1
|
Kanehira C, Yamamoto M, Hirouchi H, Ishizuka S, Sakiyama K, Higa K, Murakami G, Abe S. Tendinous annulus of Zinn for a common origin of the extraocular rectus muscles: a histological study of the orbital apex from donated elderly cadavers. Anat Sci Int 2022; 97:369-379. [PMID: 35157253 DOI: 10.1007/s12565-022-00649-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
The medial, inferior, lateral, and superior rectus muscles (MR, IR, LR, SR), levator palpebrae superioris (LPS), and superior oblique muscle (SO) seem to originate from the tendinous annulus of Zinn, ring-like fibrous tissue crossing the bony orbital fissure. We observed the histological annulus structure using semi-serial histological sections of the orbital apex from 30 elderly donated cadavers. Nearly frontal sections demonstrated a ring-like fibrous structure (a candidate annulus) connecting or embedding four rectus muscles. The candidate annulus did not contain the LPS and SO, and, in the anterior side, the latter muscles originated from the optic canal opening. Far posterior to the annulus, there was a common tendon of the MR, IR, and LR attached to the infero-medial wall of the bony orbital fissure. At the superior part, the annulus is tightly attached to the optic nerve sheath and the periosteum. Sagittal (or Horizontal) sections clearly exhibited parts of the annulus at the MR (SR) origin. Both sagittal and horizontal sections displayed (1) the common origin of the three rectus muscles near the oculomotor nerve in the bony fissure and (2) an accessory, independent muscle bundle of the MR originating from the superomedial margin of the optic canal near the origins of the LPS or SO. Consequently, the so-called tendinous annulus appeared not to provide origins of all six muscles.
Collapse
Affiliation(s)
| | | | | | | | - Koji Sakiyama
- Division of Anatomy, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyaki-dai, Sakado-shi, Saitama, 350-0283, Japan
| | - Kazunari Higa
- Cornea Center Eye Bank, Tokyo Dental College Ichikawa General Hospital, Sugano, Ichikawa, Chiba, 5-11-13, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.,Division of Internal Medicine, Cupid Clinic, Iwamizawa, Hokkaido, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.
| |
Collapse
|
2
|
A transient protective effect of low-level laser irradiation against disuse-induced atrophy of rats. Lasers Med Sci 2019; 34:1829-1839. [PMID: 30949786 DOI: 10.1007/s10103-019-02778-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/18/2019] [Indexed: 12/25/2022]
Abstract
Satellite cells, a population of skeletal muscular stem cells, are generally recognized as the main and, possibly, the sole source of postnatal muscle regeneration. Previous studies have revealed the potential of low-level laser (LLL) irradiation in promoting satellite cell proliferation, which, thereby, boosts the recovery of skeletal muscle from atrophy. The purpose of this study is to investigate the beneficial effect of LLL on disuse-induced atrophy. The optimal irradiation condition of LLL (808 nm) enhancing the proliferation of Pax7+ve cells, isolated from tibialis anterior (TA) muscle, was examined and applied on TA muscle of disuse-induced atrophy model of the rats accordingly. Healthy rats were used as the control. On one hand, transiently, LLL was able to postpone the progression of atrophy for 1 week through a reduction of apoptosis in Pax7-veMyoD+ve (myocyte) population. Simultaneously, a significant enhancement was observed in Pax7+veMyoD+ve population; however, most of the increased cells underwent apoptosis since the second week, which suggested an impaired maturation of the population. On the other hand, in normal control rats with LLL irradiation, a significant increase in Pax7+veMyoD+ve cells and a significant decrease of apoptosis were observed. As a result, a strengthened muscle contraction was observed. Our data showed the capability of LLL in postponing the progression of disuse-induced atrophy for the first time. Furthermore, the result of normal rats with LLL irradiation showed the effectiveness of LLL to strengthen muscle contraction in healthy control.
