1
|
Ju IJ, Tsai BCK, Kuo WW, Kuo CH, Lin YM, Hsieh DJY, Pai PY, Huang SE, Lu SY, Lee SD, Huang CY. Rhodiola and Salidroside Attenuate Oxidative Stress-Triggered H9c2 Cardiomyoblast Apoptosis Through IGF1R-Induced ERK1/2 Activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:5150-5161. [PMID: 39109685 DOI: 10.1002/tox.24372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 06/08/2024] [Indexed: 10/17/2024]
Abstract
Oxidative stress is a pivotal factor in the pathogenesis of various cardiovascular diseases. Rhodiola, a traditional Chinese medicine, is recognized for its potent antioxidant properties. Salidroside, a phenylpropanoid glycoside derived from Rhodiola rosea, has shown remarkable antioxidant capabilities. This study aimed to elucidate the potential protective mechanisms of Rhodiola and salidroside against H2O2-induced cardiac apoptosis in H9c2 cardiomyoblast cells. H9c2 cells were exposed to H2O2 for 4 h, and subsequently treated with Rhodiola or salidroside for 24 h. Cell viability and apoptotic pathways were assessed. The involvement of insulin-like growth factor 1 receptor (IGF1R) and the activation of extracellular regulated protein kinases 1/2 (ERK1/2) were investigated. H2O2 (100 μM) exposure significantly induced cardiac apoptosis in H9c2 cells. However, treatment with Rhodiola (12.5, 25, and 50 μg/mL) and salidroside (0.1, 1, and 10 nM) effectively attenuated H2O2-induced cytotoxicity and apoptosis. This protective effect was associated with IGF1R-activated phosphorylation of ERK1/2, leading to the inhibition of Fas-dependent proteins, HIF-1α, Bax, and Bak expression in H9c2 cells. The images from hematoxylin and eosin staining and immunofluorescence assays also revealed the protective effects of Rhodiola and salidroside in H9c2 cells against oxidative damage. Our findings suggest that Rhodiola and salidroside possess antioxidative properties that mitigate H2O2-induced apoptosis in H9c2 cells. The protective mechanisms involve the activation of IGF1R and subsequent phosphorylation of ERK1/2. These results propose Rhodiola and salidroside as potential therapeutic agents for cardiomyocyte cytotoxicity and apoptosis induced by oxidative stress in heart diseases. Future studies may explore their clinical applications in cardiac health.
Collapse
Affiliation(s)
- I-Ju Ju
- Division of General Medicine, Department of Medical Education, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, Jiangsu, China
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-En Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shin-Da Lee
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, Shandong, China
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
2
|
Khan S, Ahmad F, Khalid N. Applications of Strain-Specific Probiotics in the Management of Cardiovascular Diseases: A Systemic Review. Mol Nutr Food Res 2024; 68:e2300675. [PMID: 38549453 DOI: 10.1002/mnfr.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/14/2024] [Indexed: 05/08/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of global mortality and novel approaches for prevention and management are needed. The human gastrointestinal tract hosts a diverse microbiota that is crucial in maintaining metabolic homeostasis. The formulation of effective probiotics, alone or in combination, has been under discussion due to their impact on cardiovascular and metabolic diseases. Probiotics have been shown to impact cardiovascular health positively. An imbalance in the presence of Firmicutes and Bacteroidetes has been linked to the progression of CVDs due to their impact on bile acid and cholesterol metabolism. The probiotics primarily help in the reduction of plasma low-density lipoprotein levels and attenuation of the proinflammatory markers. These beneficial microorganisms contribute to lowering cholesterol levels and produce essential short-chain fatty acids. The impact of lipid-regulating probiotic strains on human health is quite significant. However, only a few have been tested for potential beneficial efficacy, and ambiguity exists regarding strain dosages, interactions with confounding factors, and potential adverse effects. Hence, more comprehensive studies and randomized trials are needed to understand the mechanisms of probiotics on CVDs and to ensure human health. This review assesses the evidence and highlights the roles of strain-specific probiotics in the management of CVDs.
