1
|
de Cássia Collaço R, Lammens M, Blevins C, Rodgers K, Gurau A, Yamauchi S, Kim C, Forrester J, Liu E, Ha J, Mei Y, Boehm C, Wohler E, Sobreira N, Rowe PC, Valle D, Brock MV, Bosmans F. Anxiety and dysautonomia symptoms in patients with a Na V1.7 mutation and the potential benefits of low-dose short-acting guanfacine. Clin Auton Res 2024; 34:191-201. [PMID: 38064009 PMCID: PMC11805752 DOI: 10.1007/s10286-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/15/2023] [Indexed: 03/17/2024]
Abstract
PURPOSE Guanfacine is an α2A-adrenergic receptor agonist, FDA-approved to treat attention-deficit hyperactivity disorder and high blood pressure, typically as an extended-release formulation up to 7 mg/day. In our dysautonomia clinic, we observed that off-label use of short-acting guanfacine at 1 mg/day facilitated symptom relief in two families with multiple members presenting with severe generalized anxiety. We also noted anecdotal improvements in associated dysautonomia symptoms such as hyperhidrosis, cognitive impairment, and palpitations. We postulated that a genetic deficit existed in these patients that might augment guanfacine susceptibility. METHODS We used whole-exome sequencing to identify mutations in patients with shared generalized anxiety and dysautonomia symptoms. Guanfacine-induced changes in the function of voltage-gated Na+ channels were investigated using voltage-clamp electrophysiology. RESULTS Whole-exome sequencing uncovered the p.I739V mutation in SCN9A in the proband of two nonrelated families. Moreover, guanfacine inhibited ionic currents evoked by wild-type and mutant NaV1.7 encoded by SCN9A, as well as other NaV channel subtypes to a varying degree. CONCLUSION Our study provides further evidence for a possible pathophysiological role of NaV1.7 in anxiety and dysautonomia. Combined with off-target effects on NaV channel function, daily administration of 1 mg short-acting guanfacine may be sufficient to normalize NaV channel mutation-induced changes in sympathetic activity, perhaps aided by partial inhibition of NaV1.7 or other channel subtypes. In a broader context, expanding genetic and functional data about ion channel aberrations may enable the prospect of stratifying patients in which mutation-induced increased sympathetic tone normalization by guanfacine can support treatment strategies for anxiety and dysautonomia symptoms.
Collapse
Affiliation(s)
- Rita de Cássia Collaço
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Maxime Lammens
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium
| | - Carley Blevins
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen Rodgers
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Andrei Gurau
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Suguru Yamauchi
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Christine Kim
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jeannine Forrester
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Edward Liu
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jinny Ha
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yuping Mei
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Corrine Boehm
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Elizabeth Wohler
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Rowe
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Malcolm V Brock
- Department of Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Frank Bosmans
- Molecular Physiology and Neurophysics Group, Department of Basic and Applied Medical Sciences, University of Ghent, Ghent, Belgium.
| |
Collapse
|
2
|
Lind SF, Stam F, Zelleroth S, Meurling E, Frick A, Grönbladh A. Acute caffeine differently affects risk-taking and the expression of BDNF and of adenosine and opioid receptors in rats with high or low anxiety-like behavior. Pharmacol Biochem Behav 2023:173573. [PMID: 37302662 DOI: 10.1016/j.pbb.2023.173573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Anxiety disorders are common psychiatric conditions with a partially elucidated neurobiology. Caffeine, an unspecific adenosine receptor antagonist, is a common psychostimulant with anxiogenic effects in sensitive individuals. High doses of caffeine produce anxiety-like behavior in rats but it is not known if this is specific for rats with high baseline anxiety-like behavior. Thus, the aim of this study was to investigate general behavior, risk-taking, and anxiety-like behavior, as well as mRNA expression (adenosine A2A and A1, dopamine D2, and, μ, κ, δ opioid, receptors, BDNF, c-fos, IGF-1) in amygdala, caudate putamen, frontal cortex, hippocampus, hypothalamus, after an acute dose of caffeine. Untreated rats were screened using the elevated plus maze (EPM), giving each rat a score on anxiety-like behavior based on their time spent in the open arms, and categorized into a high or low anxiety-like behavior group accordingly. Three weeks after categorization, the rats were treated with 50 mg/kg caffeine and their behavior profile was studied in the multivariate concentric square field (MCSF) test, and one week later in the EPM. qPCR was performed on selected genes and corticosterone plasma levels were measured using ELISA. The results demonstrated that the high anxiety-like behavior rats treated with caffeine spent less time in risk areas of the MCSF and resituated towards the sheltered areas, a behavior accompanied by lower mRNA expression of adenosine A2A receptors in caudate putamen and increased BDNF expression in hippocampus. These results support the hypothesis that caffeine affects individuals differently depending on their baseline anxiety-like behavior, possibly involving adenosine receptors. This highlights the importance of adenosine receptors as a possible drug target for anxiety disorders, although further research is needed to fully elucidate the neurobiological mechanisms of caffeine on anxiety disorders.
