1
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
2
|
Fu HY, Wang J, Hu JX. Influence of physical education on anxiety, depression, and self-esteem among college students. World J Psychiatry 2023; 13:1121-1132. [PMID: 38186731 PMCID: PMC10768485 DOI: 10.5498/wjp.v13.i12.1121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Physical education is pivotal in our country's education reform. Urban schools have notably enhanced the intensity of physical education in recent years. However, the effects of physical education on students' anxiety, depression, and self-esteem levels, as well as their interrelations, remain unexplored. AIM To analyze the influence of physical education on students' anxiety, depression, and self-esteem. METHODS This study employed a cross-sectional design. A stratified cluster sampling method was used to select 478 first-year university students. Self-administered questionnaires were used to investigate the physical education status and basic information of college students. We used the Physical Activity Rank Scale-3 (PARS-3), Self-Rating Anxiety Scale (SAS), Self-Rating Depression Scale (SDS), and Self-Esteem Scale (SES) to assess the level of exercise, anxiety, depression, and self-esteem. Multiple Logistic regression was used to analyze the factors influencing anxiety, depression, and low self-esteem. The receiver operating characteristic curve and area under the curve (AUC) were used to evaluate the predictive ability of PARS-3 scores for anxiety, depression, and low self-esteem. Spearman's correlation was used to analyze the correlations among the PARS-3, SAS, SDS, and SES. RESULTS Compared with the domestic norms, SAS and SDS scores were higher, and SES scores were lower (P < 0.05). Among the participants, 210 (43.93%) had PARS-3 scores below 20, 94 (19.67%) had scores of 20-42, and 174 (36.40%) had scores above 42. After adjusting for daily sleep time, gender, being an only child, major, father's educational background, mother's educational background, and family residence, PARS-3 scores were independent influencing factors for anxiety, depression, and low self-esteem (P < 0.05). The AUC of PARS-3 scores predicting anxiety, depression, and low self-esteem were 0.805 (0.760-0.849), 0.799 (0.755-0.843), and 0.831 (0.788-0.874), respectively. The sensitivities were 0.799, 0.801, and 0.748, and the specificities were 0.743, 0.716, and 0.814, respectively. PARS-3 was negatively correlated with SAS and SDS scores (r = -0.566, -0.621, both P < 0.001) and positively correlated with SES scores (r = -0.621, P < 0.001). SES scores were negatively correlated with SAS and SDS scores (r = -0.508, r = -0.518, both P < 0.001). CONCLUSION The amount of physical activity is negatively correlated with anxiety and depression degree and positively correlated with self-esteem degree.
Collapse
Affiliation(s)
- Hai-Yan Fu
- School of Physical Education, Guangzhou Sport University, Guangzhou 510500, Guangdong Province, China
| | - Jing Wang
- School of Physical Education, Guangzhou Sport University, Guangzhou 510500, Guangdong Province, China
| | - Jia-Xi Hu
- School of Physical Education, Guangzhou Sport University, Guangzhou 510500, Guangdong Province, China
| |
Collapse
|
3
|
Reisz JA, Dzieciatkowska M, Stephenson D, Gamboni F, Morton DH, D’Alessandro A. Red Blood Cells from Individuals with Lesch-Nyhan Syndrome: Multi-Omics Insights into a Novel S162N Mutation Causing Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency. Antioxidants (Basel) 2023; 12:1699. [PMID: 37760001 PMCID: PMC10525117 DOI: 10.3390/antiox12091699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Lesch-Nyhan syndrome (LN) is an is an X-linked recessive inborn error of metabolism that arises from a deficiency of purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT). The disease manifests severely, causing intellectual deficits and other neural abnormalities, hypercoagulability, uncontrolled self-injury, and gout. While allopurinol is used to alleviate gout, other symptoms are less understood, impeding treatment. Herein, we present a high-throughput multi-omics analysis of red blood cells (RBCs) from three pediatric siblings carrying a novel S162N HPRT1 mutation. RBCs from both parents-the mother, a heterozygous carrier, and the father, a clinically healthy control-were also analyzed. Global metabolite analysis of LN RBCs shows accumulation of glycolytic intermediates upstream of pyruvate kinase, unsaturated fatty acids, and long chain acylcarnitines. Similarly, highly unsaturated phosphatidylcholines are also elevated in LN RBCs, while free choline is decreased. Intracellular iron, zinc, selenium, and potassium are also decreased in LN RBCs. Global proteomics documented changes in RBC membrane proteins, hemoglobin, redox homeostasis proteins, and the enrichment of coagulation proteins. These changes were accompanied by elevation in protein glutamine deamidation and methylation in the LN children and carrier mother. Treatment with allopurinol incompletely reversed the observed phenotypes in the two older siblings currently on this treatment. This unique data set provides novel opportunities for investigations aimed at potential therapies for LN-associated sequelae.
