1
|
Huenchuguala S, Segura-Aguilar J. Natural Compounds That Activate the KEAP1/Nrf2 Signaling Pathway as Potential New Drugs in the Treatment of Idiopathic Parkinson's Disease. Antioxidants (Basel) 2024; 13:1125. [PMID: 39334784 PMCID: PMC11428591 DOI: 10.3390/antiox13091125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recently, a single-neuron degeneration model has been proposed to understand the development of idiopathic Parkinson's disease based on (i) the extremely slow development of the degenerative process before the onset of motor symptoms and during the progression of the disease and (ii) the fact that it is triggered by an endogenous neurotoxin that does not have an expansive character, limiting its neurotoxic effect to single neuromelanin-containing dopaminergic neurons. It has been proposed that aminochrome is the endogenous neurotoxin that triggers the neurodegenerative process in idiopathic Parkinson's disease by triggering mitochondrial dysfunction, oxidative stress, neuroinflammation, dysfunction of both lysosomal and proteasomal protein degradation, endoplasmic reticulum stress and formation of neurotoxic alpha-synuclein oligomers. Aminochrome is an endogenous neurotoxin that is rapidly reduced by flavoenzymes and/or forms adducts with proteins, which implies that it is impossible for it to have a propagative neurotoxic effect on neighboring neurons. Interestingly, the enzymes DT-diaphorase and glutathione transferase M2-2 prevent the neurotoxic effects of aminochrome. Natural compounds present in fruits, vegetables and other plant products have been shown to activate the KEAP1/Nrf2 signaling pathway by increasing the expression of antioxidant enzymes including DT-diaphorase and glutathione transferase. This review analyzes the possibility of searching for natural compounds that increase the expression of DT-diaphorase and glutathione transferase through activation of the KEAP1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, Instituto de Ciencias Biomédicas (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
2
|
Huenchuguala S, Segura-Aguilar J. Targets to Search for New Pharmacological Treatment in Idiopathic Parkinson's Disease According to the Single-Neuron Degeneration Model. Biomolecules 2024; 14:673. [PMID: 38927076 PMCID: PMC11201619 DOI: 10.3390/biom14060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
One of the biggest problems in the treatment of idiopathic Parkinson's disease is the lack of new drugs that slow its progression. L-Dopa remains the star drug in the treatment of this disease, although it induces severe side effects. The failure of clinical studies with new drugs depends on the use of preclinical models based on neurotoxins that do not represent what happens in the disease since they induce rapid and expansive neurodegeneration. We have recently proposed a single-neuron degeneration model for idiopathic Parkinson's disease that requires years to accumulate enough lost neurons for the onset of motor symptoms. This single-neuron degeneration model is based on the excessive formation of aminochrome during neuromelanin synthesis that surpass the neuroprotective action of the enzymes DT-diaphorase and glutathione transferase M2-2, which prevent the neurotoxic effects of aminochrome. Although the neurotoxic effects of aminochrome do not have an expansive effect, a stereotaxic injection of this endogenous neurotoxin cannot be used to generate a preclinical model in an animal. Therefore, the aim of this review is to evaluate the strategies for pharmacologically increasing the expression of DT diaphorase and GSTM2-2 and molecules that induce the expression of vesicular monoamine transporter 2, such as pramipexole.
Collapse
Affiliation(s)
- Sandro Huenchuguala
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago 8330111, Chile
| |
Collapse
|
3
|
JM-20, a Benzodiazepine-Dihydropyridine Hybrid Molecule, Inhibits the Formation of Alpha-Synuclein-Aggregated Species. Neurotox Res 2022; 40:2135-2147. [PMID: 35997936 DOI: 10.1007/s12640-022-00559-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 12/31/2022]
Abstract
Studies showed that JM-20, a benzodiazepine-dihydropyridine hybrid molecule, protects against rotenone and 6-hydroxydopamine neurotoxicity. However, its protective effects against cytotoxicity induced by endogenous neurotoxins involved in Parkinson's disease (PD) pathogenesis have never been investigated. In this study, we evaluated the ability of JM-20 to inhibit alpha-synuclein (aSyn) aggregation. We also evaluated the interactions of JM-20 with aSyn by molecular docking and molecular dynamics and assessed the protective effect of JM-20 against aminochrome cytotoxicity. We demonstrated that JM-20 induced the formation of heterogeneous amyloid fibrils, which were innocuous to primary cultures of mesencephalic cells. Moreover, JM-20 reduced the average size of aSyn positive inclusions in H4 cells transfected with SynT wild-type and synphilin-1-V5, but not in HEK cells transfected with synphilin-1-GFP. In silico studies showed the interaction between JM-20 and the aSyn-binding site. Additionally, we showed that JM-20 protects SH-SY5Y cells against aminochrome cytotoxicity. These results reinforce the potential of JM-20 as a neuroprotective compound for PD and suggest aSyn as a molecular target for JM-20.