Collapse
Affiliation(s)
- Sara Florén Lind
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Uppsala, Sweden.
| | - Frida Stam
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Uppsala, Sweden.
| | - Sofia Zelleroth
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Uppsala, Sweden.
| | - Evelina Meurling
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Uppsala, Sweden
| | - Andreas Frick
- The Beijer Laboratory, Department of Medical Sciences, Psychiatry, SE-751 24, Uppsala University, Uppsala, Sweden.
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, SE-751 24, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
4
|
Modulation of Excitatory Synaptic Transmission During Cannabinoid Receptor Activation. Cell Mol Neurobiol 2021; 42:1933-1947. [PMID: 33723716 DOI: 10.1007/s10571-021-01074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
The present research has reported that cannabinoid receptor 1 (CB1) agonist, delta-(9)-tetrahydrocannabinol (THC) modulates synaptogenesis during overexcitation. Microtubule and synaptic distribution, poly(ADP)-ribose (PAR) accumulation were estimated during overexcitation and in the presence of THC. Low concentration of THC (10 nM) increased synaptophysin expression and neurite length, while high concentration of THC (1 µM) induced neurotoxicity. Glutamate caused the loss of neurons, reducing the number and the length of neurites. The high concentration of THC in the presence of glutamate caused the PAR accumulation in the condensed nuclei. Glutamate upregulated genes that are involved in synaptogenesis and excitatory signal cascade. Glutamate downregulated transcription of beta3 tubulin and microtubule-associated protein 2. THC partially regulated gene expression that is implicated in the neurogenesis and excitatory pathways. This suggests that CB1 receptors play a role in neurite growth and the low concentration of THC protects neurons during overexcitation, whereas the high concentration of THC enhances the neurotoxicity.
Collapse
|
5
|
Lee AM, Calarco CA, McKee SA, Mineur YS, Picciotto MR. Variability in nicotine conditioned place preference and stress-induced reinstatement in mice: Effects of sex, initial chamber preference, and guanfacine. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12601. [PMID: 31364813 PMCID: PMC8045136 DOI: 10.1111/gbb.12601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 12/24/2022]
Abstract
Relapse to smoking occurs at higher rates in women compared with men, especially when triggered by stress. Studies suggest that sex-specific interactions between nicotine reward and stress contribute to these sex differences. Accordingly, novel treatment options targeting stress pathways, such as guanfacine, an α2-adrenergic receptor agonist, may provide sex-sensitive therapeutic effects. Preclinical studies are critical for elucidating neurobiological mechanisms of stress-induced relapse and potential therapies, but rodent models of nicotine addiction are often hindered by large behavioral variability. In this study, we used nicotine conditioned place preference to investigate stress-induced reinstatement of nicotine preference in male and female mice, and the effects of guanfacine on this behavior. Our results showed that overall, nicotine induced significant place preference acquisition and swim stress-induced reinstatement in both male and female mice, but with different nicotine dose-response patterns. In addition, we explored the variability in nicotine-dependent behaviors with median split analyses and found that initial chamber preference in each sex differentially accounted for variability in stress-induced reinstatement. In groups that showed significant stress-induced reinstatement, pretreatment with guanfacine attenuated this behavior. Finally, we evaluated neuronal activation by Arc immunoreactivity in the infralimbic cortex, prelimbic cortex, anterior insula, basolateral amygdala, lateral central amygdala and nucleus accumbens core and shell. Guanfacine induced sex-dependent changes in Arc immunoreactivity in the infralimbic cortex and anterior insula. This study demonstrates sex-dependent relationships between initial chamber preference and stress-induced reinstatement of nicotine conditioned place preference, and the effects of guanfacine on both behavior and neurobiological mechanisms.