Collapse
|
3
|
Sokoloff AJ, Douglas M, Rahnert JA, Burkholder T, Easley KA, Luo Q. Absence of morphological and molecular correlates of sarcopenia in the macaque tongue muscle styloglossus. Exp Gerontol 2016; 84:40-48. [PMID: 27566374 DOI: 10.1016/j.exger.2016.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Equivocal decline of tongue muscle performance with age is compatible with resistance of the tongue to sarcopenia, the loss of muscle volume and function that typically occurs with aging. To test this possibility we characterized anatomical and molecular indices of sarcopenia in the macaque tongue muscle styloglossus (SG). METHODS We quantified myosin heavy chain (MHC), muscle fiber MHC phenotype and size and total and phosphorylated growth- and atrophy-related proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), immunoblot and immunohistochemistry (IHC) in the SG in twenty-four macaque monkeys (Macaca rhesus, age range 9months to 31years) categorized into Young (<8years of age), Middle-aged (15-21years of age) and Old (>22years of age) groups. RESULTS In Young, Middle and Old age groups, by SDS-PAGE MHCI comprised ~1/3 and MHCII ~2/3 of total MHC. MHCI relative frequency was lower and MHCII higher in Middle versus Young (p=0.0099) and Middle versus Old (p=0.052). Relative frequencies of MHC fiber phenotype were not different by age but were different by phenotype (rates 233, 641 and 111 per 1000 fibers for MHCI, MHCII and MHCI-II respectively, p=0.03). Few or no fibers were positive for developmental MHC. Mean cross-sectional area (CSA) was not different among the three age groups for MHCII and MHCI-II; however MHCI fibers tended to be larger in Middle versus Old and Young (mean=2257μm2,1917μm2 (p=0.05) and 1704μm2 (p=0.06), respectively). For each age group, mean CSA increased across MHC phenotype (lowest mean CSA for MHCI and highest mean CSA for MHCII). Spearman analysis demonstrated age-related increases in total p70 ribosomal protein S6 kinase (P70), phosphorylated P70421/424, phosphorylated P38 mitogen-activated protein kinase and muscle atrophy F-Box, a trend to age-related decrease in total extracellular signal-regulated kinase (ERK), and no age-related change in total protein kinase B (Akt/PKB), phosphorylated Akt, phosphorylated ERK, phosphorylated c-Jun N-terminal kinase (JNK46) and phosphorylated P70389. CONCLUSION Common anatomical and molecular indices of sarcopenia are absent in our sample of macaque SG. Relative frequencies of MHCII protein and phenotype are preserved with age. Although MAFbx expression increases with age, this is not associated with fiber atrophy, perhaps reflecting compensatory growth signaling by p70. The resistant nature of the styloglossus muscle to sarcopenia may be related to routine activation of tongue muscles in respiration and swallowing and the preservation of hypoglossal motoneuron number with age.
Collapse
Affiliation(s)
- Alan J Sokoloff
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States.
| | - Megan Douglas
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jill A Rahnert
- School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Thomas Burkholder
- School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Kirk A Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Qingwei Luo
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Foresto CS, Paula-Gomes S, Silveira WA, Graça FA, Kettelhut IDC, Gonçalves DAP, Mattiello-Sverzut AC. Morphological and molecular aspects of immobilization-induced muscle atrophy in rats at different stages of postnatal development: the role of autophagy. J Appl Physiol (1985) 2016; 121:646-60. [PMID: 27445301 DOI: 10.1152/japplphysiol.00687.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 07/19/2016] [Indexed: 01/07/2023] Open
Abstract
Muscle loss occurs following injury and immobilization in adulthood and childhood, which impairs the rehabilitation process; however, far fewer studies have been conducted analyzing atrophic response in infants. This work investigated first the morphological and molecular mechanisms involved in immobilization-induced atrophy in soleus muscles from rats at different stages of postnatal development [i.e., weanling (WR) and adult (AR) rats] and, second, the role of autophagy in regulating muscle plasticity during immobilization. Hindlimb immobilization for 10 days reduced muscle mass and fiber cross-sectional area, with more pronounced atrophy in WR, and induced slow-to-fast fiber switching. These effects were accompanied by a decrease in markers of protein synthesis and an increase in autophagy. The ubiquitin (Ub)-ligase MuRF1 and the ubiquitinated proteins were upregulated by immobilization in AR while the autolyzed form of μ-calpain was increased in WR. To further explore the role of autophagy in muscle abnormalities, AR were concomitantly immobilized and treated with colchicine, which blocks autophagosome-lysosome fusion. Colchicine-treated immobilized muscles had exacerbated atrophy and presented degenerative features. Despite Igf1/Akt signaling was downregulated in immobilized muscles from both age groups, Foxo1 and 4 phosphorylation was increased in WR. In the same group of animals, Foxo1 acetylation and Foxo1 and 4 content was increased and decreased, respectively. Our data show that muscle disorders induced by 10-day-immobilization occur in both age-dependent and -independent manners, an understanding that may optimize treatment outcomes in infants. We also provide further evidence that the strong inhibition of autophagy may be ineffective for treating muscle atrophy.
