1
|
Yugami M, Hayakawa-Yano Y, Ogasawara T, Yokoyama K, Furukawa T, Hara H, Hashikami K, Tsuji I, Takebayashi H, Araki S, Okano H, Yano M. Sbp2l contributes to oligodendrocyte maturation through translational control in Tcf7l2 signaling. iScience 2023; 26:108451. [PMID: 38213786 PMCID: PMC10783607 DOI: 10.1016/j.isci.2023.108451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/09/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024] Open
Abstract
Oligodendrocytes (OLs) are the myelin-forming cells in the CNS that support neurons through the insulating sheath of axons. This unique feature and developmental processes are achieved by extrinsic and intrinsic gene expression programs, where RNA-binding proteins can contribute to dynamic and fine-tuned post-transcriptional regulation. Here, we identified SECIS-binding protein 2-like (Sbp2l), which is specifically expressed in OLs by integrated transcriptomics. Histological analysis revealed that Sbp2l is a molecular marker of OL maturation. Sbp2l knockdown (KD) led to suppression of matured OL markers, but not a typical selenoprotein, Gpx4. Transcriptome analysis demonstrated that Sbp2l KD decreased cholesterol-biosynthesis-related genes regulated by Tcf7l2 transcription factor. Indeed, we confirmed the downregulation of Tcf7l2 protein without changing its mRNA in Sbp2l KD OPCs. Furthermore, Sbp2l KO mice showed the decrease of Tcf7l2 protein and deficiency of OL maturation. These results suggest that Sbp2l contributes to OL maturation by translational control of Tcf7l2.
Collapse
Affiliation(s)
- Masato Yugami
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoshika Hayakawa-Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takahisa Ogasawara
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazumasa Yokoyama
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Takako Furukawa
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Hiroe Hara
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kentaro Hashikami
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Isamu Tsuji
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Shinsuke Araki
- Research, Takeda Pharmaceutical Company Limited, 26-1 Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
2
|
Simankova A, Bizen N, Saitoh S, Shibata S, Ohno N, Abe M, Sakimura K, Takebayashi H. Ddx20, DEAD box helicase 20, is essential for the differentiation of oligodendrocyte and maintenance of myelin gene expression. Glia 2021; 69:2559-2574. [PMID: 34231259 DOI: 10.1002/glia.24058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Oligodendrocytes form myelin sheaths that surround axons, contributing to saltatory conduction and proper central nervous system (CNS) function. Oligodendrocyte progenitor cells (OPCs) are generated during the embryonic stage and differentiate into myelinating oligodendrocytes postnatally. Ddx20 is a multifunctional, DEAD-box helicase involved in multiple cellular processes, including transcription, splicing, microRNA biogenesis, and translation. Although defects in each of these processes result in abnormal oligodendrocyte differentiation and myelination, the involvement of Ddx20 in oligodendrocyte terminal differentiation remains unknown. To address this question, we used Mbp-Cre mice to generate Ddx20 conditional knockout (cKO) mice to allow for the deletion of Ddx20 from mature oligodendrocytes. Mbp-Cre;Ddx20 cKO mice demonstrated small body sizes, behavioral abnormalities, muscle weakness, and short lifespans, with mortality by the age of 2 months old. Histological analyses demonstrated significant reductions in the number of mature oligodendrocytes and drastic reductions in the expression levels of myelin-associated mRNAs, such as Mbp and Plp at postnatal day 42. The number of OPCs did not change. A thin myelin layer was observed for large-diameter axons in Ddx20 cKO mice, based on electron microscopic analysis. A bromodeoxyuridine (BrdU) labeling experiment demonstrated that terminal differentiation was perturbed from ages 2 weeks to 7 weeks in the CNS of Mbp-Cre;Ddx20 cKO mice. The activation of mitogen-activated protein (MAP) kinase, which promotes myelination, was downregulated in the Ddx20 cKO mice based on immunohistochemical detection. These results indicate that Ddx20 is an essential factor for terminal differentiation of oligodendrocytes and maintenance of myelin gene expression.
