1
|
Stany B, Mishra S, Tharani PV, Sarkar A, Mandal AKA, Rao KVB. Investigation of anticancer potential of a novel bioactive molecule from Trichosporon asahii VITSTB1 in breast cancer cell lines: an in vitro study. Med Oncol 2024; 42:19. [PMID: 39609299 DOI: 10.1007/s12032-024-02569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
The current study investigates the anticancer activity of protein derived from yeast against breast cancer. Yeast-derived proteins illustrate potential as an anticancer agent through mechanisms, such as immune system stimulation via beta-glucans, cytotoxic effects, and modulation of gut microbiota by probiotic strains. The antioxidant activity of yeast-derived proteins can aid in anticancer activity by neutralizing free radicals, thereby reducing oxidative stress and preventing damage to cellular DNA. Employing a comprehensive methodology encompassing yeast isolation, antioxidant screening, molecular characterization, bioactive protein purification, and MTT assay, the research provides crucial insights into the anticancer attributes of the protein extracted from the yeast. The findings reveal significant antioxidant activity that reduces reactive oxygen species (ROS) levels, which are implicated in cancer development. The MTT assay on MCF-7 breast cancer cell lines, characterized by estrogen receptor and progesterone receptor positivity and HER-2 negativity, determined an IC50 value of 54.89 µg/ml, indicating a dose-dependent decrease in cytotoxic effects. These results suggest that the protein derived from Trichosporon asahii VITSTB1 exhibits promising anti-breast cancer properties. Further research is necessary to elucidate the underlying mechanisms, assess efficacy and safety profiles, explore synergies with existing therapies, and conduct animal model studies. Advancing this line of inquiry will significantly contribute to biomedical research and industrial innovation.
Collapse
Affiliation(s)
- B Stany
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shatakshi Mishra
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - P V Tharani
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anwesha Sarkar
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - K V Bhaskara Rao
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Qin X, Zhao Q, Zhao Q, Yang L, Li W, Wu J, Liu T, Zhong W, Jiang K, Liu W, Wang B, Wang S, Cao H. A Saccharomyces boulardii-derived antioxidant protein, thioredoxin, ameliorates intestinal inflammation through transactivating epidermal growth factor receptor. Pharmacol Res 2024; 208:107372. [PMID: 39182661 DOI: 10.1016/j.phrs.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Saccharomyces boulardii (Sb) is a probiotic yeast for the treatment of gastrointestinal disorders, including inflammatory bowel disease (IBD). Little is known about the modulatory capacity of the Sb in IBD. Here, we found that oral gavage of Sb supernatant (SbS) alleviated gut inflammation, protected the intestinal barrier, and reversed DSS-induced down-regulated activation of epidermal growth factor receptor (EGFR) in colitis. Mass spectrum analysis showed that thioredoxin (Trx) is one of the critical secreted soluble proteins participating in EGFR activation detected in SbS. Trx exerted an array of significant effects on anti-inflammatory activity, including alleviating inflammation, protecting gut barrier, suppressing apoptosis, as well as reducing oxidative stress. Mechanistically, Trx promoted EGFR ligand gene expression and transactivated EGFR in a concentration-dependent manner. EGFR kinase inhibitor could block Trx-mediated preventive effects of intestinal epithelial injury. Our data suggested that Sb-derived soluble protein Trx could serve as a potential prophylactic, as a novel postbiotic against colitis, which provides a new strategy for the precision prevention and treatment of IBD.
Collapse
Affiliation(s)
- Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qianjing Zhao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Wanyu Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|
3
|
Mahooti M, Abdolalipour E, Sanami S, Zare D. Inflammatory Modulation Effects of Probiotics: A Safe and Promising Modulator for Cancer Prevention. Curr Microbiol 2024; 81:372. [PMID: 39312034 DOI: 10.1007/s00284-024-03901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/15/2024] [Indexed: 10/22/2024]
Abstract
Chronic inflammation is the gate of many human illnesses and happens when the immune system is unable to suppress external attacks in the correct form. Nonetheless, the gut microbiome plays a pivotal role in keeping homeostasis in the human body and preventing inflammation. Imbalanced microbiota and many diseases can result in inflammation, which when not taken seriously, can be turned into chronic ones and ultimately lead to serious diseases such as cancer. One approach to maintaining hemostasis in the human body is consumption of probiotics as a supplement. Probiotics impact the immune functions of dendritic cells (DCs), T cells, and B cells in the gut-associated lymphoid tissue by inducing the secretion of an array of cytokines. They activate the innate immune response through their microbial-associated molecular pattern, and this activation is followed by multiple cytokine secretion and adaptive elicitation that mitigates pro-inflammatory expression levels and tumor incidence. Thus, according to several studies showing the benefit of probiotics application, alone or in combination with other agents, to induce potent immune responses in individuals against some inflammatory disorders and distinct types of cancers, this review is devoted to surveying the role of probiotics and the modulation of inflammation in some cancer models.