Collapse
Affiliation(s)
- Camila Silva Foresto
- Department of Biomechanics, Medicine, and Rehabilitation of the Locomotor Apparatus, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Sílvia Paula-Gomes
- Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Wilian Assis Silveira
- Department of Physiology Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; and
| | - Flávia Aparecida Graça
- Department of Physiology Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; and
| | - Isis do Carmo Kettelhut
- Department of Physiology Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; and Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Dawit Albieiro Pinheiro Gonçalves
- Department of Physiology Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil; and Department of Biochemistry/Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Mattiello-Sverzut
- Department of Biomechanics, Medicine, and Rehabilitation of the Locomotor Apparatus, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Pucciarelli MLR, Mattiello SM, Martinez EZ, Mattiello-Sverzut AC. Exercício excêntrico e alongamento para músculos flexores plantares aplicados durante 21 dias após imobilização não modificam o tecido não contrátil. FISIOTERAPIA E PESQUISA 2016. [DOI: 10.1590/1809-2950/12606823022016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO As adaptações da matriz extracelular, que está intimamente ligada à manutenção da integridade e do desempenho do sistema musculoesquelético, não estão consensualmente descritas na literatura após recarga por desuso. O objetivo deste estudo foi analisar a área de tecido conjuntivo perimisial e de secção transversa das fibras musculares nos músculos sóleo e plantar de ratas imobilizadas e posteriormente reabilitadas por protocolos de alongamento e exercício excêntrico. A expressão do tecido conjuntivo perimisial de ambos os músculos estudados não apresentou diferença significativa após o procedimento de imobilização e treinamento. O treino excêntrico aplicado por 10 dias foi suficiente para recuperar a área das fibras para o músculo plantar, enquanto a recuperação do músculo sóleo aconteceu somente após o protocolo de 21 dias.
Collapse
|
6
|
Gianelo MCS, Polizzelo JC, Chesca D, Mattiello-Sverzut AC. Three days of intermittent stretching after muscle disuse alters the proteins involved in force transmission in muscle fibers in weanling rats. ACTA ACUST UNITED AC 2015; 49:e4118. [PMID: 26648091 PMCID: PMC4712484 DOI: 10.1590/1414-431x20154118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 09/14/2015] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the effects of intermittent passive manual stretching on various proteins involved in force transmission in skeletal muscle. Female Wistar weanling rats were randomly assigned to 5 groups: 2 control groups containing 21- and 30-day-old rats that received neither immobilization nor stretching, and 3 test groups that received 1) passive stretching over 3 days, 2) immobilization for 7 days and then passive stretching over 3 days, or 3) immobilization for 7 days. Maximal plantar flexion in the right hind limb was imposed, and the stretching protocol of 10 repetitions of 30 s stretches was applied. The soleus muscles were harvested and processed for HE and picrosirius staining; immunohistochemical analysis of collagen types I, III, IV, desmin, and vimentin; and immunofluorescence labeling of dystrophin and CD68. The numbers of desmin- and vimentin-positive cells were significantly decreased compared with those in the control following immobilization, regardless of whether stretching was applied (P<0.05). In addition, the semi-quantitative analysis showed that collagen type I was increased and type IV was decreased in the immobilized animals, regardless of whether the stretching protocol was applied. In conclusion, the largest changes in response to stretching were observed in muscles that had been previously immobilized, and the stretching protocol applied here did not mitigate the immobilization-induced muscle changes. Muscle disuse adversely affected several proteins involved in the transmission of forces between the intracellular and extracellular compartments. Thus, the 3-day rehabilitation period tested here did not provide sufficient time for the muscles to recover from the disuse maladaptations in animals undergoing postnatal development.