Collapse
Affiliation(s)
- Angela M. Lee
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
- Yale Interdepartmental Neuroscience Program
| | - Cali A. Calarco
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
- Yale Interdepartmental Neuroscience Program
| | - Sherry A. McKee
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| | - Yann S. Mineur
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
- Yale Interdepartmental Neuroscience Program
| |
Collapse
|
6
|
Harris NA, Winder DG. Synaptic Plasticity in the Bed Nucleus of the Stria Terminalis: Underlying Mechanisms and Potential Ramifications for Reinstatement of Drug- and Alcohol-Seeking Behaviors. ACS Chem Neurosci 2018; 9:2173-2187. [PMID: 29851347 PMCID: PMC6146063 DOI: 10.1021/acschemneuro.8b00169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that shows significant changes in activity and plasticity through chronic exposure to drugs and stress. The region is critical for stress- and cue-induced reinstatement of drug-seeking behaviors and is thus a candidate region for the plastic changes that occur in abstinence that prime addicted patients for reinstatement behaviors. Here, we discuss the various forms of long-term potentiation (LTP) and long-term depression (LTD) in the rodent BNST and highlight the way that these changes in excitatory transmission interact with exposure to alcohol and other drugs of abuse, as well as other stressors. In addition, we highlight potential areas for future research in this area, including investigating input- and cell-specific bidirectional changes in activity. As we continue to accrue foundational knowledge in the mechanisms and effects of plasticity in the BNST, molecular targets and treatment strategies that are relevant to reinstatement behaviors will also begin to emerge. Here, we briefly discuss the effects of catecholamine receptor modulators on synaptic plasticity in the BNST due to the role of norepinephrine in LTD and dopamine on the short-term component of LTP as well as the role that signaling at these receptors plays in reinstatement of drug- and alcohol-seeking behaviors. We hope that insights gained on the specific changes in plasticity that occur within the BNST during abstinence from alcohol and other drugs of abuse will provide insight into the biological underpinnings of relapse behavior in human addicts and inform future treatment modalities for addiction that tackle this complex biological problem.
Collapse
Affiliation(s)
- Nicholas A. Harris
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
| | - Danny G. Winder
- Vanderbilt Center for Addiction Research
- Department of Molecular Physiology & Biophysics
- Vanderbilt J.F. Kennedy Center for Research on Human Development
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
7
|
Dorsal BNST α 2A-Adrenergic Receptors Produce HCN-Dependent Excitatory Actions That Initiate Anxiogenic Behaviors. J Neurosci 2018; 38:8922-8942. [PMID: 30150361 DOI: 10.1523/jneurosci.0963-18.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 11/21/2022] Open
Abstract
Stress is a precipitating agent in neuropsychiatric disease and initiates relapse to drug-seeking behavior in addicted patients. Targeting the stress system in protracted abstinence from drugs of abuse with anxiolytics may be an effective treatment modality for substance use disorders. α2A-adrenergic receptors (α2A-ARs) in extended amygdala structures play key roles in dampening stress responses. Contrary to early thinking, α2A-ARs are expressed at non-noradrenergic sites in the brain. These non-noradrenergic α2A-ARs play important roles in stress responses, but their cellular mechanisms of action are unclear. In humans, the α2A-AR agonist guanfacine reduces overall craving and uncouples craving from stress, yet minimally affects relapse, potentially due to competing actions in the brain. Here, we show that heteroceptor α2A-ARs postsynaptically enhance dorsal bed nucleus of the stria terminalis (dBNST) neuronal activity in mice of both sexes. This effect is mediated by hyperpolarization-activated cyclic nucleotide-gated cation channels because inhibition of these channels is necessary and sufficient for excitatory actions. Finally, this excitatory action is mimicked by clozapine-N-oxide activation of the Gi-coupled DREADD hM4Di in dBNST neurons and its activation elicits anxiety-like behavior in the elevated plus maze. Together, these data provide a framework for elucidating cell-specific actions of GPCR signaling and provide a potential mechanism whereby competing anxiogenic and anxiolytic actions of guanfacine may affect its clinical utility in the treatment of addiction.SIGNIFICANCE STATEMENT Stress affects the development of neuropsychiatric disorders including anxiety and addiction. Guanfacine is an α2A-adrenergic receptor (α2A-AR) agonist with actions in the bed nucleus of the stria terminalis (BNST) that produces antidepressant actions and uncouples stress from reward-related behaviors. Here, we show that guanfacine increases dorsal BNST neuronal activity through actions at postsynaptic α2A-ARs via a mechanism that involves hyperpolarization-activated cyclic nucleotide gated cation channels. This action is mimicked by activation of the designer receptor hM4Di expressed in the BNST, which also induces anxiety-like behaviors. Together, these data suggest that postsynaptic α2A-ARs in BNST have excitatory actions on BNST neurons and that these actions can be phenocopied by the so-called "inhibitory" DREADDs, suggesting that care must be taken regarding interpretation of data obtained with these tools.