Collapse
|
4
|
Trinh PTH, Yurchenko AN, Khmel OO, Dieu TVT, Ngoc NTD, Girich EV, Menshov AS, Kim NY, Chingizova EA, Van TTT, Lee JS, Lee HS, Yurchenko EA. Cytoprotective Polyketides from Sponge-Derived Fungus Lopadostoma pouzarii. Molecules 2022; 27:7650. [PMID: 36364472 PMCID: PMC9655818 DOI: 10.3390/molecules27217650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 05/31/2024] Open
Abstract
The new polyketides lopouzanones A and B, as well as the new 1-O-acetyl and 2-O-acetyl derivatives of dendrodochol B, were isolated from the sponge-derived marine fungus Lopadostoma pouzarii strain 168CLC-57.3. Moreover, six known polyketides, gliorosein, balticolid, dendrodolide G, dihydroisocoumarine, (-)-5-methylmellein, and dendrodochol B, were identified. The structures of the isolated compounds were determined by a combination of NMR and ESIMS techniques. The absolute configurations of the lopouzanones A and B were determined using the Mosher's method. The cytotoxicity of the isolated compounds against human prostate cancer cells PC-3 and normal rat cardiomyocytes H9c2 was investigated. Gliorosein showed weak DPPH radical-scavenging activity and in vitro cardioprotective effects toward rotenone toxicity and CoCl2-mimic hypoxia.
Collapse
Affiliation(s)
- Phan Thi Hoai Trinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang 650000, Vietnam
| | - Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Olga O. Khmel
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Trang Vo Thi Dieu
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang 650000, Vietnam
| | - Ngo Thi Duy Ngoc
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang 650000, Vietnam
| | - Elena V. Girich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Alexander S. Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Natalya Y. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Tran Thi Thanh Van
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Nha Trang 650000, Vietnam
| | - Jong Seok Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, Busan 49111, Korea
| | - Hyi-Seung Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, Busan 49111, Korea
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Science, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| |
Collapse
|
5
|
Patricio F, Morales Dávila E, Patricio-Martínez A, Arana Del Carmen N, Martínez I, Aguilera J, Perez-Aguilar JM, Limón ID. Intrapallidal injection of cannabidiol or a selective GPR55 antagonist decreases motor asymmetry and improves fine motor skills in hemiparkinsonian rats. Front Pharmacol 2022; 13:945836. [PMID: 36120297 PMCID: PMC9479130 DOI: 10.3389/fphar.2022.945836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
Cannabidiol (CBD) presents antiparkinsonian properties and neuromodulatory effects, possibly due to the pleiotropic activity caused at multiple molecular targets. Recently, the GPR55 receptor has emerged as a molecular target of CBD. Interestingly, GPR55 mRNA is expressed in the external globus pallidus (GPe) and striatum, hence, it has been suggested that its activity is linked to motor dysfunction in Parkinson’s disease (PD). The present study aimed to evaluate the effect of the intrapallidal injection of both CBD and a selective GPR55 antagonist (CID16020046) on motor asymmetry, fine motor skills, and GAD-67 expression in hemiparkinsonian rats. The hemiparkinsonian animal model applied involved the induction of a lesion in male Wistar rats via the infusion of the neurotoxin 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle via stereotaxic surgery. After a period of twenty days, a second surgical procedure was performed to implant a guide cannula into the GPe. Seven days later, lysophosphatidylinositol (LPI), CBD, or CID16020046 were injected once a day for three consecutive days (from the 28th to the 30th day post-lesion). Amphetamine-induced turning behavior was evaluated on the 14th and 30th days post-injury. The staircase test and fine motor skills were evaluated as follows: the rats were subject to a ten-day training period prior to the 6-OHDA injury; from the 15th to the 19th days post-lesion, the motor skills alterations were evaluated under basal conditions; and, from the 28th to the 30th day post-lesion, the pharmacological effects of the drugs administered were evaluated. The results obtained