Collapse
Affiliation(s)
- Saleha Khan
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nauman Khalid
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000, Pakistan
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911, United Arab Emirates
| |
Collapse
|
3
|
Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, Xiang W, Hao W, Sun L. Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials. BMC Med 2024; 22:110. [PMID: 38475833 PMCID: PMC10935932 DOI: 10.1186/s12916-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Jinsong Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ge Cui
- Department of Epidemiology and Statistics, School of Public Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Lin JY, Tsai BCK, Kao HC, Chiang CY, Chen YA, Chen WST, Ho TJ, Yao CH, Kuo WW, Huang CY. Neuroprotective Effects of Probiotic Lactobacillus reuteri GMNL-263 in the Hippocampus of Streptozotocin-Induced Diabetic Rats. Probiotics Antimicrob Proteins 2023; 15:1287-1297. [PMID: 36044175 DOI: 10.1007/s12602-022-09982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 11/27/2022]
Abstract
Diabetes-related brain complications have been reported in clinical patients and experimental models. The objective of the present study was to investigate the neuroprotective mechanisms of Lactobacillus reuteri GMNL-263 in streptozotocin (STZ)-induced diabetic rats. In this study, three different groups, namely control group, STZ-induced (55 mg/kg streptozotocin intraperitoneally) diabetic rats (DM), and DM rats treated with Lactobacillus reuteri GMNL-263 (1 × 109 CFU/rat/day), were utilized to study the protective effect of GMNL-263 in the hippocampus of STZ-induced diabetic rats. The results demonstrated that GMNL-263 attenuated diabetes-induced hippocampal damage by enhancing the cell survival pathways and repressing both inflammatory and apoptotic pathways. Histopathological analysis revealed that GMNL-263 prevented structural changes in the hippocampus in the DM group and decreased the level of inflammation and apoptosis in the hippocampus of DM rats. The IGF1R cell survival signaling pathway also improved after GMNL-263 treatment. These results indicate that probiotic GMNL-263 exerts beneficial effects in the brain of diabetic rats and has potential ability for clinical application.
Collapse
Affiliation(s)
- Jing-Ying Lin
- Department of Medical Imaging and Radiological Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hui-Chuan Kao
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Chien-Yi Chiang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yun-An Chen
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
| | - William Shao-Tsu Chen
- Department of Psychiatry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Hsu Yao
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Center of General Education, Tzu Chi University of Science and Technology, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
5
|
Mirfeizi Z, Mahmoudi M, Faridzadeh A. Probiotics as a complementary treatment in systemic lupus erythematosus: A systematic review. Health Sci Rep 2023; 6:e1640. [PMID: 37877130 PMCID: PMC10591540 DOI: 10.1002/hsr2.1640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that primarily affects young women. SLE has no recognized etiology but it is believed to be triggered by a number of factors, including genetic predisposition, hormonal influences, and environmental conditions. Dysbiosis in the gut microbiota has emerged as a potential mechanism connecting the intestinal microbiome to the breakdown of self-tolerance and chronic inflammation. This review aims to investigate the role of probiotics in modulating the gut microbiome and their potential therapeutic benefits in managing SLE, providing insights for future research and clinical practice. Methods We conducted a thorough search for papers published up to June 2023 in databases such as PubMed/MEDLINE, Web of Science, Scopus, and Cochrane Library. Results The systematic review identified 22 articles examining the effects of probiotics on SLE. These studies-which include in vivo tests, in vitro research, and clinical trials-indicate that probiotics may be effective against inflammation, and improve immunological responses and metabolic profiles in SLE patients. Most in vivo studies were assessed as medium to high quality, while the randomized controlled trial was deemed of high quality. Conclusion According to the findings of our systematic review, probiotics may be used in conjunction with other treatments to manage SLE. Nonetheless, current data is limited, and more randomized controlled trials would be required to fully examine their effectiveness.
