1
|
Montana V, Flint D, Waagepetersen HS, Schousboe A, Parpura V. Two Metabolic Fuels, Glucose and Lactate, Differentially Modulate Exocytotic Glutamate Release from Cultured Astrocytes. Neurochem Res 2021; 46:2551-2579. [PMID: 34057673 PMCID: PMC9015689 DOI: 10.1007/s11064-021-03340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022]
Abstract
Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent neurons by releasing glutamate via a process of regulated exocytosis. Astrocytes synthesize glutamate de novo owing to the pyruvate entry to the citric/tricarboxylic acid cycle via pyruvate carboxylase, an astrocyte specific enzyme. Pyruvate can be sourced from two metabolic fuels, glucose and lactate. Thus, we investigated the role of these energy/carbon sources in exocytotic glutamate release from astrocytes. Purified astrocyte cultures were acutely incubated (1 h) in glucose and/or lactate-containing media. Astrocytes were mechanically stimulated, a procedure known to increase intracellular Ca2+ levels and cause exocytotic glutamate release, the dynamics of which were monitored using single cell fluorescence microscopy. Our data indicate that glucose, either taken-up from the extracellular space or mobilized from the intracellular glycogen storage, sustained glutamate release, while the availability of lactate significantly reduced the release of glutamate from astrocytes. Based on further pharmacological manipulation during imaging along with tandem mass spectrometry (proteomics) analysis, lactate alone, but not in the hybrid fuel, caused metabolic changes consistent with an increased synthesis of fatty acids. Proteomics analysis further unveiled complex changes in protein profiles, which were condition-dependent and generally included changes in levels of cytoskeletal proteins, proteins of secretory organelle/vesicle traffic and recycling at the plasma membrane in aglycemic, lactate or hybrid-fueled astrocytes. These findings support the notion that the availability of energy sources and metabolic milieu play a significant role in gliotransmission.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Daniel Flint
- Luxumbra Strategic Research, LLC, Arlington, VA, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
2
|
Liu SB, Lu SW, Sun H, Zhang AH, Wang H, Wei WF, Han JR, Guo YJ, Wang XJ. Deciphering the Q-markers of nourishing kidney-yin of Cortex Phellodendri amurense from ZhibaiDihuang pill based on Chinmedomics strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153690. [PMID: 34438229 DOI: 10.1016/j.phymed.2021.153690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cortex Phellodendri amurensis (CPA) has high medicinal value in the treatment of kidney-yin deficiency diseases. However, due to the lack of research on the therapeutic material basis of CPA, the current quality control standard for CPA is defective, and the effect of the nourishing kidney-yin of CPA was limited. PURPOSE Based on the principle of correspondence between the syndrome and prescriptions, we studied the CPA in ZhibaiDihuang pill (ZBDH) to identify quality markers (Q-markers) of CPA in ZBDH for treating kidney-yin deficiency and seek the potential Q-markers of CPA under nourishing kidney-yin effect combined with the analysis of single CPA. METHODS Taking Chinmedomics as the core strategy, metabonomics analysis and effective component identification were performed by UPLC-MS. RESULTS A total of 121 chemical components of ZBDH were identified, among which the contents of berberine, palmatine, jatrorrhizine and magnoflorine changed the most obviously with the addition of CPA. Forty-five components were identified in the blood in the markedly effective state, including berberine, palmatine, jatrorrhizine and magnoflorine. The therapeutic material basis of ZBDH in the treatment of kidney-yin deficiency was found, and 6 components were found to derive from CPA, including magnoflorine and jatrorrhizine. In addition, seventeen components were identified in the blood in the single CPA treatment, including berberine, palmatine, jatrorrhizine and magnoflorine. CONCLUSIONS Magnoflorine and jatrorrhizine were the Q-markers of CPA for treating kidney-yin deficiency in the formula of ZBDH and they were also potential Q-markers of the nourishing kidney-yin of CPA.