Collapse
Affiliation(s)
- Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| | - D. Holmes Morton
- Central Pennsylvania Clinic, A Medical Home for Special Children and Adults, Belleville, PA 17004, USA;
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.A.R.); (M.D.); (D.S.); (F.G.)
| |
Collapse
|
4
|
Pospieszna B, Kusy K, Slominska EM, Ciekot-Sołtysiak M, Zieliński J. Sports Participation Promotes Beneficial Adaptations in the Erythrocyte Guanylate Nucleotide Pool in Male Athletes Aged 20-90 Years. Clin Interv Aging 2023; 18:987-997. [PMID: 37377627 PMCID: PMC10292611 DOI: 10.2147/cia.s406555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction The guanine nucleotide pool (GTP, guanosine-5'-triphosphate; GDP, guanosine-5'-diphosphate, and GMP, guanosine-5'-monophosphate) is an essential energy donor in various biological processes (eg protein synthesis and gluconeogenesis) and secures several vital regulatory functions in the human body. The study aimed to predict the trends of age-related changes in erythrocyte guanine nucleotides and examine whether competitive sport and related physical training promote beneficial adaptations in erythrocyte guanylate concentrations. Methods The study included 86 elite endurance runners (EN) aged 20-81 years, 58 sprint-trained athletes (SP) aged 21-90 years, and 62 untrained individuals (CO) aged 20-68 years. Results The concentration of erythrocyte GTP and total guanine nucleotides (TGN) were highest in the SP group, lower in the EN group, and lowest in the CO group. Both athletic groups had higher guanylate energy charge (GEC) values than the CO group (p = 0.012). Concentrations of GTP, TGN, and GEC value significantly decreased, while GDP and GMP concentrations progressively increased with age. Conclusion Such a profile of change suggests a deterioration of the GTP-related regulatory function in older individuals. Our study explicitly shows that lifelong sports participation, especially of sprint-oriented nature, allows for maintaining a higher erythrocyte guanylate pool concentration, supporting cells' energy metabolism, regulatory and transcription properties, and thus more efficient overall body functioning.
Collapse
Affiliation(s)
- Barbara Pospieszna
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
| | - Krzysztof Kusy
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
| | | | - Monika Ciekot-Sołtysiak
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
| | - Jacek Zieliński
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
| |
Collapse
|
5
|
Liquid chromatographic methods in the determination of inosine monophosphate dehydrogenase enzyme activity: a review. Bioanalysis 2022; 14:1453-1470. [PMID: 36705020 DOI: 10.4155/bio-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a crucial enzyme involved in the de novo synthesis of purine nucleotides. IMPDH activity is used to evaluate the pharmacodynamics/pharmacokinetics of immunosuppressant drugs such as mycophenolic acid and thiopurines. These drugs are often used to prevent organ transplant rejection and as steroid-sparing agents in autoinflammatory diseases such as inflammatory bowel disease and rheumatoid arthritis. Numerous analytical techniques have been employed to evaluate IMPDH activity in biological matrices. However, hyphenated LC techniques were most widely used in the literature. This review focuses on hyphenated LC methods used to measure IMPDH activity and provides detailed insight into the sample preparation techniques, chromatographic conditions, enzymatic assay conditions, detectors and normalization factors employed in those methods.
