1
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Srikrishnaraj A, Lanting BA, Burton JP, Teeter MG. The Microbial Revolution in the World of Joint Replacement Surgery. JB JS Open Access 2024; 9:e23.00153. [PMID: 38638595 PMCID: PMC11023614 DOI: 10.2106/jbjs.oa.23.00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Background The prevalence of revision surgery due to aseptic loosening and periprosthetic joint infection (PJI) following total hip and knee arthroplasty is growing. Strategies to prevent the need for revision surgery and its associated health-care costs and patient morbidity are needed. Therapies that modulate the gut microbiota to influence bone health and systemic inflammation are a novel area of research. Methods A literature review of preclinical and clinical peer-reviewed articles relating to the role of the gut microbiota in bone health and PJI was performed. Results There is evidence that the gut microbiota plays a role in maintaining bone mineral density, which can contribute to osseointegration, osteolysis, aseptic loosening, and periprosthetic fractures. Similarly, the gut microbiota influences gut permeability and the potential for bacterial translocation to the bloodstream, increasing susceptibility to PJI. Conclusions Emerging evidence supports the role of the gut microbiota in the development of complications such as aseptic loosening and PJI after total hip or knee arthroplasty. There is a potential for microbial therapies such as probiotics or fecal microbial transplantation to moderate the risk of developing these complications. However, further investigation is required. Clinical Relevance Modulation of the gut microbiota may influence patient outcomes following total joint arthroplasty.
Collapse
Affiliation(s)
- Arjuna Srikrishnaraj
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Brent A. Lanting
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Jeremy P. Burton
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| | - Matthew G. Teeter
- Department of Surgery, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Bone and Joint Institute, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Hajian H, Motallebi M, Akhavan Taheri M, Kheiripour N, Aghadavod E, Shahaboddin ME. The preventive effect of heat-killed Lactobacillus plantarum on male reproductive toxicity induced by cholestasis in rats. Food Chem Toxicol 2024:114571. [PMID: 38452966 DOI: 10.1016/j.fct.2024.114571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
This study investigated the preventive effect of heat-killed Lactobacillus plantarum (L. plantarum) on cholestasis-induced male reproductive toxicity in rats. Rats were divided into control normal, sham control, bile duct ligation (BDL) control, and BDL with heat-killed L. plantarum supplementation groups. The effects on sexual hormones, testicular and epididymal histology, sperm parameters, oxidative stress markers, and inflammatory gene expression were evaluated. Compared to the BDL control group, the BDL + heat-killed L. plantarum group showed higher levels of normal sperm, luteinizing hormone, testosterone, total antioxidant capacity, and catalase activity, indicating improved reproductive function. Conversely, markers of oxidative stress, such as total oxidative status, oxidative stress index, and carbonyl protein, were lower in the BDL + heat-killed L. plantarum group. The expression levels of inflammatory genes tumor necrosis factor-alpha and interleukin-6 were reduced, while interleukin-10 gene expression was increased in the BDL + heat-killed L. plantarum group. Histological evaluation confirmed the positive effects of heat-killed L. plantarum intervention on testicular parameters. In conclusion, heat-killed L. plantarum supplementation protects against cholestasis-induced male reproductive dysfunction in rats, as evidenced by improvements in hormonal balance, sperm quality, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Hajar Hajian
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mitra Motallebi
- Department of Immunology and Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Akhavan Taheri
- Institute for Basic Sciences, Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Nejat Kheiripour
- Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Esmaeil Shahaboddin
- Department of Clinical Biochemistry, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Institute for Basic Sciences, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Huang C, Hao W, Wang X, Zhou R, Lin Q. Probiotics for the treatment of ulcerative colitis: a review of experimental research from 2018 to 2022. Front Microbiol 2023; 14:1211271. [PMID: 37485519 PMCID: PMC10358780 DOI: 10.3389/fmicb.2023.1211271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Ulcerative colitis (UC) has become a worldwide public health problem, and the prevalence of the disease among children has been increasing. The pathogenesis of UC has not been elucidated, but dysbiosis of the gut microbiota is considered the main cause of chronic intestinal inflammation. This review focuses on the therapeutic effects of probiotics on UC and the potential mechanisms involved. In animal studies, probiotics have been shown to alleviate symptoms of UC, including weight loss, diarrhea, blood in the stool, and a shortened colon length, while also restoring intestinal microecological homeostasis, improving gut barrier function, modulating the intestinal immune response, and attenuating intestinal inflammation, thereby providing theoretical support for the development of probiotic-based microbial products as an adjunctive therapy for UC. However, the efficacy of probiotics is influenced by factors such as the bacterial strain, dose, and form. Hence, the mechanisms of action need to be investigated further. Relevant clinical trials are currently lacking, so the extension of animal experimental findings to clinical application requires a longer period of consideration for validation.