Collapse
Affiliation(s)
- M C S Gianelo
- Programa de Pós-Graduação em Reabilitação e Desempenho Funcional, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J C Polizzelo
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - D Chesca
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A C Mattiello-Sverzut
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
7
|
Cornachione AS, Cação-Benedini LO, Chesca DL, Martinez EZ, Mattiello-Sverzut AC. Effects of eccentric exercise in rehabilitation of phasic and tonic muscles after leg immobilization in rats. Acta Histochem 2014; 116:1216-24. [PMID: 25078116 DOI: 10.1016/j.acthis.2014.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 11/30/2022]
Abstract
Eccentric exercise is an essential resource for skeletal muscle rehabilitation following muscle disuse however, abnormalities linked to the tissue recuperation require further research. Our aim was analyze the adaptation ability of rehabilitated muscular tissue in rats during different periods of eccentric training after 10 days of limb immobilization. Twenty-seven Wistar rats were divided into six groups: immobilized 10 days, immobilized and eccentric trained for 10 days, immobilized and eccentric trained for 21 days, and three age-matched control groups. After sacrifice, soleus and plantaris muscles were frozen, cut and stained for general histology using hematoxylin and eosin and Gomori trichrome methods and immunohistochemical methods for fiber typing (mATPase, NADH2-TR), for capillaries (CD31) and intermediate filaments (desmin, vimentin) and high resolution microscopy of resin embedded material. Immobilization resulted in more intense morphological alterations in soleus muscles such as formation of target fibers, nuclear centralization, a reduction in the number of type I fibers, diameter of type I, IIA, IIAD fibers, and capillaries. After 10 days of eccentric training, increases in the nuclear centralization and the number of lobulated fibers were observed. This period was insufficient to reestablish the capillary/fiber (C/F) ratio and distribution of fiber types as that observed in the control group. However, 21 days of rehabilitation allowed the reversal of all morphological and quantitative abnormalities. For the plantaris muscles, 10-days of training restored their basic characteristics. Despite the fact that immobilization affected soleus and plantaris muscles, 10 days of eccentric training was insufficient to restore the morphological characteristics of soleus muscles, which was not the case observed in plantaris muscle.
Collapse
Affiliation(s)
- Anabelle S Cornachione
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil.
| | - Letícia O Cação-Benedini
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Deise Lucia Chesca
- Department of Pathology, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Edson Z Martinez
- Department of Social Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Ana Claudia Mattiello-Sverzut
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor Apparatus, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Cação-Benedini LO, Ribeiro PG, Prado CM, Chesca DL, Mattiello-Sverzut AC. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle. ACTA ACUST UNITED AC 2014; 47:483-91. [PMID: 24820070 PMCID: PMC4086175 DOI: 10.1590/1414-431x20143521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 02/27/2014] [Indexed: 11/22/2022]
Abstract
Extracellular matrix and costamere proteins transmit the concentric, isometric, and
eccentric forces produced by active muscle contraction. The expression of these
proteins after application of passive tension stimuli to muscle remains unknown. This
study investigated the expression of laminin and dystrophin in the soleus muscle of
rats immobilized with the right ankle in plantar flexion for 10 days and subsequent
remobilization, either by isolated free movement in a cage or associated with passive
stretching for up to 10 days. The intensity of the macrophage response was also
evaluated. One hundred and twenty-eight female Wistar rats were divided into 8
groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10
days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental
procedures, muscle tissue was processed for immunofluorescence
(dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin).