Collapse
|
6
|
Miotto MC, Weninger G, Dridi H, Yuan Q, Liu Y, Wronska A, Melville Z, Sittenfeld L, Reiken S, Marks AR. Structural analyses of human ryanodine receptor type 2 channels reveal the mechanisms for sudden cardiac death and treatment. SCIENCE ADVANCES 2022; 8:eabo1272. [PMID: 35857850 PMCID: PMC9299551 DOI: 10.1126/sciadv.abo1272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/03/2022] [Indexed: 05/29/2023]
Abstract
Ryanodine receptor type 2 (RyR2) mutations have been linked to an inherited form of exercise-induced sudden cardiac death called catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT results from stress-induced sarcoplasmic reticular Ca2+ leak via the mutant RyR2 channels during diastole. We present atomic models of human wild-type (WT) RyR2 and the CPVT mutant RyR2-R2474S determined by cryo-electron microscopy with overall resolutions in the range of 2.6 to 3.6 Å, and reaching local resolutions of 2.25 Å, unprecedented for RyR2 channels. Under nonactivating conditions, the RyR2-R2474S channel is in a "primed" state between the closed and open states of WT RyR2, rendering it more sensitive to activation that results in stress-induced Ca2+ leak. The Rycal drug ARM210 binds to RyR2-R2474S, reverting the primed state toward the closed state. Together, these studies provide a mechanism for CPVT and for the therapeutic actions of ARM210.
Collapse
Affiliation(s)
- Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Miyamoto D, Sato N, Nagata K, Sakai Y, Sugihara H, Ohashi Y, Stiburkova B, Sebesta I, Ichida K, Okamoto K. Analysis of Purine Metabolism to Elucidate the Pathogenesis of Acute Kidney Injury in Renal Hypouricemia. Biomedicines 2022; 10:biomedicines10071584. [PMID: 35884889 PMCID: PMC9312704 DOI: 10.3390/biomedicines10071584] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Renal hypouricemia is a disease caused by the dysfunction of renal urate transporters. This disease is known to cause exercise-induced acute kidney injury, but its mechanism has not yet been established. To analyze the mechanism by which hypouricemia causes renal failure, we conducted a semi-ischemic forearm exercise stress test to mimic exercise conditions in five healthy subjects, six patients with renal hypouricemia, and one patient with xanthinuria and analyzed the changes in purine metabolites. The results showed that the subjects with renal hypouricemia had significantly lower blood hypoxanthine levels and increased urinary hypoxanthine excretion after exercise than healthy subjects. Oxidative stress markers did not differ between healthy subjects and hypouricemic subjects before and after exercise, and no effect of uric acid as a radical scavenger was observed. As hypoxanthine is a precursor for adenosine triphosphate (ATP) production via the salvage pathway, loss of hypoxanthine after exercise in patients with renal hypouricemia may cause ATP loss in the renal tubules and consequent tissue damage.
Collapse
Affiliation(s)
- Daisuke Miyamoto
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (D.M.); (Y.S.)
| | - Nana Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (N.S.); (K.N.)
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (N.S.); (K.N.)
| | - Yukinao Sakai
- Department of Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan; (D.M.); (Y.S.)
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes, and Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan;
| | - Yuki Ohashi
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (Y.O.); (K.I.)
| | - Blanka Stiburkova
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 11000 Prague, Czech Republic;
| | - Ivan Sebesta
- Institute of Rheumatology, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, 11000 Prague, Czech Republic;
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (Y.O.); (K.I.)
- Division of Kidney and Hypertension, Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; (N.S.); (K.N.)
- Correspondence: ; Tel.: +81-3-5841-5035
| |
Collapse
|
8
|
Kosaki K, Kumamoto S, Tokinoya K, Yoshida Y, Sugaya T, Murase T, Akari S, Nakamura T, Nabekura Y, Takekoshi K, Maeda S. Xanthine Oxidoreductase Activity in Marathon Runners: Potential Implications for Marathon-Induced Acute Kidney Injury. J Appl Physiol (1985) 2022; 133:1-10. [DOI: 10.1152/japplphysiol.00669.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excess activation of circulating xanthine oxidoreductase (XOR) may contribute to the pathogenesis of widespread remote organ injury, including kidney injury. The purpose of this study was to determine the acute impact of marathon running on plasma XOR activity and to examine whether plasma XOR activity is associated with marathon-induced elevations in biomarkers of acute kidney injury (AKI). Twenty-three young men (aged 20-25 years) who participated in the 38th Tsukuba Marathon were included. Blood and urine samples were collected before, immediately, 2 h (only blood sample), and 24 h after a full marathon run. Plasma XOR activity was evaluated using a highly sensitive assay utilizing a combination of [13C2,15N2] xanthine and liquid chromatography-triple quadrupole mass spectrometry. The levels of several AKI biomarkers, such as serum creatinine and urinary liver-type fatty acid-binding protein (L-FABP) were measured in each participant. Marathon running caused a transient elevation in plasma XOR activity and levels of purine degradation products (hypoxanthine, xanthine, and uric acid) as well as serum creatinine, urinary albumin, and urinary L-FABP levels. Immediately after the marathon, individual relative changes in plasma XOR activity were independently correlated with corresponding changes in serum creatinine and urinary L-FABP levels. In addition, the magnitude of marathon-induced elevation in plasma XOR activity and levels of purine degradation products were higher in individuals who developed AKI. These findings collectively suggest that marathon running substantially influences the purine metabolism pathway including XOR activity. Moreover, activated circulating XOR can be partly associated with elevated biomarkers of AKI after marathon running.