Collapse
Affiliation(s)
- Mehran Mahooti
- Department of Biotechnology, Iranian Research Organization for Science and Technology, P. O. Box 3353-5111, Tehran, Iran
| | - Elahe Abdolalipour
- Department of Virology, Pasteur Institute of Iran, P.O.Box: 1316943551, Tehran, Iran
| | - Samira Sanami
- Ubnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Davood Zare
- Department of Biotechnology, Iranian Research Organization for Science and Technology, P. O. Box 3353-5111, Tehran, Iran.
| |
Collapse
|
4
|
Nasreen S, Ali S, Andleeb S, Summer M, Hussain T, Imdad K, Ara C, Tahir HM. Mechanisms of medicinal, pharmaceutical, and immunomodulatory action of probiotics bacteria and their secondary metabolites against disease management: an overview. Folia Microbiol (Praha) 2024; 69:549-565. [PMID: 38532057 DOI: 10.1007/s12223-024-01155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
Probiotics or bacteriotherapy is today's hot issue for public entities (Food and Agriculture Organization, and World Health Organization) as well as health and food industries since Metchnikoff and his colleagues hypothesized the correlation between probiotic consumption and human's health. They contribute to the newest and highly efficient arena of promising biotherapeutics. These are usually attractive in biomedical applications such as gut-related diseases like irritable bowel disease, diarrhea, gastrointestinal disorders, fungal infections, various allergies, parasitic and bacterial infections, viral diseases, and intestinal inflammation, and are also worth immunomodulation. The useful impact of probiotics is not limited to gut-related diseases alone. Still, these have proven benefits in various acute and chronic infectious diseases, like cancer, human immunodeficiency virus (HIV) diseases, and high serum cholesterol. Recently, different researchers have paid special attention to investigating biomedical applications of probiotics, but consolidated data regarding bacteriotherapy with a detailed mechanistically applied approach is scarce and controversial. The present article reviews the bio-interface of probiotic strains, mainly (i) why the demand for probiotics?, (ii) the current status of probiotics, (iii) an alternative to antibiotics, (iv) the potential applications towards disease management, (v) probiotics and industrialization, and (vi) futuristic approach.
Collapse
Affiliation(s)
- Sundas Nasreen
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Saiqa Andleeb
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Summer
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Tauqeer Hussain
- Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Kaleem Imdad
- Department of Bioscience, COMSATS Institute of Information Technology (CIIT), Islamabad, 45550, Pakistan
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
5
|
Liang Y, Jiang Z, Fu Y, Lu S, Miao Z, Shuai M, Liang X, Gou W, Zhang K, Shi RQ, Gao C, Shi MQ, Wang XH, Hu WS, Zheng JS. Cross-Sectional and Prospective Association of Serum 25-Hydroxyvitamin D with Gut Mycobiota during Pregnancy among Women with Gestational Diabetes. Mol Nutr Food Res 2024; 68:e2400022. [PMID: 38763911 DOI: 10.1002/mnfr.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/30/2024] [Indexed: 05/21/2024]
Abstract
SCOPE Little is known about the effect of blood vitamin D status on the gut mycobiota (i.e., fungi), a crucial component of the gut microbial ecosystem. The study aims to explore the association between 25-hydroxyvitamin D [25(OH)D] and gut mycobiota and to investigate the link between the identified mycobial features and blood glycemic traits. METHODS AND RESULTS The study examines the association between serum 25(OH)D levels and the gut mycobiota in the Westlake Precision Birth Cohort, which includes pregnant women with gestational diabetes mellitus (GDM). The study develops a genetic risk score (GRS) for 25(OH)D to validate the observational results. In both the prospective and cross-sectional analyses, the vitamin D is associated with gut mycobiota diversity. Specifically, the abundance of Saccharomyces is significantly lower in the vitamin D-sufficient group than in the vitamin D-deficient group. The GRS of 25(OH)D is inversely associated with the abundance of Saccharomyces. Moreover, the Saccharomyces is positively associated with blood glucose levels. CONCLUSION Blood vitamin D status is associated with the diversity and composition of gut mycobiota in women with GDM, which may provide new insights into the mechanistic understanding of the relationship between vitamin D levels and metabolic health.