Immobilization increased the expression of dystrophin and laminin but did not alter
the number of macrophages in the muscle. In the stretched muscle groups, there was an
increase in dystrophin and the number of macrophages after 3 days compared with the
other groups; dystrophin showed a discontinuous labeling pattern, and laminin was
found in the intracellular space. The amount of laminin was increased in the muscles
treated by immobilization followed by free movement for 10 days. In the initial
stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and
an increase of dystrophin suggested that the therapeutic stretching technique induced
additional stress in the muscle fibers and costameres.
Collapse
Affiliation(s)
- L O Cação-Benedini
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - P G Ribeiro
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - C M Prado
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - D L Chesca
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A C Mattiello-Sverzut
- Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
9
|
Benedini-Elias PCO, Morgan MC, Cornachione AS, Martinez EZ, Mattiello-Sverzut AC. Post-immobilization eccentric training promotes greater hypertrophic and angiogenic responses than passive stretching in muscles of weanling rats. Acta Histochem 2014; 116:503-13. [PMID: 24304683 DOI: 10.1016/j.acthis.2013.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
This study investigated how different types of remobilization after hind limb immobilization, eccentric exercise and passive static stretching, influenced the adaptive responses of muscles with similar function and fascicle size, but differing in their contractile characteristics. Female Wistar weanling rats (21 days old) were divided into 8 groups: immobilized for 10 days, maintaining the ankle in maximum plantar flexion; immobilized and submitted to eccentric training for 10 or 21 days on a declining treadmill for 40min; immobilized and submitted to passive stretching for 10 or 21 days for 40min by maintaining the ankle in maximum dorsiflexion; control of immobilized; and control of 10 or 21 days. The soleus and plantaris muscles were analyzed using fiber distribution, lesser diameter, capillary/fiber ratio, and morphology. Results showed that the immobilization reduced the diameter of all fiber types, caused changes in fiber distribution and decreased the number of transverse capillaries in both muscles. The recovery period of the soleus muscle is longer than that of the plantaris after detraining. Moreover, eccentric training induced greater hypertrophic and angiogenic responses than passive stretching, especially after 21 days of rehabilitation. Both techniques demonstrated positive effects for muscle rehabilitation with the eccentric exercise being more effective.
Collapse
|
10
|
Effects of 40min of maintained stretch on the soleus and plantaris muscles of rats applied for different periods of time after hindlimb immobilization. Acta Histochem 2013; 115:505-11. [PMID: 23287280 DOI: 10.1016/j.acthis.2012.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/20/2012] [Accepted: 11/21/2012] [Indexed: 11/21/2022]
Abstract
Stretching is frequently used in physiotherapy to minimize or even reverse the alterations that occur after muscle disuse. Alterations that occur after 10 and 21 days of maintained stretch in soleus and plantaris muscles post-disuse were evaluated in the present study in experimental rats. Thirty adult female Wistar rats were divided into seven groups: hindlimb immobilization for 10 days; immobilization and 10 days stretched; immobilized and 21 days stretched; three control groups consisting of animals of different ages and anesthetized group. The right hindlimb was immobilized using a lightweight apparatus composed of two sections: (i) upper part: a small cotton T-shirt and, and (ii) lower part: a steel mesh to fix the ankle in plantar-flexion-shortened position. Fragments of the soleus and plantaris muscle were frozen and processed using histochemical and immunohistochemical methods. Limb immobilization caused important morphological alterations in skeletal muscle including: reduction in the number of type I fibers and an increase in type IIC fibers, reduction in the lesser diameter of type I, IIA and IIAD fibers and in the number of capillaries in soleus muscle. The stretching program applied for 10 days was insufficient to allow recovery from the disuse alterations in both muscles. However, after 21 days there were improved morphological characteristics, size and distribution of the different fibers.
