1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Lv Z, Li L, Li Y, Zhang L, Guo X, Huang C, Hou W, Qu Y, Liu L, Li Y, He Z, Tai F. Involvement of Serotonergic Projections from the Dorsal Raphe to the Medial Preoptic Area in the Regulation of the Pup-Directed Paternal Response of Male Mandarin Voles. Int J Mol Sci 2023; 24:11605. [PMID: 37511364 PMCID: PMC10380723 DOI: 10.3390/ijms241411605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Male mammals display different paternal responses to pups, either attacking or killing the young offspring, or contrastingly, caring for them. The neural circuit mechanism underlying the between-individual variation in the pup-directed responsiveness of male mammals remains unclear. Monogamous mandarin voles were used to complete the present study. The male individuals were identified as paternal and infanticidal voles, according their behavioral responses to pups. It was found that the serotonin release in the medial preoptic area (MPOA), as well as the serotonergic neuron activity, significantly increased upon licking the pups, but showed no changes after attacking the pups, as revealed by the in vivo fiber photometry of the fluorescence signal from the 5-HT 1.0 sensor and the calcium imaging indicator, respectively. It was verified that the 5-HTergic neural projections to the MPOA originated mainly from the ventral part of the dorsal raphe (vDR). Furthermore, the chemogenetic inhibition of serotonergic projections from the vDR to the MPOA decreased the paternal behaviors and shortened the latency to attack the pups. In contrast, the activation of serotonergic neurons via optogenetics extended the licking duration and inhibited infanticide. Collectively, these results elucidate that the serotonergic projections from the vDR to the MPOA, a previously unrecognized pathway, regulate the paternal responses of virgin male mandarin voles to pups.
Collapse
Affiliation(s)
- Zijian Lv
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yin Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lizi Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xing Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Caihong Huang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yishan Qu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Limin Liu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
3
|
Glat M, Gundacker A, Cuenca Rico L, Czuczu B, Ben‐Simon Y, Harkany T, Pollak DD. An accessory prefrontal cortex-thalamus circuit sculpts maternal behavior in virgin female mice. EMBO J 2022; 41:e111648. [PMID: 36341708 PMCID: PMC9753463 DOI: 10.15252/embj.2022111648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
The ability to care for the young is innate and readily displayed by postpartum females after delivery to ensure offspring survival. Upon pup exposure, rodent virgin (nulliparous) females also develop parental behavior that over time becomes displayed at levels equivalent to parenting mothers. Although maternal behavior in postpartum females and the associated neurocircuits are well characterized, the neural mechanisms underlying the acquisition of maternal behavior without prior experience remain poorly understood. Here, we show that the development of maternal care behavior in response to first-time pup exposure in virgin females is initiated by the activation of the anterior cingulate cortex (ACC). ACC activity is dependent on feedback excitation by Vglut2+ /Galanin+ neurons of the centrolateral nucleus of the thalamus (CL), with their activity sufficient to display parenting behaviors. Accordingly, acute bidirectional chemogenetic manipulation of neuronal activity in the ACC facilitates or impairs the attainment of maternal behavior, exclusively in virgin females. These results reveal an ACC-CL neurocircuit as an accessory loop in virgin females for the initiation of maternal care upon first-time exposure to pups.
Collapse
Affiliation(s)
- Micaela Glat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Barbara Czuczu
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Yoav Ben‐Simon
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain ResearchMedical University of ViennaViennaAustria
- Department of Neuroscience, Biomedicum 7DKarolinska InstitutetSolnaSweden
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
4
|
Jean A, Mhaouty-Kodja S, Hardin-Pouzet H. Hypothalamic cellular and molecular plasticity linked to sexual experience in male rats and mice. Front Neuroendocrinol 2021; 63:100949. [PMID: 34687674 DOI: 10.1016/j.yfrne.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France.
| |
Collapse
|
5
|
Romero-Morales L, García-Saucedo B, Martínez-Torres M, Cárdenas-Vázquez R, Álvarez-Rodríguez C, Carmona A, Luis J. PATERNAL AND INFANTICIDAL BEHAVIOR IN THE MONGOLIAN GERBIL (Meriones unguiculatus): AN APPROACH TO NEUROENDOCRINE REGULATION. Behav Brain Res 2021; 415:113520. [PMID: 34389425 DOI: 10.1016/j.bbr.2021.113520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022]
Abstract
This study aimed to provide evidence on estrogen and androgen pathways regulating the Mongolian gerbil's paternal and infanticidal behaviors (Meriones unguiculatus). We analyzed estrogen receptor alpha (ERα) and androgen receptor (AR) distribution in the medial preoptic area (mPOA), the bed nucleus of stria terminalis (BNST), as well as the anterior hypothalamic nucleus (AHN), the ventromedial hypothalamus nucleus (VMH), and the periaqueductal gray area (PAG) nuclei activated when males interact paternally or aggressively with the pups, respectively. Twenty aggressive males towards the pups and 10 paternal were selected through a screen paternal behavior test. Three groups of 10 males each were formed: paternal males (PAT), males with testosterone (T)-induced paternal behavior (T-PAT), and aggressive males (AGG). Male gerbils could interact with a pup for a few minutes, and their brains were removed and dissected for ERα and AR immunoreactivity (ir). The results showed that in T-PAT and PAT males, the number of ERα-ir and AR-ir cells in the mPOA/BNST was significantly higher than in AGG males. In AGG males, the number of ERα-ir and AR-ir cells in the AHN/VMH/PAG was significantly higher than PAT and T-PAT males. This difference in the presence of ERα and AR in nuclei activated in paternal interactions in the Mongolian gerbil supports the idea that these receptors participate in regulating paternal behavior. Also, these results suggest, for the first time, that they could be involved in the infanticidal behavior in this rodent.