Collapse
Affiliation(s)
- Zahra Mirfeizi
- Rheumatology Department, Rheumatic Diseases Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahmoud Mahmoudi
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Arezoo Faridzadeh
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
6
|
Luo Z, Chen A, Xie A, Liu X, Jiang S, Yu R. Limosilactobacillus reuteri in immunomodulation: molecular mechanisms and potential applications. Front Immunol 2023; 14:1228754. [PMID: 37638038 PMCID: PMC10450031 DOI: 10.3389/fimmu.2023.1228754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Frequent use of hormones and drugs may be associated with side-effects. Recent studies have shown that probiotics have effects on the prevention and treatment of immune-related diseases. Limosilactobacillus reuteri (L. reuteri) had regulatory effects on intestinal microbiota, host epithelial cells, immune cells, cytokines, antibodies (Ab), toll-like receptors (TLRs), tryptophan (Try) metabolism, antioxidant enzymes, and expression of related genes, and exhibits antibacterial and anti-inflammatory effects, leading to alleviation of disease symptoms. Although the specific composition of the cell-free supernatant (CFS) of L. reuteri has not been clarified, its efficacy in animal models has drawn increased attention to its potential use. This review summarizes the effects of L. reuteri on intestinal flora and immune regulation, and discusses the feasibility of its application in atopic dermatitis (AD), asthma, necrotizing enterocolitis (NEC), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS), and provides insights for the prevention and treatment of immune-related diseases.
Collapse
Affiliation(s)
- Zichen Luo
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Ailing Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Anni Xie
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Xueying Liu
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Shanyu Jiang
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Renqiang Yu
- Department of Neonatology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
7
|
Lei Y, Liu Q, Li Q, Zhao C, Zhao M, Lu Q. Exploring the Complex Relationship Between Microbiota and Systemic Lupus Erythematosus. Curr Rheumatol Rep 2023; 25:107-116. [PMID: 37083877 DOI: 10.1007/s11926-023-01102-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by various autoantibodies and multi-organ. Microbiota dysbiosis in the gut, skin, oral, and other surfaces has a significant impact on SLE development. This article summarizes relevant research and provides new microbiome-related strategies for exploring the mechanisms and treating patients with SLE. RECENT FINDINGS SLE patients have disruptions in multiple microbiomes, with the gut microbiota (bacteria, viruses, and fungi) and their metabolites being the most thoroughly researched. This dysbiosis can promote SLE progression through mechanisms such as the leaky gut, molecular mimicry, and epigenetic regulation. Notwithstanding study constraints on the relationship between microbiota and SLE, specific interventions targeting the gut microbiota, such as probiotics, dietary management, and fecal microbiota transplantation, have emerged as promising SLE therapeutics.