Collapse
Affiliation(s)
- Shao-Bo Liu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Sheng-Wen Lu
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Wen-Feng Wei
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Jin-Run Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ya-Jing Guo
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi 530023, China.
| |
Collapse
|
3
|
Farhat R, Su G, Sejling AS, Knight N, Fisher SJ, Chan O. Carvedilol prevents counterregulatory failure and impaired hypoglycaemia awareness in non-diabetic recurrently hypoglycaemic rats. Diabetologia 2019; 62:676-686. [PMID: 30627753 PMCID: PMC6403018 DOI: 10.1007/s00125-018-4802-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS This study evaluates whether the non-selective β-blocker, carvedilol, can be used to prevent counterregulatory failure and the development of impaired awareness of hypoglycaemia (IAH) in recurrently hypoglycaemic rats. METHODS Sprague Dawley rats were implanted with vascular catheters and intracranial guide cannulas targeting the ventromedial hypothalamus (VMH). These animals underwent either three bouts of insulin-induced hypoglycaemia or received three saline injections (control group) over 3 days. A subgroup of recurrently hypoglycaemic animals was treated with carvedilol. The next day, the animals underwent a hypoglycaemic clamp with microdialysis without carvedilol treatment to evaluate changes in central lactate and hormone levels. To assess whether carvedilol prevented IAH, we treated rats that had received repeated 2-deoxyglucose (2DG) injections to impair their awareness of hypoglycaemia with carvedilol and measured food intake in response to insulin-induced hypoglycaemia as a surrogate marker for hypoglycaemia awareness. RESULTS Compared with the control group, recurrently hypoglycaemic rats had a ~1.7-fold increase in VMH lactate and this was associated with a 75% reduction in the sympathoadrenal response to hypoglycaemia. Treatment with carvedilol restored VMH lactate levels and improved the adrenaline (epinephrine) responses. In 2DG-treated rats compared with control animals receiving saline, food intake was reduced in response to hypoglycaemia and increased with carvedilol treatment. CONCLUSIONS/INTERPRETATION We conclude that carvedilol may be a useful therapy to prevent counterregulatory failure and improve IAH.
Collapse
Affiliation(s)
- Rawad Farhat
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah, Department 15 North 2030 East, EIHG Building 533, Room 2420B, Salt Lake City, UT, 84112, USA
| | - Gong Su
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah, Department 15 North 2030 East, EIHG Building 533, Room 2420B, Salt Lake City, UT, 84112, USA
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | | | - Nicholas Knight
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah, Department 15 North 2030 East, EIHG Building 533, Room 2420B, Salt Lake City, UT, 84112, USA
| | - Simon J Fisher
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah, Department 15 North 2030 East, EIHG Building 533, Room 2420B, Salt Lake City, UT, 84112, USA
| | - Owen Chan
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah, Department 15 North 2030 East, EIHG Building 533, Room 2420B, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
4
|
DiNuzzo M, Walls AB, Öz G, Seaquist ER, Waagepetersen HS, Bak LK, Nedergaard M, Schousboe A. State-Dependent Changes in Brain Glycogen Metabolism. ADVANCES IN NEUROBIOLOGY 2019; 23:269-309. [PMID: 31667812 DOI: 10.1007/978-3-030-27480-1_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A fundamental understanding of glycogen structure, concentration, polydispersity and turnover is critical to qualify the role of glycogen in the brain. These molecular and metabolic features are under the control of neuronal activity through the interdependent action of neuromodulatory tone, ionic homeostasis and availability of metabolic substrates, all variables that concur to define the state of the system. In this chapter, we briefly describe how glycogen responds to selected behavioral, nutritional, environmental, hormonal, developmental and pathological conditions. We argue that interpreting glycogen metabolism through the lens of brain state is an effective approach to establish the relevance of energetics in connecting molecular and cellular neurophysiology to behavior.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anne B Walls