Collapse
Affiliation(s)
- Cuilan Huang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Wujuan Hao
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Xuyang Wang
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| | - Renmin Zhou
- Department of Digestive, Affiliated Children’s Hospital of Jiangnan University, Wuxi, China
| | - Qiong Lin
- Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi Children’s Hospital, Wuxi, China
| |
Collapse
|
5
|
Roach LA, Meyer BJ, Fitton JH, Winberg P. Oral Supplementation with Algal Sulphated Polysaccharide in Subjects with Inflammatory Skin Conditions: A Randomised Double-Blind Placebo-Controlled Trial and Baseline Dietary Differences. Mar Drugs 2023; 21:379. [PMID: 37504910 PMCID: PMC10381427 DOI: 10.3390/md21070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
We examined the effect of a dietary seaweed extract-sulfated xylorhamnoglucuronan (SXRG84)-on individuals with inflammatory skin conditions. A subgroup analysis of a larger trial was undertaken, where 44 participants with skin conditions were enrolled in a double-blind placebo-controlled crossover design. Subjects ingested either SXRG84 extract (2 g/day) for six weeks and placebo for six weeks, or vice versa. At baseline, six- and twelve-weeks inflammatory markers and the gut microbiota were assessed, as well as skin assessments using the dermatology quality of life index (DQLI), psoriasis area severity index (PASI) and visual analogue scales (VAS). There were significant differences at weeks six and twelve for pro-inflammatory cytokines IFN-γ (p = 0.041), IL-1β (p = 0.030), TNF-α (p = 0.008) and the anti-inflammatory cytokine IL-10 (p = 0.026), determined by ANCOVA. These cytokines were all significantly higher at six weeks post placebo compared to twelve weeks post placebo followed by SXRG84 treatment. A total of 23% of participants reported skin improvements, as measured by VAS (mean difference 3.1, p = 0.0005) and the DQLI score (mean difference -2.0, p = 0.049), compared to the 'non-responders'. Thus, the ingestion of SXRG84 for 6 weeks reduced inflammatory cytokines, and a subset of participants saw improvements.
Collapse
Affiliation(s)
- Lauren A Roach
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Barbara J Meyer
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | - Pia Winberg
- Venus Shell Systems Pty Ltd., Nowra, NSW 2540, Australia
| |
Collapse
|
6
|
Yu L, Pan J, Guo M, Duan H, Zhang H, Narbad A, Zhai Q, Tian F, Chen W. Gut microbiota and anti-aging: Focusing on spermidine. Crit Rev Food Sci Nutr 2023; 64:10419-10437. [PMID: 37326367 DOI: 10.1080/10408398.2023.2224867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The human gut microbiota plays numerous roles in regulating host growth, the immune system, and metabolism. Age-related changes in the gut environment lead to chronic inflammation, metabolic dysfunction, and illness, which in turn affect aging and increase the risk of neurodegenerative disorders. Local immunity is also affected by changes in the gut environment. Polyamines are crucial for cell development, proliferation, and tissue regeneration. They regulate enzyme activity, bind to and stabilize DNA and RNA, have antioxidative properties, and are necessary for the control of translation. All living organisms contain the natural polyamine spermidine, which has anti-inflammatory and antioxidant properties. It can regulate protein expression, prolong life, and improve mitochondrial metabolic activity and respiration. Spermidine levels experience an age-related decrease, and the development of age-related diseases is correlated with decreased endogenous spermidine concentrations. As more than just a consequence, this review explores the connection between polyamine metabolism and aging and identifies advantageous bacteria for anti-aging and metabolites they produce. Further research is being conducted on probiotics and prebiotics that support the uptake and ingestion of spermidine from food extracts or stimulate the production of polyamines by gut microbiota. This provides a successful strategy to increase spermidine levels.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Jiani Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan UniversityWuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Bonnechère B. Integrating Rehabilomics into the Multi-Omics Approach in the Management of Multiple Sclerosis: The Way for Precision Medicine? Genes (Basel) 2022; 14:63. [PMID: 36672802 PMCID: PMC9858788 DOI: 10.3390/genes14010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Over recent years, significant improvements have been made in the understanding of (epi)genetics and neuropathophysiological mechanisms driving the different forms of multiple sclerosis (MS). For example, the role and importance of the bidirectional communications between the brain and the gut-also referred to as the gut-brain axis-in the pathogenesis of MS is receiving increasing interest in recent years and is probably one of the most promising areas of research for the management of people with MS. However, despite these important advances, it must be noted that these data are not-yet-used in rehabilitation. Neurorehabilitation is a cornerstone of MS patient management, and there are many techniques available to clinicians and patients, including technology-supported rehabilitation. In this paper, we will discuss how new findings on the gut microbiome could help us to better understand how rehabilitation can improve motor and cognitive functions. We will also see how the data gathered during the rehabilitation can help to get a better diagnosis of the patients. Finally, we will discuss how these new techniques can better guide rehabilitation to lead to precision rehabilitation and ultimately increase the quality of patient care.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium;