Collapse
Affiliation(s)
- Yu Lei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianmei Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Qilin Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
- Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Lu SY, Tsai BCK, Van Thao D, Lai CH, Chen MYC, Kuo WW, Kuo CH, Lin KH, Hsieh DJY, Huang CY. Cardiac-specific overexpression of insulin-like growth factor II receptor-α interferes with the regulation of calcium homeostasis in the heart under hyperglycemic conditions. Mol Biol Rep 2023; 50:4329-4338. [PMID: 36928640 DOI: 10.1007/s11033-023-08327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy is a progressive disease caused by inexplicit mechanisms, and a novel factor, insulin-like growth factor II receptor-α (IGF-IIRα), may contribute to aggravating its pathogenesis. We hypothesized that IGF-IIRα could intensify diabetic heart injury. METHODS AND RESULTS To demonstrate the potential role of IGF-IIRα in the diabetic heart, we used (SD-TG [IGF-IIRα]) transgenic rat model with cardiac-specific overexpression of IGF-IIRα, along with H9c2 cells, to study the effects of IGF-IIRα in the heart under hyperglycemic conditions. IGF-IIRα was found to remodel calcium homeostasis and intracellular Ca2+ overload-induced autophagy disturbance in the heart during diabetes. IGF-IIRα overexpression induced intracellular Ca2+ alteration by downregulating phosphorylated phospholamban/sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a (PLB/SERCA2a), resulting in the suppression of Ca2+ uptake into the endoplasmic reticulum. Additionally, IGF-IIRα itself contributed to Ca2+ withdrawal from the endoplasmic reticulum by increasing the expression of CaMKIIδ in the active form. Furthermore, alterations in Ca2+ homeostasis significantly dysregulated autophagy in the heart during diabetes. CONCLUSIONS Our study reveals the novel role of IGF-IIRα in regulating cardiac intracellular Ca2+ homeostasis and its related autophagy interference, which contribute to the development of diabetic cardiomyopathy. In future, the present study findings have implications in the development of appropriate therapy to reduce diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shang-Yeh Lu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dao Van Thao
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chin-Hu Lai
- Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Kuan-Ho Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
9
|
Lai CH, Van Thao D, Tsai BCK, Hsieh DJY, Chen MYC, Kuo WW, Kuo CH, Lu SY, Liao SC, Lin KH, Huang CY. Insulin-like growth factor II receptor alpha overexpression in heart aggravates hyperglycemia-induced cardiac inflammation and myocardial necrosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:676-684. [PMID: 36462176 DOI: 10.1002/tox.23717] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Diabetes-induced cardiovascular complications are mainly associated with high morbidity and mortality in patients with diabetes. Insulin-like growth factor II receptor α (IGF-IIRα) is a cardiac risk factor. In this study, we hypothesized IGF-IIRα could also deteriorate diabetic heart injury. The results presented that both in vivo transgenic Sprague-Dawley rat model with specific IGF-IIRα overexpression in the heart and in vitro myocardium H9c2 cells were used to investigate the negative function of IGF-IIRα in diabetic hearts. The results showed that IGF-IIRα overexpression aided hyperglycemia in creating more myocardial injury. Pro-inflammatory factors, such as Tumor necrosis factor-alpha, Interleukin-6, Cyclooxygenase-2, Inducible nitric oxide synthase, and Nuclear factor-kappaB inflammatory cascade, are enhanced in the diabetic myocardium with cardiac-specific IGF-IIRα overexpression. Correspondingly, IGF-IIRα overexpression in the diabetic myocardium also reduced the PI3K-AKT survival axis and activated mitochondrial-dependent apoptosis. Finally, both ejection fraction and fractional shortening were be significantly decrease in diabetic rats with cardiac-specific IGF-IIRα overexpression. Overall, all results provid clear evidence that IGF-IIRα can enhance cardiac damage and is a harmful factor to the heart under high-blood glucose conditions. However, the pathophysiology of IGF-IIRα under different stresses and its downstream regulation in the heart still require further research.
Collapse
Affiliation(s)
- Chin-Hu Lai
- Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
- Center of General Education is division, National Defense Medical Center, Taipei, Taiwan
| | - Dao Van Thao
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, Virginia, USA
| | - Shang-Yeh Lu
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Chieh Liao
- Department of Social Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
10
|
Lu SY, Hong WZ, Tsai BCK, Chang YC, Kuo CH, Mhone TG, Chen RJ, Kuo WW, Huang CY. Angiotensin II prompts heart cell apoptosis via AT1 receptor-augmented phosphatase and tensin homolog and miR-320-3p functions to enhance suppression of the IGF1R-PI3K-AKT survival pathway. J Hypertens 2022; 40:2502-2512. [PMID: 36093879 PMCID: PMC9640294 DOI: 10.1097/hjh.0000000000003285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hypertension is a severe public health risk factor worldwide. Elevated angiotensin II (Ang II) produced by the renin-angiotensin-aldosterone system can lead to hypertension and its complications. METHOD In this study, we addressed the cardiac-injury effects of Ang II and investigated the signaling mechanism induced by Ang II. Both H9c2 cardiomyoblast cells and neonatal rat cardiomyocytes were exposed to Ang II to observe hypertension-related cardiac apoptosis. RESULTS The results of western blotting revealed that Ang II significantly attenuated the IGF1R-PI3K-AKT pathway via the Ang II-AT1 receptor axis and phosphatase and tensin homolog expression. Furthermore, real-time PCR showed that Ang II also activated miR-320-3p transcription to repress the PI3K-Akt pathway. In the heart tissue of spontaneously hypertensive rats, activation of the IGF1R survival pathway was also reduced compared with that in Wistar-Kyoto rats, especially in aged spontaneously hypertensive rats. CONCLUSION Hence, we speculate that the Ang II-AT1 receptor axis induces both phosphatase and tensin homolog and miR-320-3p expression to downregulate the IGF1R-PI3K-AKT survival pathway and cause cell apoptosis in the heart.