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | | | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, NY, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Dienel GA, Cruz NF. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem 2016; 138:14-52. [DOI: 10.1111/jnc.13630] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Gerald A. Dienel
- Department of Cell Biology and Physiology; University of New Mexico; Albuquerque; New Mexico USA
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| | - Nancy F. Cruz
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| |
Collapse
|
6
|
Verkhratsky A, Steardo L, Peng L, Parpura V. Astroglia, Glutamatergic Transmission and Psychiatric Diseases. ADVANCES IN NEUROBIOLOGY 2016; 13:307-326. [PMID: 27885635 DOI: 10.1007/978-3-319-45096-4_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Astrocytes are primary homeostatic cells of the central nervous system. They regulate glutamatergic transmission through the removal of glutamate from the extracellular space and by supplying neurons with glutamine. Glutamatergic transmission is generally believed to be significantly impaired in the contexts of all major neuropsychiatric diseases. In most of these neuropsychiatric diseases, astrocytes show signs of degeneration and atrophy, which is likely to be translated into reduced homeostatic capabilities. Astroglial glutamate uptake/release and glutamate homeostasis are affected in all forms of major psychiatric disorders and represent a common mechanism underlying neurotransmission disbalance, aberrant connectome and overall failure on information processing by neuronal networks, which underlie pathogenesis of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Spain.
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, 48940, Spain.
| | - Luca Steardo
- Department of Psychiatry, University of Naples SUN, Largo Madonna delle Grazie, Naples, Italy
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL, 35294, USA
| |
Collapse
|
7
|
Evaluation of the Effects of Charged Amino Acids on Uncontrolled Seizures. Neurol Res Int 2015; 2015:124507. [PMID: 26240759 PMCID: PMC4512581 DOI: 10.1155/2015/124507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/15/2015] [Accepted: 06/25/2015] [Indexed: 11/28/2022] Open
Abstract
Introduction. Epilepsy is one of the most common diseases of the central nervous system. The prevalence of epilepsy throughout the world is 0.5 to 1%, and the same rate is 7.8 per 1000 in Kerman. Almost 20 to 30% of epileptic patients do not respond properly to common medications. The present study investigated patients who did not respond to common and, even in some cases, adjuvant therapies, with two seizures or more per week, regardless of the type of the inflicted epilepsy. Methodology. The participants of the present double-blind study were randomly selected into three 10-member groups of uncontrolled epileptic patients (arginine, glutamic acid, and lysine). The patients used amino acid powder dissolved in water (three times the daily need) every day for two weeks before breakfast. The number of seizures was recorded one week prior to commencing amino acid use, as well as the first and the second weeks subsequent to use. Results. A total of 32 patients were studied in three groups. The decline rates of seizures were 53%, 41%, and 13%, and the P value was 0.013, 0.027, and 0.720, respectively. Conclusion. Administration of the charged amino acids, arginine, and glutamic acid can decrease the seizures of patients suffering from uncontrolled epilepsy.