- Technology-Supported and Data-Driven Rehabilitation, Data Science Institute, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
8
|
Bonnechère B, Amin N, van Duijn C. What Are the Key Gut Microbiota Involved in Neurological Diseases? A Systematic Review. Int J Mol Sci 2022; 23:ijms232213665. [PMID: 36430144 PMCID: PMC9696257 DOI: 10.3390/ijms232213665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
There is a growing body of evidence highlighting there are significant changes in the gut microbiota composition and relative abundance in various neurological disorders. We performed a systematic review of the different microbiota altered in a wide range of neurological disorders (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and stroke). Fifty-two studies were included representing 5496 patients. At the genus level, the most frequently involved microbiota are Akkermansia, Faecalibacterium, and Prevotella. The overlap between the pathologies was strongest for MS and PD, sharing eight genera (Akkermansia, Butyricicoccus, Bifidobacterium, Coprococcus, Dorea, Faecalibacterium, Parabacteroides, and Prevotella) and PD and stroke, sharing six genera (Enterococcus, Faecalibacterium, Lactobacillus, Parabacteroides, Prevotella, and Roseburia). The identification signatures overlapping for AD, PD, and MS raise the question of whether these reflect a common etiology or rather common consequence of these diseases. The interpretation is hampered by the low number and low power for AD, ALS, and stroke with ample opportunity for false positive and false negative findings.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Correspondence:
| |
Collapse
|
9
|
Abstract
The gut microbiome is a contributory factor in ageing-related health loss and in several non-communicable diseases in all age groups. Some age-linked and disease-linked compositional and functional changes overlap, while others are distinct. In this Review, we explore targeted studies of the gut microbiome of older individuals and general cohort studies across geographically distinct populations. We also address the promise of the targeted restoration of microorganisms associated with healthier ageing.
Collapse
Affiliation(s)
- Tarini Shankar Ghosh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
- Department of Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland.
- School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
10
|
Park SK, Kang SB, Kim S, Kim TO, Cha JM, Im JP, Choi CH, Kim ES, Seo GS, Eun CS, Han DS, Park DI. Additive effect of probiotics (Mutaflor) on 5-aminosalicylic acid therapy in patients with ulcerative colitis. Korean J Intern Med 2022; 37:949-957. [PMID: 36068716 PMCID: PMC9449212 DOI: 10.3904/kjim.2021.458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/03/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS In ulcerative colitis (UC) patients, Escherichia coli Nissle 1917 (EcN) is equivalent to mesalazine for preventing disease relapse; however, evidence of the ability of EcN to increase health-related quality of life or induce remission remains scarce. We investigated the efficacy of EcN as an add-on therapy for UC. METHODS In this multicentre, double-blind, randomised, placebo-controlled study, a total of 133 UC patients were randomly assigned to receive either EcN or placebo once daily for 8 weeks. Inflammatory bowel disease questionnaire (IBDQ) scores (primary endpoint) and clinical remission and response rates (secondary endpoints) were compared (Clinical trial registration number: NCT04969679). RESULTS In total, 118 patients (EcN, 58; placebo, 60) completed the study. The number of patients reaching the primary endpoint did not differ between the EcN and placebo groups (30 [51.7%] vs. 31 [51.7%]; per-protocol analysis, p = 1.0; intention-to-treat analysis, p = 0.86). However, significantly fewer patients in the EcN group exhibited a decreased IBDQ score (1 [1.7%] vs. 8 [13.3%]; per-protocol analysis, p = 0.03; intention- to-treat analysis, p = 0.02). Moreover, a significantly higher number of patients in the EcN group displayed clinical response at 4 weeks (23 [39.7%] vs. 13 [21.7%], p = 0.04) and endoscopic remission at 8 weeks (26 [46.4%] vs. 16 [27.1%], p = 0.03). CONCLUSION Although the number of patients reaching the primary endpoint did not differ between the EcN and placebo groups, EcN was found to be safe and effective in preventing the exacerbation of IBDQ scores and achieving clinical responses and endoscopic remission in patients with mild-to-moderate UC.