Collapse
Affiliation(s)
- Yuhui Liang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Zengliang Jiang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yuanqing Fu
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Sha Lu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Zelei Miao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Menglei Shuai
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Xinxiu Liang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Wanglong Gou
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Ke Zhang
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Rui-Qi Shi
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Chang Gao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
| | - Mei-Qi Shi
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Xu-Hong Wang
- Department of Nutrition, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
| | - Wen-Sheng Hu
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, 310012, China
- Department of Obstetrics and Gynecology, The Affiliated Hangzhou Women's Hospital of Hangzhou Normal University, Hangzhou, 310012, China
| | - Ju-Sheng Zheng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| |
Collapse
|
6
|
Gu X, Wang H, Wang L, Zhang K, Tian Y, Wang X, Xu G, Guo Z, Ahmad S, Egide H, Liu J, Li J, Savelkoul HFJ, Zhang J, Wang X. The antioxidant activity and metabolomic analysis of the supernatant of Streptococcus alactolyticus strain FGM. Sci Rep 2024; 14:8413. [PMID: 38600137 PMCID: PMC11006861 DOI: 10.1038/s41598-024-58933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 μL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.
Collapse
Affiliation(s)
- Xueyan Gu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Heng Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Kang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Yuhu Tian
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoya Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Guowei Xu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Zhiting Guo
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Saad Ahmad
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Hanyurwumutima Egide
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jiahui Liu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Xuezhi Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, China.
| |
Collapse
|
7
|
Summer M, Sajjad A, Ali S, Hussain T. Exploring the underlying correlation between microbiota, immune system, hormones, and inflammation with breast cancer and the role of probiotics, prebiotics and postbiotics. Arch Microbiol 2024; 206:145. [PMID: 38461447 DOI: 10.1007/s00203-024-03868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
According to recent research, bacterial imbalance in the gut microbiota and breast tissue may be linked to breast cancer. It has been discovered that alterations in the makeup and function of different types of bacteria found in the breast and gut may contribute to growth and advancement of breast cancer in several ways. The main role of gut microbiota is to control the metabolism of steroid hormones, such as estrogen, which are important in raising the risk of breast cancer, especially in women going through menopause. On the other hand, because the microbiota can influence mucosal and systemic immune responses, they are linked to the mutual interactions between cancer cells and their local environment in the breast and the gut. In this regard, the current review thoroughly explains the mode of action of probiotics and microbiota to eradicate the malignancy. Furthermore, immunomodulation by microbiota and probiotics is described with pathways of their activity.
Collapse
Affiliation(s)
- Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Ayesha Sajjad
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Tauqeer Hussain
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
8
|
Naeem H, Hassan HU, Shahbaz M, Imran M, Memon AG, Hasnain A, Murtaza S, Alsagaby SA, Al Abdulmonem W, Hussain M, Abdelgawad MA, Ghoneim MM, Al Jbawi E. Role of Probiotics against Human Cancers, Inflammatory Diseases, and Other Complex Malignancies. J Food Biochem 2024; 2024:1-23. [DOI: 10.1155/2024/6632209] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Probiotics have growing medical importance as a result of their potential in the prevention and therapeutic support of several complex diseases, including different types of cancers. The anticarcinogenic properties of probiotics are attributed to various mechanisms, including alterations in the composition of the intestinal microbiota, suppression of cell proliferation, stimulation of apoptosis, inhibition of NF-kB, reduction in levels of H2AX, 8-hydroxy-deoxyguanosine, RIG-I, downregulation of IL-17, and TNF signaling pathway. Furthermore, probiotics have demonstrated significant advantages in the prevention and management of other complex diseases, including diabetes, obesity, and cardiovascular diseases. Probiotics had a considerable effect in reducing inflammatory infiltration and the occurrence of precancerous lesions. Additionally, the administration of probiotics led to a decrease in the appearance level of genes related to proinflammatory pathways, including NF-κB, IL-17, and TNF signaling pathways. However, further research studies are required to comprehend the processes via which probiotics exert their effects and to authenticate their potential as alternative therapeutic interventions.