Collapse
Affiliation(s)
- Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung
| | - Wei-Zhi Hong
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Yu-Chun Chang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, Institute of Sports Sciences, University of Taipei
| | - Thomas G. Mhone
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University
- PhD Program for Biotechnology Industry, China Medical University
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Zhan Y, Liu Q, Zhang B, Huang X, Lu Q. Recent advances in systemic lupus erythematosus and microbiota: from bench to bedside. Front Med 2022; 16:686-700. [DOI: 10.1007/s11684-022-0957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
|
12
|
Ju DT, Tsai BCK, Sitorus MA, Kuo WW, Kuo CH, Chen TS, Hsieh DJY, Ho TJ, Huang CY, Wang CH. Curcumin-Pretreated Adipose-Derived Stem Cells Enhance the Neuroprotective Ability to Repair Rheumatoid Arthritis-Induced Damage in the Rat Brain. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1299-1314. [PMID: 35726142 DOI: 10.1142/s0192415x22500549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neurodegenerative diseases have become increasingly prevalent in the aged population. Rheumatoid arthritis (RA) is an autoimmune disease that causes systemic inflammation, damaging the neurons. However, only a few treatment options can reduce RA-induced neurodegeneration. This study aimed to evaluate whether adipose-derived stem cells (ADSCs) pretreated with curcumin could ameliorate RA-induced neurodegenerative illness in an RA rat model. Wistar rats were randomly classified into the following four groups: control, RA, RA + ADSC (1 × 106 cells per rat), and RA + curcumin-pretreated ADSC (1 × 106 cells per rat). After treatment for two months, the effects were specifically evaluated in the brains collected from the rats. Our results demonstrated that the transplantation of curcumin-pretreated ADSCs substantially reduced inflammation and apoptosis in the cortices of RA rats compared to those of other groups. Thus, the combination of ADSCs and curcumin exerts a synergistic effect in enhancing neuronal protection in RA rats. In the future, this combination therapeutic strategy can potentially be used as a novel treatment method to reduce RA-induced neurodegenerative disorders.
Collapse
Affiliation(s)
- Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Maria Angelina Sitorus
- Cardiovascular and Mitochondrial Related Disease Research Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Tung-Sheng Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Chien-Hao Wang
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
13
|
Chen Y, Lin J, Xiao L, Zhang X, Zhao L, Wang M, Li L. Gut microbiota in systemic lupus erythematosus: A fuse and a solution. J Autoimmun 2022; 132:102867. [PMID: 35932662 DOI: 10.1016/j.jaut.2022.102867] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
Gut commensals help shape and mold host immune system and deeply influence human health. The disease spectrum of mankind that gut microbiome may associate with is ever-growing, but the mechanisms are still enigmas. Characterized by loss of self-tolerance and sustained self-attack, systemic lupus erythematosus (SLE) is labeled with chronic inflammation, production of autoantibodies and multisystem injury, which so far are mostly incurable. Gut microbiota and their metabolites, now known as important environmental triggers of local/systemic immune responses, have been proposed to be involved in SLE development and progression probably through the following mechanisms: translocation beyond their niches; molecular mimicry to cross-activate immune response targeting self-antigens; epitope spreading to expand autoantibodies spectrum; and bystander activation to promote systemic inflammation. Gut microbiota which varies between individuals may also influence the metabolism and bio-transformation of disease-modifying anti-rheumatic drugs, thus associated with the efficacy and toxicity of these drugs, adding another explanation for heterogenic therapeutic responses. Modulation of gut microbiota via diet, probiotics/prebiotics, antibiotics/phages, fecal microbiota transplantation, or helminth to restore immune tolerance and homeostasis is expected to be a promising neoadjuvant therapy for SLE. We reviewed the advances in this territory and discussed the application prospect of modulating gut microbiota in controlling SLE.