Collapse
Affiliation(s)
- Soo-Kyung Park
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Sang-Bum Kang
- Division of Gastroenterology, Department of Internal Medicine, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon,
Korea
| | - SangSoo Kim
- Department of Bioinformatics, Soongsil University, Seoul,
Korea
| | - Tae Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, Busan,
Korea
| | - Jae Myung Cha
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Seoul,
Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul,
Korea
| | - Eun Soo Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu,
Korea
| | - Geom Seog Seo
- Department of Internal Medicine, Digestive Disease Research Institute, Wonkwang University School of Medicine, Iksan,
Korea
| | - Chang Soo Eun
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri,
Korea
| | - Dong Soo Han
- Department of Internal Medicine, Hanyang University Guri Hospital, Guri,
Korea
| | - Dong Il Park
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| |
Collapse
|
11
|
Liu L, Chen X, Liu L, Qin H. Clostridium butyricum Potentially Improves Immunity and Nutrition through Alteration of the Microbiota and Metabolism of Elderly People with Malnutrition in Long-Term Care. Nutrients 2022; 14:3546. [PMID: 36079806 PMCID: PMC9460359 DOI: 10.3390/nu14173546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Recent research advances examining the gut microbiome and its association with human health have indicated that microbiota-targeted intervention is a promising means for health modulation. In this study, elderly people in long-term care (aged 83.2 ± 5.3 year) with malnutrition (MNA-SF score ≤ 7) were recruited in a community hospital for a 12-week randomized, single-blind clinical trial with Clostridium butyricum. Compared with the basal fluctuations of the control group, an altered gut microbiome was observed in the intervention group, with increased (p < 0.05) Coprobacillus species, Carnobacterium divergens, and Corynebacterium_massiliense, and the promoted growth of the beneficial organisms Akketmanse muciniphila and Alistipes putredinis. A concentrated profile of 14 increased Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologs (KOs) that were enriched in cofactor/vitamin production and carbohydrate metabolism pathways were discovered; the genes were found to be correlated (p < 0.05) with an elevated abundance of plasma metabolites and short-chain fatty acids (SCFAs), unsaturated medium- to long-chain fatty acids (MFA, LFA), carnitines, and amino acids, thus suggesting a coordinated ameliorated metabolism. Proinflammatory factor interferon-gamma (IFN-γ) levels decreased (p < 0.05) throughout the intervention, while the gut barrier tight junction protein, occludin, rose in abundance (p = 0.059), and the sensitive nutrition biomarker prealbumin improved, in contrast to the opposite changes in control. Based on our results obtained during a relatively short intervention time, C. butyricum might have great potential for improving nutrition and immunity in elderly people in long-term care with malnutrition through the alteration of gut microbiota, increasing the abundance of beneficial bacteria and activating the metabolism in SCFA and cofactor/vitamin production, bile acid metabolism, along with efficient energy generation.
Collapse
Affiliation(s)
- Lin Liu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiang Chen
- Realbio Genomics Institute, Shanghai 200123, China
| | - Lu Liu
- Pengpu Community Medical Service Center, Shanghai 200436, China
| | - Huanlong Qin
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
12
|
Gulliver EL, Young RB, Chonwerawong M, D'Adamo GL, Thomason T, Widdop JT, Rutten EL, Rossetto Marcelino V, Bryant RV, Costello SP, O'Brien CL, Hold GL, Giles EM, Forster SC. Review article: the future of microbiome-based therapeutics. Aliment Pharmacol Ther 2022; 56:192-208. [PMID: 35611465 PMCID: PMC9322325 DOI: 10.1111/apt.17049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND From consumption of fermented foods and probiotics to emerging applications of faecal microbiota transplantation, the health benefit of manipulating the human microbiota has been exploited for millennia. Despite this history, recent technological advances are unlocking the capacity for targeted microbial manipulation as a novel therapeutic. AIM This review summarises the current developments in microbiome-based medicines and provides insight into the next steps required for therapeutic development. METHODS Here we review current and emerging approaches and assess the capabilities and weaknesses of these technologies to provide safe and effective clinical interventions. Key literature was identified through Pubmed searches with the following key words, 'microbiome', 'microbiome biomarkers', 'probiotics', 'prebiotics', 'synbiotics', 'faecal microbiota transplant', 'live biotherapeutics', 'microbiome mimetics' and 'postbiotics'. RESULTS Improved understanding of the human microbiome and recent technological advances provide an opportunity to develop a new generation of therapies. These therapies will range from dietary interventions, prebiotic supplementations, single probiotic bacterial strains, human donor-derived faecal microbiota transplants, rationally selected combinations of bacterial strains as live biotherapeutics, and the beneficial products or effects produced by bacterial strains, termed microbiome mimetics. CONCLUSIONS Although methods to identify and refine these therapeutics are continually advancing, the rapid emergence of these new approaches necessitates accepted technological and ethical frameworks for measurement, testing, laboratory practices and clinical translation.