Collapse
|
8
|
Dienel GA. The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neurosci Lett 2015; 637:18-25. [PMID: 25725168 DOI: 10.1016/j.neulet.2015.02.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Glucose, glycogen, and lactate are traditionally identified with brain energetics, ATP turnover, and pathophysiology. However, recent studies extend their roles to include involvement in astrocytic signaling, memory consolidation, and gene expression. Emerging roles for these brain fuels and a readily-diffusible by-product are linked to differential fluxes in glycolytic and oxidative pathways, astrocytic glycogen dynamics, redox shifts, neuron-astrocyte interactions, and regulation of astrocytic activities by noradrenaline released from the locus coeruleus. Disproportionate utilization of carbohydrate compared with oxygen during brain activation is influenced by catecholamines, but its physiological basis is not understood and its magnitude may be affected by technical aspects of metabolite assays. Memory consolidation and gene expression are impaired by glycogenolysis blockade, and prevention of these deficits by injection of abnormally-high concentrations of lactate was interpreted as a requirement for astrocyte-to-neuron lactate shuttling in memory and gene expression. However, lactate transport was not measured and evidence for presumed shuttling is not compelling. In fact, high levels of lactate used to preserve memory consolidation and induce gene expression are sufficient to shut down neuronal firing via the HCAR1 receptor. In contrast, low lactate levels activate a receptor in locus coeruleus that stimulates noradrenaline release that may activate astrocytes throughout brain. Physiological relevance of exogenous concentrations of lactate used to mimic and evaluate metabolic, molecular, and behavioral effects of lactate requires close correspondence with the normal lactate levels, the biochemical and cellular sources and sinks, and specificity of lactate delivery to target cells.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
9
|
Hertz L, Xu J, Song D, Du T, Li B, Yan E, Peng L. Astrocytic glycogenolysis: mechanisms and functions. Metab Brain Dis 2015; 30:317-33. [PMID: 24744118 DOI: 10.1007/s11011-014-9536-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/24/2014] [Indexed: 12/18/2022]
Abstract
Until the demonstration little more than 20 years ago that glycogenolysis occurs during normal whisker stimulation glycogenolysis was regarded as a relatively uninteresting emergency procedure. Since then, a series of important astrocytic functions has been shown to be critically dependent on glycogenolytic activity to support the signaling mechanisms necessary for these functions to operate. This applies to glutamate formation and uptake and to release of ATP as a transmitter, stimulated by other transmitters or elevated K(+) concentrations and affecting not only other astrocytes but also most other brain cells. It is also relevant for astrocytic K(+) uptake both during the period when the extracellular K(+) concentration is still elevated after neuronal excitation, and capable of stimulating glycogenolytic activity, and during the subsequent undershoot after intense neuronal activity, when glycogenolysis may be stimulated by noradrenaline. Both elevated K(+) concentrations and several transmitters, including the β-adrenergic agonist isoproterenol and vasopressin increase free cytosolic Ca(2+) concentration in astrocytes, which stimulates phosphorylase kinase so that it activates the transformation of the inactive glycogen phosphorylase a to the active phosphorylase b. Contrary to common belief cyclic AMP plays at most a facilitatory role, and only when free cytosolic Ca(2+) concentration is also increased. Cyclic AMP is not increased during activation of glycogenolysis by either elevated K(+) concentrations or the stimulation of the serotonergic 5-HT(2B) receptor. Not all agents that stimulate glycogenolysis do so by directly activating phophorylase kinase--some do so by activating processes requiring glycogenolysis, e.g. for synthesis of glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- Department of Clinical Pharmacology, China Medical University, No. 92 Beier Road, Heping District, 110001, Shenyang, Peoples' Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
Müller MS, Pedersen SE, Walls AB, Waagepetersen HS, Bak LK. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes. Glia 2014; 63:154-62. [PMID: 25130497 DOI: 10.1002/glia.22741] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/29/2014] [Indexed: 11/07/2022]
Abstract
Glycogen phosphorylase (GP) is activated to degrade glycogen in response to different stimuli, to support both the astrocyte's own metabolic demand and the metabolic needs of neurons. The regulatory mechanism allowing such a glycogenolytic response to distinct triggers remains incompletely understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each isoform to phosphorylation, triggered by incubation with norepinephrine (NE), and to AMP, increased by glucose deprivation in cells in which expression of one GP isoform had been silenced. Successful knockdown was demonstrated on the protein level by Western blot, and on a functional level by determination of glycogen content showing an increase in glycogen levels following knockdown of either GPMM or GPBB. NE triggered glycogenolysis within 15 min in control cells and after GPBB knockdown. However, astrocytes in which expression of GPMM had been silenced showed a delay in response to NE, with glycogen levels significantly reduced only after 60 min. In contrast, allosteric activation of GP by AMP, induced by glucose deprivation, seemed to mainly affect GPBB, as only knockdown of GPBB, but not of GPMM, delayed the glycogenolytic response to glucose deprivation. Our results indicate that the two GP isoforms expressed in astrocytes respond to different physiological triggers, therefore conferring distinct metabolic functions of brain glycogen.