Collapse
Affiliation(s)
- Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1 Da Hua Road, Dong Dan, Beijing, 100730, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, 100730, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1 Da Hua Road, Dong Dan, Beijing, 100730, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
| |
Collapse
|
14
|
Epigallocatechin-3-Gallate Pretreatment Improves Autologous Adipose-derived Stem Cells Against Rheumatoid Arthritis-induced Neuroinflammation in the Brain of Collagen-induced Rats. Neurotox Res 2022; 40:1223-1234. [PMID: 35829999 DOI: 10.1007/s12640-022-00544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Adipose tissue-derived mesenchymal stem cells (ADSC) exert neuroprotective and anti-inflammatory effects. ADSCs are considered potential therapeutics for rheumatoid arthritis (RA), an inflammatory, multisystemic autoimmune disease. Epigallocatechin-3-gallate (EGCG), the major polyphenolic compound in green tea, has strong anti-inflammatory and antioxidant properties. This study aimed to investigate whether EGCG has a synergistic effect on the neuroprotective effects of ADSCs to protect the RA-damaged brain. Wistar rats were classified into four groups: sham, RA, RA + ADSCs (1 × 106 cells per rat), and RA + EGCG (10 µM)-pretreated ADSCs. After 2 months of treatment, the brain tissues from the rats were collected and investigated. The brains of RA rats had higher inflammation and apoptosis. ADSC treatment ameliorated these negative effects significantly; however, the neuroprotective abilities of EGCG-pretreated ADSCs were significantly higher than ADSCs. Furthermore, the RA-induced repression of the PI3K/Akt survival pathway was reactivated by EGCG-pretreated ADSCs. Collectively, this study provides evidence that EGCG synergistically enhances the neuroprotective ability of ADSCs to repress the negative effects of RA on the brain. These findings could help develop new therapeutic strategies against RA or other neurodegenerative diseases after clinical validation in the future.