Collapse
Affiliation(s)
- Hammad Naeem
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Hammad Ul Hassan
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | - Anjuman Gul Memon
- Department of Biochemistry, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Ammarah Hasnain
- Department of Biotechnology, Lahore University of Biological & Applied Sciences, Lahore, Pakistan
| | - Shamas Murtaza
- Department of Food Science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11932, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Al Diriyah 13713, Saudi Arabia
| | | |
Collapse
|
9
|
Pakbin B, Allahyari S, Dibazar SP, Peymani A, Haghverdi MK, Taherkhani K, Javadi M, Mahmoudi R. Anticancer Properties of Saccharomyces boulardii Metabolite Against Colon Cancer Cells. Probiotics Antimicrob Proteins 2024; 16:224-232. [PMID: 36547769 DOI: 10.1007/s12602-022-10030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Saccharomyces cerevisiae var. boulardii has been used as a probiotic yeast in the medical and food industries. Colon cancers have been known as the third most common cancer type worldwide. Nowadays, cell-free extract and metabolites of probiotics have been employed for the treatment or prevention of different cancer diseases. This study investigates the anticancer properties of S. boulardii metabolites against human colon carcinoma. We evaluated cytotoxicity, apoptosis induction, and suppression of survivin, IL-8, and NFƙB gene expression effects of SBM against caco-2 cells after 24 and 48 h. IC50 concentrations of SBM were measured at 815 and 1411 µg/mL for 24 and 48 h treatments, respectively. The total proportion of apoptotic caco-2 cells treated with SBM after 24 and 48 h were calculated at 62.23 and 88.7%, respectively. Also, relative expression of survivin, IL-8, and NFƙB genes were significantly suppressed in caco-2 cells treated with SBM after 24 and 48 h. In conclusion, we found that SBM induced apoptosis, inhibited the growth rate, and suppressed the expression of the survivin, IL-8, and NFƙB genes in human colorectal cancer cells and it can be considered as a perspective supplement or drug for the treatment or prevention of colon cancer in humans.
Collapse
Affiliation(s)
- Babak Pakbin
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Samaneh Allahyari
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
| | - Shaghayegh Pishkhan Dibazar
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
| | - Mozhdeh Khajeh Haghverdi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
| | - Khadijeh Taherkhani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran
| | - Maryam Javadi
- Children Growth and Development Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Bahonar Blvd, P.O. Box: 34185-754, Qazvin, Iran.
| |
Collapse
|
10
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Hao R, Liu Q, Wang L, Jian W, Cheng Y, Zhang Q, Hayer K, Kamarudin Raja Idris R, Zhang Y, Lu H, Tu Z. Anti-inflammatory effect of Lactiplantibacillus plantarum T1 cell-free supernatants through suppression of oxidative stress and NF-κB- and MAPK-signaling pathways. Appl Environ Microbiol 2023; 89:e0060823. [PMID: 37702501 PMCID: PMC10617582 DOI: 10.1128/aem.00608-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/08/2023] [Indexed: 09/14/2023] Open
Abstract
Lactiplantibacillus plantarum T1 is an isolated probiotic lactic acid bacterium (LAB) from pickled vegetables in Chongqing, China. In this study, we evaluated the anti-inflammatory activity and the underlying mechanisms of L. plantarum T1 cell-free supernatant (CFS) on lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophages in vitro. Reverse transcription quantitative PCR (RT-qPCR), immunofluorescence, Griess methods, and western blotting were utilized to assess the anti-inflammatory cytokines and antioxidative effect of L. plantarum T1 CFS. Our results showed that L. plantarum T1 CFS pretreatment significantly reduced pro-inflammatory cytokine levels, including nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor, interleukin (IL)-1β, and IL-6, as well as reactive oxygen species. Interestingly, L. plantarum T1 CFS unregulated the antioxidant indicators, including superoxide dismutase, catalase, and glutathione in RAW264.7 cells. Furthermore, L. plantarum T1 CFS activated the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathway. This study showed the excellent antioxidant and anti-inflammatory properties of L. plantarum T1 through multiple pathways, highlighting its potential for further research and application as a probiotic strain.IMPORTANCEL. plantarum T1 stood out in a series of acid and bile salt tolerance and bacterial inhibition tests as a probiotic isolated from paocai, which provides many health benefits to the host by inhibiting the growth of harmful pathogenic microorganisms and suppressing excessive levels of oxidative stress and inflammation. Not all LAB have good probiotic functions and are used in various applications. The anti-inflammatory antioxidant potential and mechanisms of L. plantarum T1 CFS have not been described and reported. By using RT-qPCR, Griess method, and western blotting, we showed that L. plantarum T1 CFS had anti-inflammatory and antioxidant effects. Griess assay, TBA assay, WST-8 assay, immunofluorescence assay, RT-qPCR, and western blotting data revealed that its anti-inflammatory and antioxidant mechanisms were associated with oxidative stress and NF-κB and MAPK signaling pathways. The anti-inflammatory and antioxidant effects of L. plantarum T1 CFS in paocai generates opportunities for probiotic product development.