Collapse
Affiliation(s)
- Keisei Kosaki
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Shota Kumamoto
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Katsuyuki Tokinoya
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- Graduate School of Human Health Science, Tokyo Metropolitan University, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yasuko Yoshida
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Tsukuba International University, Ibaraki, Japan
| | - Takeshi Sugaya
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Seigo Akari
- Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | | | - Yoshiharu Nabekura
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kazuhiro Takekoshi
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
9
|
Cruz R, Koch S, Matsuda M, Marquezini M, Sforça ML, Lima-Silva AE, Saldiva P, Koehle M, Bertuzzi R. Air pollution and high-intensity interval exercise: Implications to anti-inflammatory balance, metabolome and cardiovascular responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151094. [PMID: 34688752 DOI: 10.1016/j.scitotenv.2021.151094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
High-intensity interval exercise (HIIE) is an effective non-pharmacological tool for improving physiological responses related to health. When HIIE is performed in urban centers, however, the exerciser is exposed to traffic-related air pollution (TRAP), which is associated with metabolic, anti-inflammatory imbalance and cardiovascular diseases. This paradoxical combination has the potential for conflicting health effects. Thus, the aim of this study was to determine the effects of HIIE performed in TRAP exposure on serum cytokines, non-target metabolomics and cardiovascular parameters. Fifteen participants performed HIIE in a chamber capable to deliver filtered air (FA condition) or non-filtered air (TRAP condition) from a polluted site adjacent to the exposure chamber. Non-target blood serum metabolomics, blood serum cytokines and blood pressure analyses were collected in both FA and TRAP conditions at baseline, 10 min after exercise, and 1 h after exercise. The TRAP increased IL-6 concentration by 1.7 times 1 h after exercise (p < 0.01) and did not change the anti-inflammatory balance (IL-10/TNF-α ratio). In contrast, FA led to an increase in IL-10 and IL-10/TNF-α ratio (p < 0.01), by 2.1 and 2.3 times, respectively. The enrichment analysis showed incomplete fatty acid metabolism under the TRAP condition (p < 0.05) 10 min after exercise. There was also an overactivity of ketone body metabolism (p < 0.05) at 10 min and at 1 h after exercise with TRAP. Exercise-induced acute decrease in systolic blood pressure (SBP) was not observed at 10 min and impaired at 1 h after exercise (p < 0.05). These findings reveal that TRAP potentially attenuates health benefits often related to HIIE. For instance, the anti-inflammatory balance was impaired, accompanied by accumulation of metabolites related to energy supply and reduction to exercise-induced decrease in SBP.