Collapse
Affiliation(s)
- Anna Simankova
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sei Saitoh
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Biomedical Molecular Sciences (Anatomy II), Fujita Health University School of Medicine, Toyoake, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Nobuta H, Yang N, Ng YH, Marro SG, Sabeur K, Chavali M, Stockley JH, Killilea DW, Walter PB, Zhao C, Huie P, Goldman SA, Kriegstein AR, Franklin RJM, Rowitch DH, Wernig M. Oligodendrocyte Death in Pelizaeus-Merzbacher Disease Is Rescued by Iron Chelation. Cell Stem Cell 2020; 25:531-541.e6. [PMID: 31585094 DOI: 10.1016/j.stem.2019.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked leukodystrophy caused by mutations in Proteolipid Protein 1 (PLP1), encoding a major myelin protein, resulting in profound developmental delay and early lethality. Previous work showed involvement of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways, but poor PLP1 genotype-phenotype associations suggest additional pathogenetic mechanisms. Using induced pluripotent stem cell (iPSC) and gene-correction, we show that patient-derived oligodendrocytes can develop to the pre-myelinating stage, but subsequently undergo cell death. Mutant oligodendrocytes demonstrated key hallmarks of ferroptosis including lipid peroxidation, abnormal iron metabolism, and hypersensitivity to free iron. Iron chelation rescued mutant oligodendrocyte apoptosis, survival, and differentiationin vitro, and post-transplantation in vivo. Finally, systemic treatment of Plp1 mutant Jimpy mice with deferiprone, a small molecule iron chelator, reduced oligodendrocyte apoptosis and enabled myelin formation. Thus, oligodendrocyte iron-induced cell death and myelination is rescued by iron chelation in PMD pre-clinical models.
Collapse
Affiliation(s)
- Hiroko Nobuta
- Department of Pediatrics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nan Yang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Han Ng
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samuele G Marro
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Khalida Sabeur
- Department of Pediatrics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Manideep Chavali
- Department of Pediatrics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John H Stockley
- Department of Paediatrics, University of Cambridge, Hills Road, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, UK
| | - David W Killilea
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Patrick B Walter
- UCSF Benioff Children's Hospital Oakland, Oakland, CA 94609, USA; Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Chao Zhao
- Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, UK
| | - Philip Huie
- Department of Surgical Pathology, Stanford Health Care, Palo Alto, CA 94305, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health, Copenhagen, Denmark
| | - Arnold R Kriegstein
- Department of Pediatrics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robin J M Franklin
- Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, UK
| | - David H Rowitch
- Department of Pediatrics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurosurgery, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Clinical Neurosciences, University of Cambridge, Hills Road, Cambridge, UK; Department of Paediatrics, University of Cambridge, Hills Road, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, UK.
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Terumitsu-Tsujita M, Kitaura H, Miura I, Kiyama Y, Goto F, Muraki Y, Ominato S, Hara N, Simankova A, Bizen N, Kashiwagi K, Ito T, Toyoshima Y, Kakita A, Manabe T, Wakana S, Takebayashi H, Igarashi H. Glial pathology in a novel spontaneous mutant mouse of the Eif2b5 gene: a vanishing white matter disease model. J Neurochem 2019; 154:25-40. [PMID: 31587290 DOI: 10.1111/jnc.14887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/24/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022]
Abstract
Vanishing white matter disease (VWM) is an autosomal recessive neurological disorder caused by mutation(s) in any subunit of eukaryotic translation initiation factor 2B (eIF2B), an activator of translation initiation factor eIF2. VWM occurs with mutation of the genes encoding eIF2B subunits (EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5). However, little is known regarding the underlying pathogenetic mechanisms or how to treat patients with VWM. Here we describe the identification and detailed analysis of a new spontaneous mutant mouse harboring a point mutation in the Eif2b5 gene (p.Ile98Met). Homozygous Eif2b5I98M mutant mice exhibited a small body, abnormal gait, male and female infertility, epileptic seizures, and a shortened lifespan. Biochemical analyses indicated that the mutant eIF2B protein with the Eif2b5I98M mutation decreased guanine nucleotide exchange activity on eIF2, and the level of the endoplasmic reticulum stress marker activating transcription factor 4 was elevated in the 1-month-old Eif2b5I98M brain. Histological analyses indicated up-regulated glial fibrillary acidic protein immunoreactivity in the astrocytes of the Eif2b5I98M forebrain and translocation of Bergmann glia in the Eif2b5I98M cerebellum, as well as increased mRNA expression of an endoplasmic reticulum stress marker, C/EBP homologous protein. Disruption of myelin and clustering of oligodendrocyte progenitor cells were also indicated in the white matter of the Eif2b5I98M spinal cord at 8 months old. Our data show that Eif2b5I98M mutants are a good model for understanding VWM pathogenesis and therapy development. Cover Image for this issue: doi: 10.1111/jnc.14751.