Collapse
Affiliation(s)
- Rui Hao
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Qianqian Liu
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Lu Wang
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Wenwen Jian
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Yu Cheng
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Qiuyue Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Kim Hayer
- Leicester Medical School, University of Leicester, Leicester, United Kingdom
| | | | - Yi Zhang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - He Lu
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zeng Tu
- Department of Pathogen biology, Molecular Medicine and Cancer Research Center, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Zhao Z, Yang Q, Zhou T, Liu C, Sun M, Cui X, Zhang X. Anticancer potential of Bacillus coagulans MZY531 on mouse H22 hepatocellular carcinoma cells via anti-proliferation and apoptosis induction. BMC Complement Med Ther 2023; 23:318. [PMID: 37705007 PMCID: PMC10498517 DOI: 10.1186/s12906-023-04120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Bacillus coagulans have recently revealed its anticancer effects, but few investigations are available on their effects on liver cancer proliferation, and the precise mechanism to mark its impact on apoptosis-related signaling pathways has yet to be elucidated. The aim of this study was to evaluate the anti-proliferative effect of B. coagulans MZY531 and apoptosis induction in the mouse H22 hepatocellular carcinoma cell line. The anti-proliferative activity of B. coagulans MZY531 was evaluated by Cell Counting Kit-8 (CCK-8) assay, and cell apoptosis was revealed with Terminal Deoxynucleotidyl Transferase (TDT)-mediated dUTP Nick-End Labeling (TUNEL) staining and flow cytometric analysis. The expressions of apoptosis-related protein were determined by western blot analysis. The CCK-8 assay revealed that B. coagulans MZY531 inhibited the H22 cells proliferation in a concentration-dependent manner. TUNEL staining revealed an increased apoptosis rate in H22 cells following intervention with B. coagulans MZY531. Furthermore, flow cytometric analysis showed that B. coagulans MZY531 treatment (MOI = 50 and 100) significantly alleviated the H22 cells apoptosis compared with the control group. Western blot analysis found B. coagulans MZY531 significantly decreased level of phospho-PI3K (p-PI3K), phospho-AKT (p-AKT), and phospho-mTOR (p-mTOR) compared with the control group. Furthermore, H22 cells treatment with B. coagulans MZY531 enhanced the expression of caspase-3 and Bax and jeopardized the expression of Bcl-2. Taken together, apoptosis induction and cell proliferation inhibition via PI3K/AKT/mTOR and Bax/Bcl-2/Caspase-3 pathway are promising evidence to support B. coagulans MZY531 as a potential therapeutic agent for cancer.
Collapse
Affiliation(s)
- Zhongwei Zhao
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
- College of Special Education, Changchun University, Changchun, 130022, P.R. China
| | - Qian Yang
- College of Special Education, Changchun University, Changchun, 130022, P.R. China
| | - Tingting Zhou
- Innovation Practice Center, The Changchun University of Traditional Chinese Medicine, Changchun, 130000, P.R. China
| | - Chunhong Liu
- College of Special Education, Changchun University, Changchun, 130022, P.R. China
| | - Manqing Sun
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| | - Xinmu Cui
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| | - Xuewu Zhang
- Medical College, Yanbian University, Yanji, 133002, Jilin Province, P.R. China.