Collapse
Affiliation(s)
- Emily L. Gulliver
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Remy B. Young
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Gemma L. D'Adamo
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Tamblyn Thomason
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - James T. Widdop
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Emily L. Rutten
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Vanessa Rossetto Marcelino
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| | - Robert V. Bryant
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Samuel P. Costello
- Department of GastroenterologyThe Queen Elizabeth HospitalWoodvilleSouth AustraliaAustralia,School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | | | - Georgina L. Hold
- Microbiome Research Centre, St George & Sutherland Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - Edward M. Giles
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia,Department of PaediatricsMonash UniversityClaytonVictoriaAustralia
| | - Samuel C. Forster
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVictoriaAustralia,Department of Molecular and Translational SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
13
|
De Giani A, Sandionigi A, Zampolli J, Michelotti A, Tursi F, Labra M, Di Gennaro P. Effects of Inulin-Based Prebiotics Alone or in Combination with Probiotics on Human Gut Microbiota and Markers of Immune System: A Randomized, Double-Blind, Placebo-Controlled Study in Healthy Subjects. Microorganisms 2022; 10:microorganisms10061256. [PMID: 35744774 PMCID: PMC9229734 DOI: 10.3390/microorganisms10061256] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 01/01/2023] Open
Abstract
The gut microbiota is implicated in diverse interactions affecting human health. The present study reports a randomized, double-blind, placebo-controlled clinical study conducted by administering a new synbiotic formulation composed of two Lactobacillus strains (L. plantarum and L. acidophilus) and one Bifidobacterium strain (B. animalis subsp. lactis) and two types of fructans (fructo-oligosaccharides with a degree of polymerization of 3–5 and inulin-type fructans with 10 DP). The effects of this synbiotic were evaluated on healthy subjects for 28 days and the maintenance of its efficacy was evaluated at the end of a follow-up period of 28 days. The synbiotic treatment contributes to higher biodiversity of the gut microbiota, increasing the community richness with respect to the group with the prebiotics alone and the placebo group. Its positive effect is also reflected in the variation of microbial community structure favoring the beneficial short-chain fatty acids bacterial producers. The amelioration of the health status of the subjects was also established by the reduction of common infectious disease symptom incidence, the stimulation of the gut immune system showing a noteworthy variation of fecal β-defensin2 and calprotectin levels, and the modulation of the response of the respiratory tract’s immune system by salivary IgA as well as total antioxidant capacity biomarkers.
Collapse
Affiliation(s)
- Alessandra De Giani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, MI, Italy; (A.D.G.); (A.S.); (J.Z.); (M.L.)
| | - Anna Sandionigi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, MI, Italy; (A.D.G.); (A.S.); (J.Z.); (M.L.)
| | - Jessica Zampolli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, MI, Italy; (A.D.G.); (A.S.); (J.Z.); (M.L.)
| | - Angela Michelotti
- Complife Italia S.r.l., Via Angelini 21, 27028 San Martino Siccomario, PV, Italy; (A.M.); (F.T.)
| | - Francesco Tursi
- Complife Italia S.r.l., Via Angelini 21, 27028 San Martino Siccomario, PV, Italy; (A.M.); (F.T.)
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, MI, Italy; (A.D.G.); (A.S.); (J.Z.); (M.L.)
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, MI, Italy; (A.D.G.); (A.S.); (J.Z.); (M.L.)
- Correspondence: ; Tel.: +39-0264482949; Fax: +39-0264483450
| |
Collapse
|
14
|
Lee S, You H, Lee Y, Baik H, Paik J, Lee H, Park S, Shim J, Lee J, Hyun S. Intake of MPRO3 over 4 Weeks Reduces Glucose Levels and Improves Gastrointestinal Health and Metabolism. Microorganisms 2021; 10:microorganisms10010088. [PMID: 35056536 PMCID: PMC8780283 DOI: 10.3390/microorganisms10010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Abstract
Human gut microbiota are involved in different metabolic processes, such as digestion and nutrient synthesis, among others. For the elderly, supplements are a major means of maintaining health and improving intestinal homeostasis. In this study, 51 elderly women were administered MPRO3 (n = 17), a placebo (n = 16), or both (MPRO3: 1 week, placebo: 3 weeks; n = 18) for 4 weeks. The fecal microbiota were analyzed by sequencing the 16S rRNA gene V3–V4 super-variable region. The dietary fiber intake increased, and glucose levels decreased with 4-week MPRO3 intake. Reflux, indigestion, and diarrhea syndromes gradually improved with MPRO3 intake, whereas constipation was maintained. The stool shape also improved. Bifidobacterium animalis, B. pseudolongum, Lactobacillus plantarum, and L. paracasei were relatively more abundant after 4 weeks of MPRO3 intake than in those subjects after a 1-week intake. Bifidobacterium and B. longum abundances increased after 1 week of MPRO3 intake but decreased when the intake was discontinued. Among different modules and pathways, all 10 modules analyzed showed a relatively high association with 4-week MPRO3 intake. The mineral absorption pathway and cortisol biosynthesis and secretion pathways correlated with the B. animalis and B. pseudolongum abundances at 4 weeks. Therefore, 4-week MPRO3 intake decreased the fasting blood glucose level and improved intestinal health and metabolism.