Collapse
Affiliation(s)
- Ramon Cruz
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil; Sports Center, Department of Physical Education, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Sarah Koch
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Universitat de Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Monique Matsuda
- Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Monica Marquezini
- Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil; Pro-Sangue Foundation, São Paulo, SP, Brazil
| | - Mauricio L Sforça
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Adriano E Lima-Silva
- Human Performance Research Group, Academic Department of Physical Education (DAEFI), Technological Federal University of Parana, Curitiba, PR, Brazil
| | - Paulo Saldiva
- Institute of Advanced Studies, University of São Paulo, São Paulo, SP, Brazil
| | - Michael Koehle
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Life-long sports engagement enhances adult erythrocyte adenylate energetics. Sci Rep 2021; 11:23759. [PMID: 34887502 PMCID: PMC8660807 DOI: 10.1038/s41598-021-03275-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
Regular physical activity reduces age-related metabolic and functional decline. The energy stored in adenine nucleotides (ATP, ADP, and AMP) is essential to enable multiple vital functions of erythrocytes and body tissues. Our study aimed to predict the rate of age-related changes in erythrocyte adenylate energetics in athletes and untrained controls. The erythrocyte concentration of adenylates was measured in 68 elite endurance runners (EN, 20–81 years), 58 elite sprinters (SP, 21–90 years), and 62 untrained individuals (CO, 20–68 years). Resting concentrations of ATP, total adenine nucleotide pool, and ADP/AMP ratio were lowest in the CO group and highest in the SP group. The concentration of erythrocyte ADP and AMP was lowest in the EN group and highest in the CO group. In all studied groups, we found a significant increase in the concentration of most erythrocyte adenylate metabolites with age. For ADP and AMP, the trend was also significant but decreasing. Our study strongly suggests that lifelong sports and physical activity participation supports erythrocyte energetics preservation. Although the direction and the predicted rates of change are similar regardless of the training status, the concentrations of particular metabolites are more advantageous in highly trained athletes than in less active controls. Of the two analyzed types of physical training, sprint-oriented training seems to be more efficient in enhancing erythrocyte metabolism throughout adulthood and old age than endurance training.
Collapse
|
11
|
Heiling S, Knutti N, Scherr F, Geiger J, Weikert J, Rose M, Jahns R, Ceglarek U, Scherag A, Kiehntopf M. Metabolite Ratios as Quality Indicators for Pre-Analytical Variation in Serum and EDTA Plasma. Metabolites 2021; 11:638. [PMID: 34564454 PMCID: PMC8465943 DOI: 10.3390/metabo11090638] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
In clinical diagnostics and research, blood samples are one of the most frequently used materials. Nevertheless, exploring the chemical composition of human plasma and serum is challenging due to the highly dynamic influence of pre-analytical variation. A prominent example is the variability in pre-centrifugation delay (time-to-centrifugation; TTC). Quality indicators (QI) reflecting sample TTC are of utmost importance in assessing sample history and resulting sample quality, which is essential for accurate diagnostics and conclusive, reproducible research. In the present study, we subjected human blood to varying TTCs at room temperature prior to processing for plasma or serum preparation. Potential sample QIs were identified by Ultra high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) based metabolite profiling in samples from healthy volunteers (n = 10). Selected QIs were validated by a targeted MS/MS approach in two independent sets of samples from patients (n = 40 and n = 70). In serum, the hypoxanthine/guanosine (HG) and hypoxanthine/inosine (HI) ratios demonstrated high diagnostic performance (Sensitivity/Specificity > 80%) for the discrimination of samples with a TTC > 1 h. We identified several eicosanoids, such as 12-HETE, 15-(S)-HETE, 8-(S)-HETE, 12-oxo-HETE, (±)13-HODE and 12-(S)-HEPE as QIs for a pre-centrifugation delay > 2 h. 12-HETE, 12-oxo-HETE, 8-(S)-HETE, and 12-(S)-HEPE, and the HI- and HG-ratios could be validated in patient samples.
Collapse
Affiliation(s)
- Sven Heiling
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (N.K.); (F.S.); (M.R.)
| | - Nadine Knutti
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (N.K.); (F.S.); (M.R.)
| | - Franziska Scherr
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (N.K.); (F.S.); (M.R.)
| | - Jörg Geiger
- Interdisciplinary Bank of Biological Material and Data Würzburg (IBDW), Straubmühlweg 2a, Haus A9, 97078 Würzburg, Germany; (J.G.); (R.J.)
| | - Juliane Weikert
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; (J.W.); (U.C.)
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany
| | - Michael Rose
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (N.K.); (F.S.); (M.R.)
| | - Roland Jahns
- Interdisciplinary Bank of Biological Material and Data Würzburg (IBDW), Straubmühlweg 2a, Haus A9, 97078 Würzburg, Germany; (J.G.); (R.J.)
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; (J.W.); (U.C.)