Collapse
Affiliation(s)
- Luis Romero-Morales
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| | - Brenda García-Saucedo
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | - René Cárdenas-Vázquez
- Laboratorio de Biología Animal Experimental, Depto. de Biología Celular, Facultad de Ciencias, UNAM, Mexico.
| | - Carmen Álvarez-Rodríguez
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico
| | | | - Juana Luis
- Laboratorio de Biología de la Reproducción, UMF, FES Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, Edo. de México, Mexico.
| |
Collapse
|
6
|
Horrell ND, Acosta MC, Saltzman W. Plasticity of the paternal brain: Effects of fatherhood on neural structure and function. Dev Psychobiol 2021; 63:1499-1520. [PMID: 33480062 PMCID: PMC8295408 DOI: 10.1002/dev.22097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Care of infants is a hallmark of mammals. Whereas parental care by mothers is obligatory for offspring survival in virtually all mammals, fathers provide care for their offspring in only an estimated 5%-10% of genera. In these species, the transition into fatherhood is often accompanied by pronounced changes in males' behavioral responses to young, including a reduction in aggression toward infants and an increase in nurturant behavior. The onset of fatherhood can also be associated with sensory, affective, and cognitive changes. The neuroplasticity that mediates these changes is not well understood; however, fatherhood can alter the production and survival of new neurons; function and structure of existing neurons; morphology of brain structures; and neuroendocrine signaling systems. Although these changes are thought to promote infant care by fathers, very little evidence exists to support this hypothesis; in most cases, neither the mechanisms underlying neuroplasticity in fathers nor its functional significance is known. In this paper, we review the available data on the neuroplasticity that occurs during the transition into fatherhood. We highlight gaps in our knowledge and future directions that will provide key insights into how and why fatherhood alters the structure and functioning of the male brain.
Collapse
Affiliation(s)
| | - Melina C. Acosta
- Graduate Program in Neuroscience and Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience and Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA USA
| |
Collapse
|
7
|
Imbe H, Kimura A. Significance of medial preoptic area among the subcortical and cortical areas that are related to pain regulation in the rats with stress-induced hyperalgesia. Brain Res 2020; 1735:146758. [PMID: 32135148 DOI: 10.1016/j.brainres.2020.146758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Psychophysical stresses frequently increase sensitivity and response to pain, which is termed stress-induced hyperalgesia (SIH). However, the mechanism remains unknown. The subcortical areas such as medial preoptic area (MPO), dorsomedial nucleus of the hypothalamus (DMH), basolateral (BLA) and central nuclei of the amygdala (CeA), and the cortical areas such as insular (IC) and anterior cingulate cortices (ACC) play an important role in pain control via the descending pain modulatory system. In the present study we examined the expression of phosphorylated -cAMP-response element binding protein (pCREB) and the acetylation of histone H3 in these subcortical and cortical areas after repeated restraint stress to reveal changes in the subcortical and cortical areas that affect the function of descending pain modulatory system in the rats with SIH. The repeated restraint stress for 3 weeks induced a decrease in mechanical threshold in the rat hindpaw, an increase in the expression of pCREB in the MPO and an increase in the acetylation of histone H3 in the MPO, BLA and IC. The MPO was the only area that showed an increase in both the expression of pCREB and the acetylation of histone H3 among these examined areas after the repeated restraint stress. Furthermore, the number of pCREB-IR or acetylated histone H3-IR cells in the MPO was negatively correlated with the mechanical threshold. Together, our data represent the importance of the MPO among the subcortical and cortical areas that control descending pain modulatory system under the condition of SIH.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan.
| | - Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan
| |
Collapse
|
8
|
Portillo W, Paredes RG. Motivational Drive in Non-copulating and Socially Monogamous Mammals. Front Behav Neurosci 2019; 13:238. [PMID: 31636551 PMCID: PMC6787552 DOI: 10.3389/fnbeh.2019.00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022] Open
Abstract
Motivational drives guide behaviors in animals of different species, including humans. Some of these motivations, like looking for food and water, are crucial for the survival of the individual and hence for the preservation of the species. But there is at least another motivation that is also important for the survival of the species but not for the survival of the individual. Undoubtedly, sexual motivation is important for individuals to find a mate and reproduce, thus ensuring the survival of the species. In species with sexual reproduction, when males find a female in the appropriate hormonal conditions, they will display sexual behavior. However, some healthy males do not mate when they have access to a sexually receptive female, even though they are repeatedly tested. These non-copulating (NC) individuals have been reported in murine, cricetid and ungulates. In humans this sexual orientation is denominated asexuality. Asexual individuals are physically and emotionally healthy men and women without desire for sexual intercourse. Different species have developed a variety of strategies to find a mate and reproduce. Most species of mammals are polygamous; they mate with one or several partners at the same time, as occur in rats, or they can reproduce with different conspecifics throughout their life span. There are also monogamous species that only mate with one partner. One of the most studied socially monogamous species is the Prairie vole. In this species mating or cohabitation for long periods induces the formation of a long-lasting pair bond. Both males and females share the nest, show a preference for their sexual partner, display aggression to other males and females and display parental behavior towards their pups. This broad spectrum of reproductive strategies demonstrates the biological variability of sexual motivation and points out the importance of understanding the neurobiological basis of sexual motivational drives in different species.
Collapse
Affiliation(s)
- Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Raúl G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|