Collapse
|
8
|
Abstract
Both physiological and imaging approaches have led to often-disparate conclusions about the organization of taste information in gustatory cortex (GC). In this study, we used neuroanatomical and imaging approaches to delineate the likely area of insular cortex given to gustatory function and to characterize taste responses within this delineated area in female and male C57BL/6J mice. Anterograde tracers were injected into the taste thalamus (the medial parvicellular portion of the ventral posterior medial division, VPMpc) of mice and the thalamic terminal field was investigated across the cortex. Working within the delineated area, we used two-photon imaging to measure basic taste responses in >780 neurons in layer 2/3 located just posterior to the middle cerebral artery. A nonbiased, hierarchical cluster analysis revealed multiple clusters of cells responding best to either individual or combinations of taste stimuli. Taste quality was represented in the activity of taste-responsive cells; however, there was no apparent spatial organization of primary taste qualities in this region.SIGNIFICANCE STATEMENT Recent studies investigating taste coding within the gustatory cortex have reported highly segregated, taste-specific regions containing only narrowly tuned cells responding to a single taste separated by large non-taste-coding areas. However, focusing on the center of this area, we found a large number of taste responsive cells ranging from narrowly to broadly responsive with no apparent local spatial organization. Further, population analysis reveals that activity in the neuronal population in this area appears to be related to measures of taste quality or hedonics.
Collapse
|
9
|
Overlapping Representation of Primary Tastes in a Defined Region of the Gustatory Cortex. J Neurosci 2017; 37:7595-7605. [PMID: 28674169 DOI: 10.1523/jneurosci.0649-17.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/25/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023] Open
Abstract
Both physiological and imaging approaches have led to often-disparate conclusions about the organization of taste information in gustatory cortex (GC). In this study, we used neuroanatomical and imaging approaches to delineate the likely area of insular cortex given to gustatory function and to characterize taste responses within this delineated area in female and male C57BL/6J mice. Anterograde tracers were injected into the taste thalamus (the medial parvicellular portion of the ventral posterior medial division, VPMpc) of mice and the thalamic terminal field was investigated across the cortex. Working within the delineated area, we used two-photon imaging to measure basic taste responses in >780 neurons in layer 2/3 located just posterior to the middle cerebral artery. A nonbiased, hierarchical cluster analysis revealed multiple clusters of cells responding best to either individual or combinations of taste stimuli. Taste quality was represented in the activity of taste-responsive cells; however, there was no apparent spatial organization of primary taste qualities in this region.SIGNIFICANCE STATEMENT Recent studies investigating taste coding within the gustatory cortex have reported highly segregated, taste-specific regions containing only narrowly tuned cells responding to a single taste separated by large non-taste-coding areas. However, focusing on the center of this area, we found a large number of taste responsive cells ranging from narrowly to broadly responsive with no apparent local spatial organization. Further, population analysis reveals that activity in the neuronal population in this area appears to be related to measures of taste quality or hedonics.
Collapse
|
10
|
Cho JH, Cho YH, Kim HY, Cha SH, Ryu H, Jang W, Shin KH. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration. Neuropeptides 2015; 50:1-7. [PMID: 25820086 DOI: 10.1016/j.npep.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/12/2022]
Abstract
Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration.