Collapse
Affiliation(s)
- Margit S Müller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | | | | | | | | |
Collapse
|
11
|
Medullary norepinephrine neurons modulate local oxygen concentrations in the bed nucleus of the stria terminalis. J Cereb Blood Flow Metab 2014; 34:1128-37. [PMID: 24714037 PMCID: PMC4083375 DOI: 10.1038/jcbfm.2014.60] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 11/08/2022]
Abstract
Neurovascular coupling is understood to be the underlying mechanism of functional hyperemia, but the actions of the neurotransmitters involved are not well characterized. Here we investigate the local role of the neurotransmitter norepinephrine in the ventral bed nucleus of the stria terminalis (vBNST) of the anesthetized rat by measuring O₂, which is delivered during functional hyperemia. Extracellular changes in norepinephrine and O₂ were simultaneously monitored using fast-scan cyclic voltammetry. Introduction of norepinephrine by electrical stimulation of the ventral noradrenergic bundle or by iontophoretic ejection induced an initial increase in O₂ levels followed by a brief dip below baseline. Supporting the role of a hyperemic response, the O₂ increases were absent in a brain slice containing the vBNST. Administration of selective pharmacological agents demonstrated that both phases of this response involve β-adrenoceptor activation, where the delayed decrease in O₂ is sensitive to both α- and β-receptor subtypes. Selective lesioning of the locus coeruleus with the neurotoxin DSP-4 confirmed that these responses are caused by the noradrenergic cells originating in the nucleus of the solitary tract and A1 cell groups. Overall, these results support that non-coerulean norepinephrine release can mediate activity-induced O₂ influx in a deep brain region.
Collapse
|
12
|
Basic Mechanism Leading to Stimulation of Glycogenolysis by Isoproterenol, EGF, Elevated Extracellular K+ Concentrations, or GABA. Neurochem Res 2014; 39:661-7. [DOI: 10.1007/s11064-014-1244-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
|
13
|
Hertz L, Xu J, Peng L. Glycogenolysis and purinergic signaling. ADVANCES IN NEUROBIOLOGY 2014; 11:31-54. [PMID: 25236723 DOI: 10.1007/978-3-319-08894-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Both ATP and glutamate are on one hand essential metabolites in brain and on the other serve a signaling function as transmitters. However, there is the major difference that the flux in the pathway producing transmitter glutamate is comparable to the rate of glucose metabolism in brain, whereas that producing transmitter ATP is orders of magnitude smaller than the metabolic turnover between ATP and ADP. Moreover, de novo glutamate production occurs exclusively in astrocytes, whereas transmitter ATP is produced both in neurons and astrocytes. This chapter deals only with ATP and exclusively with its formation and release in astrocytes, and it focuses on potential associations with glycogenolysis, which is known to be indispensable for the synthesis of glutamate. Glycogenolysis is dependent upon an increase in free intracellular Ca(2+) concentration (Ca(2+)]i). It can be further stimulated by cAMP, but in contrast to widespread beliefs, cAMP can on its own not induce glycogenolysis. Astrocytes generate ATP from accumulated adenosine, and this process does not seem to require glycogenolysis. A minor amount of the generated ATP is utilized as a transmitter, and its synthesis requires the presence of the mainly intracellular nucleoside transporter ENT3. Many transmitters as well as extracellular K(+) concentrations high enough to open the voltage-sensitive L-channels for Ca(2+) cause a release of transmitter ATP from astrocytes. Adenosine and ATP induce release of ATP by action at several different purinergic receptors. The release evoked by transmitters or elevated K(+) concentrations is abolished by DAB, an inhibitor of glycogenolysis.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China,
| | | | | |
Collapse
|
14
|
Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC. Glutamate metabolism in the brain focusing on astrocytes. ADVANCES IN NEUROBIOLOGY 2014; 11:13-30. [PMID: 25236722 DOI: 10.1007/978-3-319-08894-5_2] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplerotic enzyme pyruvate carboxylase and glutamine synthetase. Glutamate is formed directly from glutamine by deamidation via phosphate activated glutaminase a reaction that also yields ammonia. Glutamate plays key roles linking carbohydrate and amino acid metabolism via the tricarboxylic acid (TCA) cycle, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools in both glutamatergic and GABAergic neurons. Since the glutamate-glutamine cycle is an open cycle that actively interfaces with other pathways, the de novo synthesis of glutamine in astrocytes helps to maintain the operation of this cycle. The fine-tuned biochemical specialization of astrocytes allows these cells to respond to subtle changes in neurotransmission by dynamically adjusting their anaplerotic and glycolytic activities, and adjusting the amount of glutamate oxidized for energy relative to direct formation of glutamine, to meet the demands for maintaining neurotransmission. This chapter summarizes the evidence that astrocytes are essential and dynamic partners in both glutamatergic and GABAergic neurotransmission in brain.