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany
| | - André Scherag
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Bachstrasse 18, 07743 Jena, Germany;
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics and Integrated Biobank Jena (IBBJ), University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (N.K.); (F.S.); (M.R.)
| |
Collapse
|
12
|
Dudzinska W, Lubkowska A. Changes in the Concentration of Purine and Pyridine as a Response to Single Whole-Body Cryostimulation. Front Physiol 2021; 12:634816. [PMID: 33584352 PMCID: PMC7873528 DOI: 10.3389/fphys.2021.634816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/08/2021] [Indexed: 11/29/2022] Open
Abstract
To our knowledge, this is the first study in which we provide evidence that a single whole-body cryostimulation treatment leads to changes associated with erythrocyte energy metabolism. These changes are beneficial from the point of view of cellular bioenergetics, because they are associated with an increase in ATP concentration and erythrocyte energy potential expressed by an increase in the ATP/ADP and ATP/AMP ratios and the value of adenylate energy charge (AEC). In addition, as affected by cryogenic temperatures, there is a decrease in the concentration of purine catabolism products, i.e., inosine and hypoxanthine in the blood.
Collapse
Affiliation(s)
- Wioleta Dudzinska
- Institute of Biology, University of Szczecin, Szczecin, Poland.,Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
13
|
Rodziewicz E, Król-Zielińska M, Zieliński J, Kusy K, Ziemann E. Plasma Concentration of Irisin and Brain-Derived-Neurotrophic Factor and Their Association With the Level of Erythrocyte Adenine Nucleotides in Response to Long-Term Endurance Training at Rest and After a Single Bout of Exercise. Front Physiol 2020; 11:923. [PMID: 32848864 PMCID: PMC7411220 DOI: 10.3389/fphys.2020.00923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
The study aimed to assess the effect of a single bout of incremental exercise on irisin and BDNF plasma concentrations as related to erythrocyte purine nucleotides concentration at rest and after exercise. Master endurance master athletes (training experience 38 ± 6 years) and a group of untrained participants completed a single bout of progressive incremental exercise test until exhaustion. The dual-energy x-ray absorptiometry and blood collection were performed. Blood was taken twice at rest and 10 min after exercise. Concentrations of ATP, ADP, and AMP were assessed in the erythrocytes. Hypoxanthine and uric acid were determined in plasma using the high-performance liquid chromatography. Plasma concentrations of irisin and BDNF were assessed through the immunoenzymatic method. The ATP level, ATP/ADP ratio and AEC value were significantly higher in the athletic group. A significantly higher concentration of BDNF was it also noted in the trained group that correlated with the erythrocyte energy status at rest. The single session of exercise induced a significant increase in ATP erythrocyte levels in both groups. Both exerkines significantly correlated at rest with red blood cell adenine nucleotides and degradation products (BDNF positively and irisin negatively). The blood concentration of BDNF and irisin, in response to exercise, was not significantly different between groups. Obtained data revealed a higher erythrocyte energy status and lower purine degradation products concentration in master athletes. Also resting plasma exerkines differed substantially between groups. In conclusion, long-term training resulted in exercise adaptation reflected by a higher erythrocyte energy status, lower purine degradation products concentration and modified concentration of exerkines (higher BDNF and lower irisin blood concentrations). Therefore, we consider the training-induced adaptations in master athletes to be beneficial and significant. The moderate level of physical activity in the untrained group, even if sufficient in terms of general health, did not cause any discernible changes.
Collapse
Affiliation(s)
- Ewa Rodziewicz
- Department of Physical Therapy and Biological Regeneration, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Magdalena Król-Zielińska
- Department of Physical Education and Lifelong Sports, Poznań University of Physical Education, Poznań, Poland
| | - Jacek Zieliński
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Krzysztof Kusy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
14
|
Tang F, Chen D, Zhang S, Hu W, Chen J, Zhou H, Zeng Z, Wang X. Elastic hysteresis loop acts as cell deformability in erythrocyte aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183309. [PMID: 32298678 DOI: 10.1016/j.bbamem.2020.183309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/22/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
The decrease in cellular deformability shows strong correlation with erythrocyte aging. Cell deformation can be divided into passive deformation and active deformation; however, the active deformation has been ignored in previous studies. In this work, Young's moduli of age-related erythrocytes were tested by atomic force microscopy. Furthermore, the deformation and passive and active deformation values were calculated by respective areas. Our results showed that erythrocytes in the densest fraction had the highest values of the Young's modulus, deformation, and active deformation, but the lowest values of passive deformation. Moreover, values of the deformation and active deformation both increased gradually with erythrocyte aging. The present data indicate that the elastic hysteresis loop between the approach and the retract curve could be regarded as erythrocyte deformability, and cellular deformability could be characterized by energy states. In addition, active deformation might be a crucial mechanical factor for clearing aged erythrocytes. This could provide an important information on erythrocyte biomechanics in the removal of aged cell.