| |
Collapse
|
13
|
Summer M, Ali S, Fiaz U, Tahir HM, Ijaz M, Mumtaz S, Mushtaq R, Khan R, Shahzad H, Fiaz H. Therapeutic and immunomodulatory role of probiotics in breast cancer: A mechanistic review. Arch Microbiol 2023; 205:296. [PMID: 37486419 DOI: 10.1007/s00203-023-03632-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Breast cancer has become the most prevalent and noxious type of malignancy around the globe (Giaquinto et al., 2022). Multiple clinical strategies including chemotherapy, radiotherapy, and immunotherapy have been in practice to manage breast cancer. Besides the protective roles of conventional remedial approaches, and non-reversible and deteriorative impacts like healthy cell damage, organ failure, etc., the world scientific community is in a continuous struggle to find some alternative biocompatible and comparatively safe solutions. Among novel breast cancer management/treatment options, the role of probiotics has become immensely important. The current review encompasses the prevalence statistics of breast cancer across the globe concerning developed and undeveloped counties, intestinal microbiota linkage with breast cancer, and association of breast microbiome with breast carcinoma. Furthermore, this review also narrates the role of probiotics against breast cancer and their mode of action. In Vivo and In Vitro studies under breast cancer research regarding probiotics are mechanistically explained. The current review systematically explains the immunomodulatory role of probiotics to prevent breast cancer. Last, but not the least, current review concludes the use of probiotics in the treatment of breast cancer through various mechanisms and future recommendations for molecular basis studies.
Collapse
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Umaima Fiaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafiz Muhammad Tahir
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rabia Mushtaq
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Rida Khan
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hafsa Shahzad
- Department of Zoology, Government College University Lahore, Lahore, 54000, Pakistan
| | - Hashim Fiaz
- Department of Medicine and Surgery, Ammer-ul-din Medical College Lahore, Lahore, Pakistan
| |
Collapse
|
14
|
Pakbin B, Allahyari S, Dibazar SP, Zolghadr L, Chermahini NK, Brück WM, Brück TB, Mahmoudi R. Effects of Probiotic Saccharomyces boulardii Supernatant on Viability, Nano-Mechanical Properties of Cytoplasmic Membrane and Pro-Inflammatory Gene Expression in Human Gastric Cancer AGS Cells. Int J Mol Sci 2023; 24:ijms24097945. [PMID: 37175663 PMCID: PMC10178855 DOI: 10.3390/ijms24097945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Gastric cancer has been recognized as the second most probable cause of death in humans from cancer diseases around the world. Postbiotics, supernatant, and metabolites from probiotic microorganisms have recently been used widely to prevent and treat cancer diseases in humans, without any undesirable side effects. This study explores the antiproliferative and antitumor activities of the probiotic Saccharomyces cerevisiae var. boulardii supernatant (SBS) against AGS cancer cells, a human gastric adenocarcinoma cell line. METHODS We evaluated cell growth inhibitory and mechanical properties of the cytoplasmic membrane and the downregulation of survivin and proinflammatory genes in AGS cells treated with SBS after 24 and 48 h. RESULTS SBS significantly inhibits the AGS cell growth, and the concentrations with IC50 values after 24 and 48 h treatments are measured as 2266 and 1956 µg/mL, respectively. Regarding the AFM images and Young`s modulus analysis, SBS significantly induces morphological changes in the cytoplasmic membrane of the treated AGS cells. Expression of survivin, NFƙB, and IL-8 genes is significantly suppressed in AGS cells treated with SBS. CONCLUSIONS Considering the antitumor activities of SBS on AGS cell line, it can be regarded as a prospective therapeutic and preventive strategy against human stomach cancer disease.
Collapse
Affiliation(s)
- Babak Pakbin
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
- Werner-Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 34197-59811, Iran
| | - Samaneh Allahyari
- Werner-Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
| | | | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University, Qazvin 34149-16818, Iran
| | - Neda Karami Chermahini
- Department of Medicine Biotechnology, Faculty of Allied Medicine, Qazvin University of Medical Science, Qazvin 34197-59811, Iran
| | - Wolfram Manuel Brück
- Institute for Life Technologies, University of Applied Sciences Western Switzerland Valais-Wallis, 1950 Sion, Switzerland
| | - Thomas B Brück
- Werner-Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenberg Str. 4, 85748 Garching bei München, Germany
| | - Razzagh Mahmoudi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 34197-59811, Iran
| |
Collapse
|
15
|
Biotherapy Using Probiotics as Therapeutic Agents to Restore the Gut Microbiota to Relieve Gastrointestinal Tract Inflammation, IBD, IBS and Prevent Induction of Cancer. Int J Mol Sci 2023; 24:ijms24065748. [PMID: 36982816 PMCID: PMC10052502 DOI: 10.3390/ijms24065748] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The gut microbiota is composed of several microbial strains with diverse and variable compositions in both healthy and sick people. An undisturbed gut microbiota needs to be sustained in order to perform all physiological, metabolic, and immune functions in a normal way to prevent the development of diseases. This article has reviewed the published information on the issue of disruption of the balance of the gut microbiota. This disruption could be for many reasons, such as microbial infection in the gastrointestinal tract, food poisoning, diarrhoea, chemotherapy, malnutrition, lifestyle, and ageing. If this disruption is not restored to normal, it might cause dysbiosis. Eventually, a gut microbiota interrupted by dysbiosis might initiate several health issues, such as inflammation of the gastrointestinal tract, the induction of cancer, and the progression of a variety of diseases such as irritable bowel syndrome and inflammatory bowel disease. This review concluded that biotherapy is a natural way of using probiotic products, whether in form of food, beverages, or supplements, to restore the gut microbiota disrupted by dysbiosis. Metabolites secreted by the ingested probiotics help to relieve gastrointestinal tract inflammation and can avoid the induction of cancer.