Collapse
Affiliation(s)
- Jin Hee Cho
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Yun Ha Cho
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Hyo Young Kim
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Seung Ha Cha
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Hyun Ryu
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Wooyoung Jang
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea
| | - Kyung Ho Shin
- Department of Pharmacology, Korea University College of Medicine, Anam-Dong, Sungbuk-Gu, Seoul, Republic of Korea.
| |
Collapse
|
11
|
α(2A)-adrenergic receptors filter parabrachial inputs to the bed nucleus of the stria terminalis. J Neurosci 2014; 34:9319-31. [PMID: 25009265 DOI: 10.1523/jneurosci.0822-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
α2-adrenergic receptors (AR) within the bed nucleus of the stria terminalis (BNST) reduce stress-reward interactions in rodent models. In addition to their roles as autoreceptors, BNST α(2A)-ARs suppress glutamatergic transmission. One prominent glutamatergic input to the BNST originates from the parabrachial nucleus (PBN) and consists of asymmetric axosomatic synapses containing calcitonin gene-related peptide (CGRP) and vGluT2. Here we provide immunoelectron microscopic data showing that many asymmetric axosomatic synapses in the BNST contain α(2A)-ARs. Further, we examined optically evoked glutamate release ex vivo in BNST from mice with virally delivered channelrhodopsin2 (ChR2) expression in PBN. In BNST from these animals, ChR2 partially colocalized with CGRP, and activation generated EPSCs in dorsal anterolateral BNST neurons that elicited two cell-type-specific outcomes: (1) feedforward inhibition or (2) an EPSP that elicited firing. We found that the α(2A)-AR agonist guanfacine selectively inhibited this PBN input to the BNST, preferentially reducing the excitatory response in ex vivo mouse brain slices. To begin to assess the overall impact of α(2A)-AR control of this PBN input on BNST excitatory transmission, we used a Thy1-COP4 mouse line with little postsynaptic ChR2 expression nor colocalization of ChR2 with CGRP in the BNST. In slices from these mice, we found that guanfacine enhanced, rather than suppressed, optogenetically initiated excitatory drive in BNST. Thus, our study reveals distinct actions of PBN afferents within the BNST and suggests that α(2A)-AR agonists may filter excitatory transmission in the BNST by inhibiting a component of the PBN input while enhancing the actions of other inputs.
Collapse
|
12
|
Effect of acute stressor and serotonin transporter genotype on amygdala first wave transcriptome in mice. PLoS One 2013; 8:e58880. [PMID: 23536833 PMCID: PMC3594195 DOI: 10.1371/journal.pone.0058880] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/07/2013] [Indexed: 12/17/2022] Open
Abstract
The most prominent brain region evaluating the significance of external stimuli immediately after their onset is the amygdala. Stimuli evaluated as being stressful actuate a number of physiological processes as an immediate stress response. Variation in the serotonin transporter gene has been associated with increased anxiety- and depression-like behavior, altered stress reactivity and adaptation, and pathophysiology of stress-related disorders. In this study the instant reactions to an acute stressor were measured in a serotonin transporter knockout mouse model. Mice lacking the serotonin transporter were verified to be more anxious than their wild-type conspecifics. Genome-wide gene expression changes in the amygdala were measured after the mice were subjected to control condition or to an acute stressor of one minute exposure to water. The dissection of amygdalae and stabilization of RNA was conducted within nine minutes after the onset of the stressor. This extremely short protocol allowed for analysis of first wave primary response genes, typically induced within five to ten minutes of stimulation, and was performed using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays. RNA profiling revealed a largely new set of differentially expressed primary response genes between the conditions acute stress and control that differed distinctly between wild-type and knockout mice. Consequently, functional categorization and pathway analysis indicated genes related to neuroplasticity and adaptation in wild-types whereas knockouts were characterized by impaired plasticity and genes more related to chronic stress and pathophysiology. Our study therefore disclosed different coping styles dependent on serotonin transporter genotype even directly after the onset of stress and accentuates the role of the serotonergic system in processing stressors and threat in the amygdala. Moreover, several of the first wave primary response genes that we found might provide promising targets for future therapeutic interventions of stress-related disorders also in humans.
Collapse
|
13
|
Flavin SA, Winder DG. Noradrenergic control of the bed nucleus of the stria terminalis in stress and reward. Neuropharmacology 2013; 70:324-30. [PMID: 23466330 DOI: 10.1016/j.neuropharm.2013.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a group of inter-connected subnuclei that play critical roles in stress-reward interactions. An interesting feature of this brain region is the massive noradrenergic input that it receives. Important roles for norepinephrine in this region have been documented in a number of stress and reward related behaviors. This work has been paralleled over the last several years by efforts to understand the actions of norepinephrine on neuronal function in the region. In this review, we will summarize the current state of these research areas.
Collapse
Affiliation(s)
- Stephanie A Flavin
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, United States
| | | |
Collapse
|