance" or "sewage," and "polio," "poliovirus," or "poliomyelitis," and compared characteristics of the resulting studies. The review included 146 studies representing 101 environmental surveillance activities from 48 countries published between 1975 and 2016. Studies reported taking samples from sewage treatment facilities, surface waters, and various other environmental sources, although they generally did not present sufficient details to thoroughly evaluate the sewage systems and catchment areas. When reported, catchment areas varied from 50 to over 7.3 million people (median of 500,000 for the 25% of activities that reported catchment areas, notably with 60% of the studies not reporting this information and 16% reporting insufficient information to estimate the catchment area population size). While numerous studies reported the ability of environmental surveillance to detect polioviruses in the absence of clinical cases, the review revealed very limited information about the costs and limited information to support quantitative population effectiveness of conducting environmental surveillance. This review motivates future studies to better characterize poliovirus environmental surveillance systems and the potential value of information that they may provide in the polio endgame.
Collapse
Affiliation(s)
| | - Marita Zimmermann
- Kid Risk, Inc., 10524 Moss Park Rd., Ste. 204-364, Orlando, FL 32832
- Correspondence to: Radboud J. Duintjer Tebbens, Kid Risk, Inc., 10524 Moss Park Rd., Ste. 204-364, Orlando, FL 32832, USA,
| | - Mark Pallansch
- Centers for Disease Control and Prevention, Division of Viral Diseases, Atlanta, GA 30333
| | | |
Collapse
|
13
|
Kaundal N, Sarkate P, Prakash C, Rishi N. Comparison of ELISA and dual stage real time RT-PCR to differentiate Sabin like and non-Sabin like poliovirus isolates. Virusdisease 2017; 28:141-145. [PMID: 28770239 PMCID: PMC5510635 DOI: 10.1007/s13337-017-0378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/20/2017] [Indexed: 10/19/2022] Open
Abstract
Environmental surveillance of polioviruses has been used as an important tool in monitoring circulation of wild polioviruses and/or Vaccine derived polioviruses in sewage samples. It is important to distinguish Sabin like isolates from non-Sabin like; ELISA & dual stage real time RT-PCR have been used for the same. Current study was carried out on sewage isolates to compare ELISA & RT-PCR with sequencing to distinguish Sabin like from non-Sabin like. Out of 468 sewage specimens, 91 (19.44%) were non-polio enteroviruses positive and 377 (80.56%) were polio positive by virus isolation method. A total of 488 polio virus isolates were detected by L20B and RD route which were further subjected to ELISA and RT-PCR. The results were compared with sequencing. On comparison, the specificity of ELISA was only 66.67% in spite of very low sensitivity (3.43%). The sensitivity of RT-PCR was 97.71% which makes it a good primary screening test for detection of non-Sabin like viruses. However, the specificity was only 33.33%. RT-PCR appears to be a sensitive tool for detecting non-Sabin like viruses however; the isolates which are non-Sabin like by RT-PCR may not necessarily be mutated viruses. ELISA cannot be used for differentiation of Sabin likes from non-Sabin likes due to low sensitivity.
Collapse
Affiliation(s)
- Nirmal Kaundal
- Virology-1 Laboratory, Microbiology Division, National Centre for Disease Control, 22-Shamnath Marg, Delhi, 110054 India
| | - Purva Sarkate
- Microbiology Division, National Centre for Disease Control, 22-Shamnath Marg, Delhi, 110054 India
| | - Charu Prakash
- Microbiology Division, National Centre for Disease Control, 22-Shamnath Marg, Delhi, 110054 India
| | - Narayan Rishi
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector 125, Distt. Gautam BudhaNagar, Noida, Uttar Pradesh 201313 India
| |
Collapse
|
14
|
Kumthip K, Khamrin P, Maneekarn N. Detection of poliovirus infection in children with acute gastroenteritis in Chiang Mai, Thailand. J Med Virol 2016; 89:775-781. [DOI: 10.1002/jmv.24694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|