Collapse
|
11
|
Cação-Benedini LO, Ribeiro PG, Gomes ARS, Ywazaki JL, Monte-Raso VV, Prado CM, Mattiello-Sverzut AC. Remobilization through stretching improves gait recovery in the rat. Acta Histochem 2013; 115:460-9. [PMID: 23265777 DOI: 10.1016/j.acthis.2012.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 12/11/2022]
Abstract
Remobilization of a previously immobilized rat right hindlimb in the ankle plantar-flexion-shortened position by free movement alone or associated with intermittent passive stretching was assessed by analysis of gait variables and dorsiflexion range of motion. The variables were related with the expression of extracellular matrix proteins and the addition of serial sarcomeres. Sixty-four female Wistar rats were divided into 8 groups: immobilized, free for 10 days, immobilized/stretched/free for 1, 3 or 10 days, immobilized/free for 1, 3 or 10 days. Gait variables, range of motion, serial sarcomeres number, localization and staining intensity of fibronectin, and expressions of types I and III collagen were analyzed. The hypokinesia changed the functional variables of gait, reduced the dorsiflexion range of motion (ROM), increased the number of fibers with intracellular fibronectin/total number of fibers (FIF/TNF), and decreased the expression of the type I collagen. After three days, morphological changes were exacerbated and the number of serial sarcomeres was increased in both groups, immobilized/stretched/free and immobilized/free. Functional impairment, ROM restriction and increased FIF/TNF were also observed. Despite the above described alterations, 10 days of stretching program increased the effectiveness of remobilization leading to recovery of the abnormalities observed in the muscle.
Collapse
Affiliation(s)
- Letícia Oliveira Cação-Benedini
- Department of Biomechanics, Medicine, and Rehabilitation of the Locomotor Apparatus, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Castillero E, Nieto-Bona MP, Fernández-Galaz C, Martín AI, López-Menduiña M, Granado M, Villanúa MA, López-Calderón A. Fenofibrate, a PPAR{alpha} agonist, decreases atrogenes and myostatin expression and improves arthritis-induced skeletal muscle atrophy. Am J Physiol Endocrinol Metab 2011; 300:E790-9. [PMID: 21304067 DOI: 10.1152/ajpendo.00590.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Arthritis is a chronic inflammatory illness that induces cachexia, which has a direct impact on morbidity and mortality. Fenofibrate, a selective PPARα activator prescribed to treat human dyslipidemia, has been reported to decrease inflammation in rheumatoid arthritis patients. The aim of this study was to elucidate whether fenofibrate is able to ameliorate skeletal muscle wasting in adjuvant-induced arthritis, an experimental model of rheumatoid arthritis. On day 4 after adjuvant injection, control and arthritic rats were treated with 300 mg/kg fenofibrate until day 15, when all rats were euthanized. Fenofibrate decreased external signs of arthritis and liver TNFα and blocked arthritis-induced decreased in PPARα expression in the gastrocnemius muscle. Arthritis decreased gastrocnemius weight, which results from a decrease in cross-section area and myofiber size, whereas fenofibrate administration to arthritic rats attenuated the decrease in both gastrocnemius weight and fast myofiber size. Fenofibrate treatment prevented arthritis-induced increase in atrogin-1 and MuRF1 expression in the gastrocnemius. Neither arthritis nor fenofibrate administration modify Akt-FoxO3 signaling. Myostatin expression was not modified by arthritis, but fenofibrate decreased myostatin expression in the gastrocnemius of arthritic rats. Arthritis increased muscle expression of MyoD, PCNA, and myogenin in the rats treated with vehicle but not in those treated with fenofibrate. The results indicate that, in experimental arthritis, fenofibrate decreases skeletal muscle atrophy through inhibition of the ubiquitin-proteasome system and myostatin.
Collapse
Affiliation(s)
- Estíbaliz Castillero
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain 28040.
| | | | | | | | | | | | | | | |
Collapse
|