Collapse
|
15
|
Wang W, Fan Y, Wang X. Lactobacillus: Friend or Foe for Systemic Lupus Erythematosus? Front Immunol 2022; 13:883747. [PMID: 35677055 PMCID: PMC9168270 DOI: 10.3389/fimmu.2022.883747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
The cause of Systemic Lupus Erythematosus (SLE) remains largely unknown, despite the fact that it is well understood that a complex interaction between genes and environment is required for disease development. Microbiota serve as activators and are essential to immune homeostasis. Lactobacillus is thought to be an environmental agent affecting the development of SLE. However, beneficial therapeutic and anti-inflammatory effects of Lactobacillus on SLE were also explored. The discovery of Lactobacillus involvement in SLE will shed light on how SLE develops, as well as finding microbiota-targeted biomarkers and novel therapies. In this review, we attempt to describe the two sides of Lactobacillus in the occurrence, development, treatment and prognosis of SLE. We also discuss the effect of different strains Lactobacillus on immune cells, murine lupus, and patients. Finally, we try to illustrate the potential immunological mechanisms of Lactobacillus on SLE and provide evidence for further microbiota-targeted therapies.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yongsheng Fan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
Guo X, Yang X, Li Q, Shen X, Zhong H, Yang Y. The Microbiota in Systemic Lupus Erythematosus: An Update on the Potential Function of Probiotics. Front Pharmacol 2021; 12:759095. [PMID: 34887760 PMCID: PMC8650621 DOI: 10.3389/fphar.2021.759095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a kind of chronic diffuse connective tissue illness characterized by multisystem and multiorgan involvement, repeated recurrence and remission, and the presence of a large pool of autoantibodies in the body. Although the exact cause of SLE is not thoroughly revealed, accumulating evidence has manifested that intake of probiotics alters the composition of the gut microbiome, regulating the immunomodulatory and inflammatory response, which may be linked to the disease pathogenesis. Particularly, documented experiments demonstrated that SLE patients have remarkable changes in gut microbiota compared to healthy controls, indicating that the alteration of microbiota may be implicated in different phases of SLE. In this review, the alteration of microbiota in the development of SLE is summarized, and the mechanism of intestinal microbiota on the progression of immune and inflammatory responses in SLE is also discussed. Due to limited reports on the effects of probiotics supplementation in SLE patients, we emphasize advancements made in the last few years on the function and mechanisms of probiotics in the development of SLE animal models. Besides, we follow through literature to survey whether probiotics supplements can be an adjuvant therapy for comprehensive treatment of SLE. Research has indicated that intake of probiotics alters the composition of the gut microbiome, contributing to prevent the progression of SLE. Adjustment of the gut microbiome through probiotics supplementation seems to alleviate SLE symptoms and their cardiovascular and renal complications in animal models, marking this treatment as a potentially novel approach.
Collapse
Affiliation(s)
- Xirui Guo
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huiyun Zhong
- Department of Pharmacy, Sichuan Vocational College of Health and Rehabilitation, Zigong, China.,Department of Pharmacy, The First People's Hospital of Zigong, Zigong, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Chiang CJ, Tsai BCK, Lu TL, Chao YP, Day CH, Ho TJ, Wang PN, Lin SC, Padma VV, Kuo WW, Huang CY. Diabetes-induced cardiomyopathy is ameliorated by heat-killed Lactobacillus reuteri GMNL-263 in diabetic rats via the repression of the toll-like receptor 4 pathway. Eur J Nutr 2021; 60:3211-3223. [PMID: 33555373 DOI: 10.1007/s00394-020-02474-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Diabetes mellitus (DM) leads to disorders such as cardiac hypertrophy, cardiac myocyte apoptosis, and cardiac fibrosis. Previous studies have shown that Lactobacillus reuteri GMNL-263 decreases cardiomyopathy by reducing inflammation. In this study, we investigated the potential benefit of GMNL-263 supplementation in treating diabetes-induced cardiomyocytes in rats with DM. METHODS Five-week-old male Wistar rats were randomly divided into three groups, control, DM, and rats with DM treated with different dosages of L. reuteri GMNL-263. After undergoing treatment for 4 weeks, all rats were euthanized for further analysis. RESULTS We observed that cardiac function and structure of rats with DM was rescued by GMNL-263. Activation of toll-like receptor 4 (TLR4)-related inflammatory, hypertrophic, and fibrotic signaling pathways in the hearts of rats with DM was reduced by treatment with GMNL-263. CONCLUSION Our findings demonstrate that GMNL-263 inhibited diabetes-induced cardiomyocytes via the repression of the TLR4 pathway. Moreover, these findings suggest that treatment with high-dose GMNL-263 could be a precautionary therapy for reducing the diabetes-induced cardiomyopathy.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tzu-Li Lu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | | | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Pin-Ning Wang
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Sheng-Chuan Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
18
|
Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol 2021; 11:608377. [PMID: 33569055 PMCID: PMC7868421 DOI: 10.3389/fimmu.2020.608377] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.
Collapse
Affiliation(s)
- Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|