Collapse
|
16
|
ACE2-Inhibitory Effects of Bromelain and Ficin in Colon Cancer Cells. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020301. [PMID: 36837502 PMCID: PMC9962737 DOI: 10.3390/medicina59020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: Bromelain and ficin are aqueous extracts from fruits of Ananas comosus and Ficus carcia plants, used widely for medical applications. Angiotensin-converting enzyme 2 (ACE2) is a homolog of ACE, degrading Ang II to angiotensin 1-7 and decreasing the cellular concentration of Ang II. Materials and Methods: In this study, we investigated the ACE2-inhibitory, antiproliferative, and apoptosis-inducing effects of ficin and bromelain on caco-2 cells. Results: We found that bromelain and ficin significantly reduced the viability of human colon cancer cells with IC50 value concentrations of 8.8 and 4.2 mg/mL for bromelain after 24 and 48 h treatments, and 8.8 and 4.2 mg/mL for ficin after 24 and 48 h treatments, respectively. The apoptosis of the caco-2 cell line treated with bromelain was 81.04% and 56.70%, observed after 24 and 48 h. Total apoptotic proportions in caco-2 cells treated with ficin after 24 and 48 h were 83.7% and 73.0%. An amount of 1.6 mg/mL of bromelain and ficin treatments on caco-2 cells after 24 h revealed a higher decrease than that of other concentrations in the expression of ACE2 protein. Conclusions: In conclusion, bromelain and ficin can dose-dependently decrease the expression of ACE2 protein in caco-2 cells.
Collapse
|
17
|
Huang Y, Lin X, Yu S, Chen R, Chen W. Intestinal Engineered Probiotics as Living Therapeutics: Chassis Selection, Colonization Enhancement, Gene Circuit Design, and Biocontainment. ACS Synth Biol 2022; 11:3134-3153. [PMID: 36094344 DOI: 10.1021/acssynbio.2c00314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Intestinal probiotics are often used for the in situ treatment of diseases, such as metabolic disorders, tumors, and chronic inflammatory infections. Recently, there has been an increased emphasis on intelligent, customized treatments with a focus on long-term efficacy; however, traditional probiotic therapy has not kept up with this trend. The use of synthetic biology to construct gut-engineered probiotics as live therapeutics is a promising avenue in the treatment of specific diseases, such as phenylketonuria and inflammatory bowel disease. These studies generally involve a series of fundamental design issues: choosing an engineered chassis, improving the colonization ability of engineered probiotics, designing functional gene circuits, and ensuring the safety of engineered probiotics. In this review, we summarize the relevant past research, the progress of current research, and discuss the key issues that restrict the widespread application of intestinal engineered probiotic living therapeutics.
Collapse
Affiliation(s)
- Yan Huang
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Lin
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Siyang Yu
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ruiyue Chen
- Team SZU-China at iGEM 2021, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Weizhao Chen
- Team SZU-China at iGEM 2021, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory for Microbial Gene Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
18
|
Tullio V. Yeast Genomics and Its Applications in Biotechnological Processes: What Is Our Present and Near Future? J Fungi (Basel) 2022; 8:jof8070752. [PMID: 35887507 PMCID: PMC9315801 DOI: 10.3390/jof8070752] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Since molecular biology and advanced genetic techniques have become important tools in a variety of fields of interest, including taxonomy, identification, classification, possible production of substances and proteins, applications in pharmacology, medicine, and the food industry, there has been significant progress in studying the yeast genome and its potential applications. Because of this potential, as well as their manageability, safety, ease of cultivation, and reproduction, yeasts are now being extensively researched in order to evaluate a growing number of natural and sustainable applications to provide many benefits to humans. This review will describe what yeasts are, how they are classified, and attempt to provide a rapid overview of the many current and future applications of yeasts. The review will then discuss how yeasts—including those molecularly modified—are used to produce biofuels, proteins such as insulin, vaccines, probiotics, beverage preparations, and food additives and how yeasts could be used in environmental bioremediation and biocontrol for plant infections. This review does not delve into the issues raised during studies and research, but rather presents the positive outcomes that have enabled several industrial, clinical, and agricultural applications in the past and future, including the most recent on cow-free milk.