Collapse
Affiliation(s)
- Fuzhou Tang
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing, PR China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medica University, Guizhou, PR China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guizhou, PR China
| | - Dong Chen
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing, PR China
| | - Shichao Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medica University, Guizhou, PR China
| | - Wenhui Hu
- School of Basic Medical Science, Guizhou Medical University, Guizhou, PR China
| | - Jin Chen
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medica University, Guizhou, PR China
| | - Houming Zhou
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guizhou, PR China
| | - Zhu Zeng
- School of Basic Medical Science, Guizhou Medical University, Guizhou, PR China.
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing, PR China.
| |
Collapse
|
15
|
A Translational In Vivo and In Vitro Metabolomic Study Reveals Altered Metabolic Pathways in Red Blood Cells of Type 2 Diabetes. J Clin Med 2020; 9:jcm9061619. [PMID: 32471219 PMCID: PMC7355709 DOI: 10.3390/jcm9061619] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022] Open
Abstract
Clinical parameters used in type 2 diabetes mellitus (T2D) diagnosis and monitoring such as glycosylated haemoglobin (HbA1c) are often unable to capture important information related to diabetic control and chronic complications. In order to search for additional biomarkers, we performed a pilot study comparing T2D patients with healthy controls matched by age, gender, and weight. By using 1H-nuclear magnetic resonance (NMR) based metabolomics profiling of red blood cells (RBCs), we found that the metabolic signature of RBCs in T2D subjects differed significantly from non-diabetic controls. Affected metabolites included glutathione, 2,3-bisphophoglycerate, inosinic acid, lactate, 6-phosphogluconate, creatine and adenosine triphosphate (ATP) and several amino acids such as leucine, glycine, alanine, lysine, aspartate, phenylalanine and tyrosine. These results were validated by an independent cohort of T2D and control patients. An analysis of the pathways in which these metabolites were involved showed that energetic and redox metabolism in RBCs were altered in T2D, as well as metabolites transported by RBCs. Taken together, our results revealed that the metabolic profile of RBCs can discriminate healthy controls from T2D patients. Further research is needed to determine whether metabolic fingerprint in RBC could be useful to complement the information obtained from HbA1c and glycemic variability as well as its potential role in the diabetes management.
Collapse
|
16
|
The Effect of Training on Erythrocyte Energy Status and Plasma Purine Metabolites in Athletes. Metabolites 2019; 10:metabo10010005. [PMID: 31861530 PMCID: PMC7022963 DOI: 10.3390/metabo10010005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
This study aimed to assess the changes in red blood cell (RBC) energy status and plasma purine metabolites concentration over a one-year training cycle in endurance-trained (EN; n = 11, 20–26 years), and sprint-trained (SP; n = 11, 20–30 years) competitive athletes in comparison to recreationally-trained individuals (RE; n = 11, 20–26 years). Somatic, physiological, and biochemical variables were measured in four training phases differing in exercise load profile: transition, general, specific, and competition. Significantly highest values of RBC adenylate energy charge (AEC; p ≤ 0.001), ATP-to-ADP and ADP-to-AMP ratios (p ≤ 0.05), and plasma levels of adenosine (Ado; p ≤ 0.05) were noted in the competition phase in the EN and SP, but not in the RE group. Significantly lowest plasma levels of adenosine diphosphate (ADP; p ≤ 0.05), adenosine monophosphate (AMP; p ≤ 0.001), inosine (Ino; p ≤ 0.001), and hypoxanthine (Hx; p ≤ 0.001) accompanied by higher erythrocyte hypoxanthine-guanine phosphoribosyltransferase (HGPRT) activity (p ≤ 0.001), were observed in the competition phase in both athletic groups. No significant alterations were found in the erythrocyte concentration of guanine nucleotides in any group. In conclusion, periodized training of competitive athletes’ results in a favorable adaptation of RBC metabolism. The observed changes cover improved RBC energy status (increased AEC and ATP/ADP ratio) and reduced purine loss with more efficient erythrocyte purine pool recovery (increased HGPRT activity and plasma levels of Ado; decreased Hx and Ino concentration).