Collapse
Affiliation(s)
- Songhee Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
| | - Heesang You
- Department of Senior Healthcare, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea;
| | - Yeongju Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
| | - Haingwoon Baik
- Department of Biochemistry and Molecular Biology, Graduate School, Eulji University School of Medicine, Daejeon 34824, Korea;
| | - Jeankyung Paik
- Department of Food and Nutrition, Graduate School, Eulji University, Seongnam 13135, Korea;
| | - Hayera Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Soodong Park
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Jaejung Shim
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Junglyoul Lee
- R&BD Center, hy Co., Ltd., 22, Giheungdanji-ro 24beon-gil, Giheung-gu, Yongin-si 17086, Korea; (H.L.); (S.P.); (J.S.); (J.L.)
| | - Sunghee Hyun
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea; (S.L.); (Y.L.)
- Department of Senior Healthcare, Graduate School, Eulji University, 712, Dongil-ro, Uijeongbu-si 11759, Korea;
- Correspondence: ; Tel.: +82-10-9412-8853
| |
Collapse
|
15
|
In-Vitro Characterization of Growth Inhibition against the Gut Pathogen of Potentially Probiotic Lactic Acid Bacteria Strains Isolated from Fermented Products. Microorganisms 2021; 9:microorganisms9102141. [PMID: 34683462 PMCID: PMC8537437 DOI: 10.3390/microorganisms9102141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Lactic acid bacteria (LAB) are probiotic candidates that may restore the balance of microbiota populations in intestinal microbial ecosystems by controlling pathogens and thereby promoting host health. The goal of this study was to isolate potential probiotic LAB strains and characterize their antimicrobial abilities against pathogens in intestinal microbiota. Among 54 LAB strains isolated from fermented products, five LAB strains (NSMJ15, NSMJ16, NSMJ23, NSMJ42, and NFFJ04) were selected as potential probiotic candidates based on in vitro assays of acid and bile salt tolerance, cell surface hydrophobicity, adhesion to the intestinal epithelium, and antagonistic activity. Phylogenetic analysis based on 16S rRNA genes showed that they have high similarities of 99.58-100% to Lacticaseibacillus paracasei strains NSMJ15 and NFFJ04, Lentilactobacillus parabuchneri NSMJ16, Levilactobacillus brevis NSMJ23, and Schleiferilactobacillus harbinensis NSMJ42. To characterize their antimicrobial abilities against pathogens in intestinal microbiota, the impact of cell-free supernatant (CFS) treatment in 10% (v/v) fecal suspensions prepared using pooled cattle feces was investigated using in vitro batch cultures. Bacterial community analysis using rRNA amplicon sequencing for control and CFS-treated fecal samples at 8 and 16 h incubation showed the compositional change after CFS treatment for all five LAB strains. The changed compositions were similar among them, but there were few variable increases or decreases in some bacterial groups. Interestingly, as major genera that could exhibit pathogenicity and antibiotic resistance, the members of Bacillus, Escherichia, Leclercia, Morganella, and Vagococcus were decreased at 16 h in all CFS-treated samples. Species-level classification suggested that the five LAB strains are antagonistic to gut pathogens. This study showed the probiotic potential of the five selected LAB strains; in particular, their antimicrobial properties against pathogens present in the intestinal microbiota. These strains would therefore seem to play an important role in modulating the intestinal microbiome of the host.
Collapse
|
16
|
Bifidobacterium Longum: Protection against Inflammatory Bowel Disease. J Immunol Res 2021; 2021:8030297. [PMID: 34337079 PMCID: PMC8324359 DOI: 10.1155/2021/8030297] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), increases gradually worldwide in the past decades. IBD is generally associated with the change of the immune system and gut microbiota, and the conventional treatments usually result in some side effects. Bifidobacterium longum, as colonizing bacteria in the intestine, has been demonstrated to be capable of relieving colitis in mice and can be employed as an alternative or auxiliary way for treating IBD. Here, the mechanisms of the Bifidobacterium longum in the treatment of IBD were summarized based on previous cell and animal studies and clinical trials testing bacterial therapies. This review will be served as a basis for future research on IBD treatment.