Collapse
Affiliation(s)
- Arne Schousboe
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
15
|
Walls AB, Bak LK, Sonnewald U, Schousboe A, Waagepetersen HS. Metabolic Mapping of Astrocytes and Neurons in Culture Using Stable Isotopes and Gas Chromatography-Mass Spectrometry (GC-MS). BRAIN ENERGY METABOLISM 2014. [DOI: 10.1007/978-1-4939-1059-5_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Bak LK, Waagepetersen HS, Sørensen M, Ott P, Vilstrup H, Keiding S, Schousboe A. Role of branched chain amino acids in cerebral ammonia homeostasis related to hepatic encephalopathy. Metab Brain Dis 2013; 28:209-15. [PMID: 23371316 DOI: 10.1007/s11011-013-9381-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 01/17/2013] [Indexed: 12/30/2022]
Abstract
Hepatic encephalopathy (HE) is associated with increased ammonia levels in plasma and brain. Different treatment strategies have been developed to ameliorate the detrimental effects of the ammonia load. One such strategy is based on the finding of a low level of the branched chain amino acids (BCAAs) in plasma of patients suffering from HE and the assumption that in particular isoleucine could be beneficial to brain energy metabolism as it is metabolized to the tricarboxylic acid cycle intermediate and precursor succinyl-CoA and acetyl-CoA, respectively. This would enable de novo synthesis of glutamine via α-ketoglutarate and glutamate and at the same time stimulate oxidative metabolism. The present mini-review summarizes the metabolic basis for this hypothesis delineating studies in the brain in vivo as well as in cultured neural cells aimed at elucidating the metabolism of the BCAAs focusing on isoleucine. The conclusion is that isoleucine appears at least partially to act in this fashion albeit its metabolism is quantitatively relatively modest. In addition, a short section on the role of the BCAAs in synaptic ammonia homeostasis is included along with some thoughts on the role of the BCAAs in other pathologies such as cancer.
Collapse
Affiliation(s)
- Lasse K Bak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, 2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
17
|
Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L. Requirement of Glycogenolysis for Uptake of Increased Extracellular K+ in Astrocytes: Potential Implications for K+ Homeostasis and Glycogen Usage in Brain. Neurochem Res 2012; 38:472-85. [DOI: 10.1007/s11064-012-0938-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/09/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022]
|
18
|
Brekke EMF, Walls AB, Schousboe A, Waagepetersen HS, Sonnewald U. Quantitative importance of the pentose phosphate pathway determined by incorporation of 13C from [2-13C]- and [3-13C]glucose into TCA cycle intermediates and neurotransmitter amino acids in functionally intact neurons. J Cereb Blood Flow Metab 2012; 32:1788-99. [PMID: 22714050 PMCID: PMC3434630 DOI: 10.1038/jcbfm.2012.85] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The brain is highly susceptible to oxidative injury, and the pentose phosphate pathway (PPP) has been shown to be affected by pathological conditions, such as Alzheimer's disease and traumatic brain injury. While this pathway has been investigated in the intact brain and in astrocytes, little is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism of (13)C-labeled glucose via the PPP does not appear to contribute to the production of releasable lactate, it contributes to labeling of tricarboxylic acid (TCA) cycle intermediates and related amino acids. Based on glutamate isotopomers, it was calculated that PPP activity accounts for ~6% of glucose metabolism in cortical neurons and ~4% in cerebellar neurons. This is the first demonstration that pyruvate generated from glucose via the PPP contributes to the synthesis of acetyl CoA for oxidation in the TCA cycle. Moreover, the fact that (13)C labeling from glucose is incorporated into glutamate proves that both the oxidative and the nonoxidative stages of the PPP are active in neurons.