Collapse
|
17
|
Kistner S, Rist MJ, Krüger R, Döring M, Schlechtweg S, Bub A. High-Intensity Interval Training Decreases Resting Urinary Hypoxanthine Concentration in Young Active Men-A Metabolomic Approach. Metabolites 2019; 9:metabo9070137. [PMID: 31295919 PMCID: PMC6680906 DOI: 10.3390/metabo9070137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/28/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022] Open
Abstract
High-intensity interval training (HIIT) is known to improve performance and skeletal muscle energy metabolism. However, whether the body’s adaptation to an exhausting short-term HIIT is reflected in the resting human metabolome has not been examined so far. Therefore, a randomized controlled intervention study was performed to investigate the effect of a ten-day HIIT on the resting urinary metabolome of young active men. Fasting spot urine was collected before (−1 day) and after (+1 day; +4 days) the training intervention and 65 urinary metabolites were identified by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Metabolite concentrations were normalized to urinary creatinine and subjected to univariate statistical analysis. One day after HIIT, no overall change in resting urinary metabolome, except a significant difference with decreasing means in urinary hypoxanthine concentration, was documented in the experimental group. As hypoxanthine is related to purine degradation, lower resting urinary hypoxanthine levels may indicate a training-induced adaptation in purine nucleotide metabolism.
Collapse
Affiliation(s)
- Sina Kistner
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
| | - Manuela J Rist
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Ralf Krüger
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Maik Döring
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| | - Sascha Schlechtweg
- Department of Sport and Exercise Science, University of Stuttgart, 70174 Stuttgart, Germany
| | - Achim Bub
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Lubkowska A, Bryczkowska I, Gutowska I, Rotter I, Marczuk N, Baranowska-Bosiacka I, Banfi G. The Effects of Swimming Training in Cold Water on Antioxidant Enzyme Activity and Lipid Peroxidation in Erythrocytes of Male and Female Aged Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040647. [PMID: 30813224 PMCID: PMC6406484 DOI: 10.3390/ijerph16040647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
The aim of this study was to verify whether eight-week-long swimming exercise training would evaluate the level of selected indicators of the pro-oxidant/antioxidant status in response to cold water in comparison with swimming under thermoneutral conditions in sedentary male and female elderly rats. The exercise-trained groups swam four min/day and five days a week during eight weeks of housing. Exercise was performed by swimming in glass tanks containing tap water maintained according to group at 5 °C and 36 °C. At the end of treatment (48 h after the last session), all rats were anaesthetized. The level of chosen biomarkers of oxidative stress and antioxidant enzyme activity was determined in the red blood cells and plasma. The results of study show that female rats seem to be better adapted to changing thermal conditions of the environment, developing not only morphological, but also antioxidant, defense mechanisms, mainly in the form of increased erythrocyte superoxide dismutase (SOD) activity and glutathione (GSH) concentration to restore the pro-oxidant/oxidant balance of the organism. Significantly higher concentrations of GSH were observed in the female rats of the group swimming in cold water (by 15.4% compared to the control group and by 20.5% in relation to the group of female rats swimming at 36 °C). In the group exposed to swimming training exercise in cold water, a significantly higher activity of SOD1 (by 13.4%) was found compared to the control group. On the other hand, the organs of ageing male rats show a reduced capacity to increase the metabolic response to low temperatures compared to female ones. In addition, it was demonstrated that cold exposure leads to an increase in lipid peroxidation in tissues. On the other hand, the repeated exposure to low levels of oxidative stress may result in some adaptive changes in organisms that help them to resist stress-induced damage.
Collapse
Affiliation(s)
- Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin; Żołnierska 54, 71-210 Szczecin, Poland.
| | - Iwona Bryczkowska
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin; Żołnierska 54, 71-210 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Faculty of Health Sciences, Pomeranian Medical University in Szczecin; Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Iwona Rotter
- Department of Medical Rehabilitation, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland.
| | - Natalia Marczuk
- Department of Microbiology, Immunology and Laboratory Medicine, Faculty of Medicine with English Language Teaching Department, Pomeranian Medical University in Szczecin; Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry, Faculty of Medicine with English Language Teaching Department, Pomeranian Medical University in Szczecin; Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi, 4, 20161 Milano, Italy.
- Vita-Salute San Raffaele University, Via Olgettina Milano, 58, 20132 Milano, Italy.
| |
Collapse
|