Collapse
Affiliation(s)
- Vivian Tullio
- Department Public Health and Pediatrics, Microbiology Division, University of Turin, Via Santena 9, 10126 Torino, Italy
| |
Collapse
|
19
|
Zanetta P, Ormelli M, Amoruso A, Pane M, Azzimonti B, Squarzanti DF. Probiotics as Potential Biological Immunomodulators in the Management of Oral Lichen Planus: What's New? Int J Mol Sci 2022; 23:ijms23073489. [PMID: 35408849 PMCID: PMC8998608 DOI: 10.3390/ijms23073489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Oral lichen planus (OLP) is a T cell-mediated chronic inflammatory disorder with multifactorial aetiology and malignant transformation potential. Despite the treatments so far identified, new tailored and safe specific measures are needed. Recently, human microbiota imbalance has been linked to several immune-mediated diseases, opening new therapeutic perspectives for probiotics; besides their ability to directly interact with the host microbiota, they also display a strain-specific immune-modulatory effect. Thus, this non-systematic review aims to elucidate the molecular pathways underlying probiotic activity, mainly those of Lactobacilli and Bifidobacteria and their metabolites in OLP pathogenesis and malignant transformation, focusing on the most recent in vitro and in vivo research evidence. Findings related to their activity in other immune-mediated diseases are here included, suggesting a probiotic translational use in OLP. Probiotics show immune-modulatory and microbiota-balancing activities; they protect the host from pathogens, hamper an excessive effector T cell response, reduce nuclear factor-kappa B (NF-kB) signalling and basal keratinocytes abnormal apoptosis, shifting the mucosal response towards the production of anti-inflammatory cytokines, thus preventing uncontrolled damage. Therefore, probiotics could be a highly encouraging prevention and immunotherapeutic approach for a safer and more sustainable OLP management.
Collapse
Affiliation(s)
- Paola Zanetta
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
| | - Margherita Ormelli
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
| | - Angela Amoruso
- Probiotical Research Srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Marco Pane
- Probiotical Research Srl, Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
- Correspondence: (B.A.); (D.F.S.); Tel.: +39-0321-660-870 (B.A.)
| | - Diletta Francesca Squarzanti
- Laboratory of Applied Microbiology, Department of Health Sciences (DiSS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (P.Z.); (M.O.)
- Correspondence: (B.A.); (D.F.S.); Tel.: +39-0321-660-870 (B.A.)
| |
Collapse
|
20
|
Dahiya D, Nigam PS. The Gut Microbiota Influenced by the Intake of Probiotics and Functional Foods with Prebiotics Can Sustain Wellness and Alleviate Certain Ailments like Gut-Inflammation and Colon-Cancer. Microorganisms 2022; 10:665. [PMID: 35336240 PMCID: PMC8954736 DOI: 10.3390/microorganisms10030665] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
The gut microbiota is composed of several microbial strains, with diverse and variable combinations in healthy and sick persons, changing at different stages of life. A healthy balance between host and gut microorganisms must be maintained in order to perform the normal physiological, metabolic, and immune functions and prevent disease development. Disturbances in the balance of the gut microbiota by diverse reasons initiate several health issues and promote the progression of certain diseases. This review is based on published research and reports that describe the role of probiotic microorganisms in the sustainability of health and the alleviation of certain diseases. Information is presented on the GRAS strains that are used as probiotics in the food industry for the production of fermented milk, yogurt, fermented food, functional foods, and probiotic drinks. To maintain a healthy microbiota, probiotic supplements in the form of freeze-dried live cells of probiotic strains are also available in different forms to consumers. The health benefits of lactic acid bacteria and other microorganisms and their role in the control of certain diseases such as gut inflammation, diabetes, and bowel cancer and in the safeguarding of the gut epithelial permeability from the invasion of pathogens are discussed.
Collapse
Affiliation(s)
- Divakar Dahiya
- Wexham Park Hospital, Wexham Street, Slough SL2 4HL, Berkshire, UK;
| | - Poonam Singh Nigam
- Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|