Collapse
|
17
|
Gut microbiota and aging-A focus on centenarians. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165765. [DOI: 10.1016/j.bbadis.2020.165765] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/10/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
|
18
|
Stable Colonization of Orally Administered Lactobacillus casei SY13 Alters the Gut Microbiota. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5281639. [PMID: 32104695 PMCID: PMC7040389 DOI: 10.1155/2020/5281639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/08/2020] [Indexed: 01/23/2023]
Abstract
The gut microbiota plays an important role in intestinal health. Probiotics such as Lactobacillus are known to regulate gut microbes and prevent diseases. However, most of them are unable to colonize their stability in hosts' intestinal tracts. In this study, we investigated the ability of Lactobacillus casei SY13 (SY13) to colonize the intestinal tract of BALB/c mice, after its oral administration for a short-term (once for a day) and long-term (once daily for 27 days) duration. Furthermore, we also evaluated the influence of its administration on the gut microbial structure and diversity in mice. Male BALB/c mice were gavaged with 108 colony-forming units (CFU) of SY13, and TaqMan-MGB probe and Illumina MiSeq sequencing were performed to assess the colonization ability and bacterial community structure in the cecum contents. The results showed that long-term treatment with SY13 enhanced its ability to form a colony in the intestine tract in contrast to the short-term treatment group, whose colony was retained for only 3 days. Oral administration of SY13 also significantly enhanced the gut microbial diversity. Short-term treatment with SY13 (SSY13) elevated Firmicutes and diminished Bacteroidetes phyla compared with long-term treatment (LSY13) and controls. The findings laid the foundation for the study of probiotic colonization ability and improvement of microbiota for the prevention of gut diseases.
Collapse
|
19
|
Ruiz‐Ruiz S, Sanchez‐Carrillo S, Ciordia S, Mena MC, Méndez‐García C, Rojo D, Bargiela R, Zubeldia‐Varela E, Martínez‐Martínez M, Barbas C, Ferrer M, Moya A. Functional microbiome deficits associated with ageing: Chronological age threshold. Aging Cell 2020; 19:e13063. [PMID: 31730262 PMCID: PMC6974723 DOI: 10.1111/acel.13063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/05/2023] Open
Abstract
Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well-defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4-fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e-8 ). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2 > .987) and progressively decrease with age (r2 > .948). An age threshold for a 50% decrease is observed ca. 11-31 years old, and a greater than 90% reduction is observed from the ages of 34-54 years. Based on recent investigations linking tryptophan with abundance of indole and other "healthy" longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively "young" age of 34 and, particularly, in the elderly are recommended.
Collapse
Affiliation(s)
- Susana Ruiz‐Ruiz
- Unidad Mixta de Investigación en Genómica y SaludFundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) and Instituto de Biología Integrativa de SistemasUniversitat de València and Consejo Superior de Investigaciones Científicas (CSIC)ValènciaSpain
- CIBER en Epidemiología y Salud Pública (CIBERESP)MadridSpain
| | | | - Sergio Ciordia
- Unidad de ProteómicaCentro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - María C. Mena
- Unidad de ProteómicaCentro Nacional de BiotecnologíaConsejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Celia Méndez‐García
- Instituto de CatálisisConsejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad CEU San Pablo, Campus MontepríncipeMadridSpain
| | - Rafael Bargiela
- Instituto de CatálisisConsejo Superior de Investigaciones Científicas (CSIC)MadridSpain
- Present address:
School of Natural ScienceBangor UniversityBangorUK
| | - Elisa Zubeldia‐Varela
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad CEU San Pablo, Campus MontepríncipeMadridSpain
- Departamento de Ciencias Médicas BásicasFacultad de MedicinaUniversidad CEU San PabloMadridSpain
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO)Facultad de FarmaciaUniversidad CEU San Pablo, Campus MontepríncipeMadridSpain
| | - Manuel Ferrer
- Instituto de CatálisisConsejo Superior de Investigaciones Científicas (CSIC)MadridSpain
| | - Andrés Moya
- Unidad Mixta de Investigación en Genómica y SaludFundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) and Instituto de Biología Integrativa de SistemasUniversitat de València and Consejo Superior de Investigaciones Científicas (CSIC)ValènciaSpain
- CIBER en Epidemiología y Salud Pública (CIBERESP)MadridSpain
| |
Collapse
|
20
|
Fehlbaum S, Chassard C, Schwab C, Voolaid M, Fourmestraux C, Derrien M, Lacroix C. In vitro Study of Lactobacillus paracasei CNCM I-1518 in Healthy and Clostridioides difficile Colonized Elderly Gut Microbiota. Front Nutr 2019; 6:184. [PMID: 31921877 PMCID: PMC6914822 DOI: 10.3389/fnut.2019.00184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
Consumption of probiotic bacteria can result in a transient colonization of the human gut and thereby in potential interactions with the commensal microbiota. In this study, we used novel PolyFermS continuous fermentation models to investigate interactions of the candidate probiotic strain Lactobacillus paracasei CNCM I-1518 (L. paracasei) with colonic microbiota from healthy elderly subjects using 16S rRNA gene amplicon sequencing and metatranscriptomics, or with microbiota in vitro-colonized with Clostridioides difficile (C. difficile NCTC 13307 and C. difficile DSM 1296)—an enteropathogen prevalent in the elderly population. Small changes in microbiota composition were detected upon daily addition of L. paracasei, including increased abundances of closely related genera Lactobacillus and Enterococcus, and of the butyrate producer Faecalibacterium. Microbiota gene expression was also modulated by L. paracasei with distinct response of the Faecalibacterium transcriptome and an increase in carbohydrate utilization. However, no inhibitory effect of L. paracasei was observed on C. difficile colonization in the intestinal models under the tested conditions. Our data suggest that, in the in vitro experimental conditions tested and independent of the host, L. paracasei has modulatory effects on both the composition and function of elderly gut microbiota without affecting C. difficile growth and toxin production.