Collapse
Affiliation(s)
- Mika Terumitsu-Tsujita
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan.,Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Administrative Section of Radiation Protection, National Center of Neurology and Psychiatry, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | - Hiroki Kitaura
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan.,Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, The Japan Mouse Clinic, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Yuji Kiyama
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fumiko Goto
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoshiko Muraki
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Shiho Ominato
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Anna Simankova
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kazuhiro Kashiwagi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Japan
| | - Yasuko Toyoshima
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Toshiya Manabe
- Division of Neuronal Network, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, The Japan Mouse Clinic, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
5
|
Zhou L, Hossain MI, Yamazaki M, Abe M, Natsume R, Konno K, Kageyama S, Komatsu M, Watanabe M, Sakimura K, Takebayashi H. Deletion of exons encoding carboxypeptidase domain of Nna1 results in Purkinje cell degeneration (pcd
) phenotype. J Neurochem 2018; 147:557-572. [DOI: 10.1111/jnc.14591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Li Zhou
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - M. Ibrahim Hossain
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Manabu Abe
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Rie Natsume
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Kohtaro Konno
- Department of Anatomy; Faculty of Medicine; Hokkaido University; Sapporo Japan
| | - Shun Kageyama
- Department of Biochemistry; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - Masaaki Komatsu
- Department of Biochemistry; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| | - Masahiko Watanabe
- Department of Anatomy; Faculty of Medicine; Hokkaido University; Sapporo Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology; Brain Research Institute; Niigata University; Niigata Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy; Graduate School of Medical and Dental Sciences; Niigata University; Niigata Japan
| |
Collapse
|
6
|
Elitt MS, Shick HE, Madhavan M, Allan KC, Clayton BLL, Weng C, Miller TE, Factor DC, Barbar L, Nawash BS, Nevin ZS, Lager AM, Li Y, Jin F, Adams DJ, Tesar PJ. Chemical Screening Identifies Enhancers of Mutant Oligodendrocyte Survival and Unmasks a Distinct Pathological Phase in Pelizaeus-Merzbacher Disease. Stem Cell Reports 2018; 11:711-726. [PMID: 30146490 PMCID: PMC6135742 DOI: 10.1016/j.stemcr.2018.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 01/15/2023] Open
Abstract
Pelizaeus-Merzbacher disease (PMD) is a fatal X-linked disorder caused by loss of myelinating oligodendrocytes and consequent hypomyelination. The underlying cellular and molecular dysfunctions are not fully defined, but therapeutic enhancement of oligodendrocyte survival could restore functional myelination in patients. Here we generated pure, scalable quantities of induced pluripotent stem cell-derived oligodendrocyte progenitor cells (OPCs) from a severe mouse model of PMD, Plp1jimpy. Temporal phenotypic and transcriptomic studies defined an early pathological window characterized by endoplasmic reticulum (ER) stress and cell death as OPCs exit their progenitor state. High-throughput phenotypic screening identified a compound, Ro 25-6981, which modulates the ER stress response and rescues mutant oligodendrocyte survival in jimpy, in vitro and in vivo, and in human PMD oligocortical spheroids. Surprisingly, increasing oligodendrocyte survival did not restore subsequent myelination, revealing a second pathological phase. Collectively, our work shows that PMD oligodendrocyte loss can be rescued pharmacologically and defines a need for multifactorial intervention to restore myelination.
Collapse
Affiliation(s)
- Matthew S Elitt
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - H Elizabeth Shick
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mayur Madhavan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kevin C Allan
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Benjamin L L Clayton
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Chen Weng
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tyler E Miller
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Daniel C Factor
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Lilianne Barbar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Baraa S Nawash
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zachary S Nevin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Angela M Lager
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Yan Li
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Fulai Jin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Engineering and Computer Science, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Paul J Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|