Collapse
Affiliation(s)
- Eva M F Brekke
- Department of Neuroscience, Faculty of Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | | | | | | | | |
Collapse
|
19
|
Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD. Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 2012; 37:2569-88. [PMID: 22926576 DOI: 10.1007/s11064-012-0868-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 12/26/2022]
Abstract
During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium signaling were discovered using this tissue culture preparation and most of these observations were subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions of astrocytes. Many of these discoveries would not have been possible to achieve without the use of astrocyte cultures. Additionally, we address and discuss the concerns that have been raised regarding the use of primary cultures of astrocytes as an experimental model system.
Collapse
Affiliation(s)
- Sofie C Lange
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
20
|
Kreft M, Bak LK, Waagepetersen HS, Schousboe A. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN Neuro 2012; 4:e00086. [PMID: 22435484 PMCID: PMC3338196 DOI: 10.1042/an20120007] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/06/2012] [Accepted: 03/21/2012] [Indexed: 02/08/2023] Open
Abstract
Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.
Collapse
Key Words
- amino acid
- astrocyte
- compartmentation
- energy
- metabolism
- α-kg, α-ketoglutarate
- aat, aspartate aminotransferase
- cfp, cyan fluorescence protein
- dab, diaminobenzidine
- fret, fluorescence resonance energy transfer
- [glc]i, intracellular glucose concentration
- gaba, γ-aminobutyric acid
- gaba-t, gaba aminotransferase
- gdh, glutamate dehydrogenase
- glut, glucose transporter
- gp, glycogen phosphorylase
- gs, glutamine synthetase
- gsk3, gs kinase 3
- pag, phosphate-activated glutaminase
- pi3k, phosphoinositide 3-kinase
- pkc, protein kinase c
- tca, tricarboxylic acid
- yfp, yellow fluorescence protein
Collapse
Affiliation(s)
- Marko Kreft
- *LNMCP, Institute of Pathophysiology, Faculty of Medicine and CPAE, Department of Biology, Biotechnical Faculty, University of Ljubljana and Celica Biomedical Center, Slovenia
| | - Lasse K Bak
- †Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Helle S Waagepetersen
- †Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Arne Schousboe
- †Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
21
|
Obel LF, Müller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. FRONTIERS IN NEUROENERGETICS 2012; 4:3. [PMID: 22403540 PMCID: PMC3291878 DOI: 10.3389/fnene.2012.00003] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/13/2012] [Indexed: 11/14/2022]
Abstract
Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia. In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies—it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential component in the intermolecular mechanisms of glycogen metabolism, we suggest that glycogen metabolism in astrocytes is compartmentalized at the subcellular level. As a consequence, the meaning and importance of conventional terms used to describe glycogen metabolism (e.g., turnover) is challenged. Overall, this review represents an overview of contemporary knowledge about brain glycogen and its metabolism and function. However, it also has a sharp focus on what we do not know, which is perhaps even more important for the future quest of uncovering the roles of glycogen in brain physiology and pathology.
Collapse
Affiliation(s)
- Linea F Obel
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|