Collapse
Affiliation(s)
- Sophie Fehlbaum
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Chassard
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Clarissa Schwab
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Maarja Voolaid
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | | | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Mills S, Lane JA, Smith GJ, Grimaldi KA, Ross RP, Stanton C. Precision Nutrition and the Microbiome Part II: Potential Opportunities and Pathways to Commercialisation. Nutrients 2019; 11:E1468. [PMID: 31252674 PMCID: PMC6683087 DOI: 10.3390/nu11071468] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Modulation of the human gut microbiota through probiotics, prebiotics and dietary fibre are recognised strategies to improve health and prevent disease. Yet we are only beginning to understand the impact of these interventions on the gut microbiota and the physiological consequences for the human host, thus forging the way towards evidence-based scientific validation. However, in many studies a percentage of participants can be defined as 'non-responders' and scientists are beginning to unravel what differentiates these from 'responders;' and it is now clear that an individual's baseline microbiota can influence an individual's response. Thus, microbiome composition can potentially serve as a biomarker to predict responsiveness to interventions, diets and dietary components enabling greater opportunities for its use towards disease prevention and health promotion. In Part I of this two-part review, we reviewed the current state of the science in terms of the gut microbiota and the role of diet and dietary components in shaping it and subsequent consequences for human health. In Part II, we examine the efficacy of gut-microbiota modulating therapies at different life stages and their potential to aid in the management of undernutrition and overnutrition. Given the significance of an individual's gut microbiota, we investigate the feasibility of microbiome testing and we discuss guidelines for evaluating the scientific validity of evidence for providing personalised microbiome-based dietary advice. Overall, this review highlights the potential value of the microbiome to prevent disease and maintain or promote health and in doing so, paves the pathway towards commercialisation.
Collapse
Affiliation(s)
- Susan Mills
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Jonathan A Lane
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | - Graeme J Smith
- H&H Group, Technical Centre, Global Research and Technology Centre, Cork P61 C996, Ireland.
| | | | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland.
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Food Research Centre, Fermoy P61 C996, Co Cork, Ireland.
| |
Collapse
|
22
|
McCombe PA, Henderson RD, Lee A, Lee JD, Woodruff TM, Restuadi R, McRae A, Wray NR, Ngo S, Steyn FJ. Gut microbiota in ALS: possible role in pathogenesis? Expert Rev Neurother 2019; 19:785-805. [PMID: 31122082 DOI: 10.1080/14737175.2019.1623026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: The gut microbiota has important roles in maintaining human health. The microbiota and its metabolic byproducts could play a role in the pathogenesis of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Areas covered: The authors evaluate the methods of assessing the gut microbiota, and also review how the gut microbiota affects the various physiological functions of the gut. The authors then consider how gut dysbiosis could theoretically affect the pathogenesis of ALS. They present the current evidence regarding the composition of the gut microbiota in ALS and in rodent models of ALS. Finally, the authors review therapies that could improve gut dysbiosis in the context of ALS. Expert opinion: Currently reported studies suggest some instances of gut dysbiosis in ALS patients and mouse models; however, these studies are limited, and more information with well-controlled larger datasets is required to make a definitive judgment about the role of the gut microbiota in ALS pathogenesis. Overall this is an emerging field that is worthy of further investigation. The authors advocate for larger studies using modern metagenomic techniques to address the current knowledge gaps.
Collapse
Affiliation(s)
- Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,School of Medicine, The University of Queensland , Brisbane , Australia
| | - Robert D Henderson
- Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,School of Medicine, The University of Queensland , Brisbane , Australia.,Queensland Brain Institute, The University of Queensland , Brisbane , Australia
| | - Aven Lee
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Restuadi Restuadi
- Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Allan McRae
- Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Naomi R Wray
- Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Shyuan Ngo
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia
| |
Collapse
|