show that the administration of LPI or CBD generated lower levels of motor asymmetry in the turning behavior of hemiparkinsonian rats. It was also found that the injection of CBD or CID16020046, but not LPI, in the hemiparkinsonian rats generated significantly superior performance in the staircase test, in terms of the use of the forelimb contralateral to the 6-OHDA-induced lesion, when evaluated from the 28th to the 30th day post-lesion. Similar results were also observed for superior fine motor skills performance for pronation, grasp, and supination. Finally, the immunoreactivity levels were found to decrease for the GAD-67 enzyme in the striatum and the ipsilateral GPe of the rats injected with CBD and CID16020046, in contrast with those lesioned with 6-OHDA. The results obtained suggest that the inhibitory effects of CBD and CID16020046 on GPR55 in the GPe could be related to GABAergic overactivation in hemiparkinsonism, thus opening new perspectives to explain, at a cellular level, the reversal of the motor impairment observed in PD models.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Eliud Morales Dávila
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Nayeli Arana Del Carmen
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Isabel Martínez
- Laboratorio de Neuroquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - José Aguilera
- Departament de Bioquímica i de Biologia Molecular, Facultad de Medicina, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | | | - Ilhuicamina Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- *Correspondence: Ilhuicamina Daniel Limón, ,
| |
Collapse
|
6
|
Cao Y, Li B, Ismail N, Smith K, Li T, Dai R, Deng Y. Neurotoxicity and Underlying Mechanisms of Endogenous Neurotoxins. Int J Mol Sci 2021; 22:12805. [PMID: 34884606 PMCID: PMC8657695 DOI: 10.3390/ijms222312805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Endogenous and exogenous neurotoxins are important factors leading to neurodegenerative diseases. In the 1980s, the discovery that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) contributes to Parkinson's disease (PD) symptoms led to new research investigations on neurotoxins. An abnormal metabolism of endogenous substances, such as condensation of bioamines with endogenous aldehydes, dopamine (DA) oxidation, and kynurenine pathway, can produce endogenous neurotoxins. Neurotoxins may damage the nervous system by inhibiting mitochondrial activity, increasing oxidative stress, increasing neuroinflammation, and up-regulating proteins related to cell death. This paper reviews the biological synthesis of various known endogenous neurotoxins and their toxic mechanisms.
Collapse
Affiliation(s)
- Yanlu Cao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Nafissa Ismail
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.I.); (K.S.)
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kevin Smith
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.I.); (K.S.)
| | - Tianmei Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| |
Collapse
|
7
|
Yurchenko EA, Menchinskaya ES, Pislyagin EA, Chingizova EA, Girich EV, Yurchenko AN, Aminin DL, Mikhailov VV. Cytoprotective Activity of p-Terphenyl Polyketides and Flavuside B from Marine-Derived Fungi against Oxidative Stress in Neuro-2a Cells. Molecules 2021; 26:molecules26123618. [PMID: 34199157 PMCID: PMC8231591 DOI: 10.3390/molecules26123618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The influence of p-terphenyl polyketides 1-3 from Aspergillus candidus KMM 4676 and cerebroside flavuside B (4) from Penicillium islandicum (=Talaromyces islandicus) against the effect of neurotoxins, rotenone and paraquat, on Neuro-2a cell viability by MTT and LDH release assays and intracellular ROS level, as well as DPPH radical scavenging activity, was investigated. Pre-incubation with compounds significantly diminished the ROS level in rotenone- and paraquat-treated cells. It was shown that the investigated polyketides 1-3 significantly increased the viability of rotenone- and paraquat-treated cells in two of the used assays but they affected only the viability of paraquat-treated cells in the LDH release assay. Flavuside B statistically increased the viability of paraquat-treated cells in both MTT and LDH release assays, however, it increased the viability of rotenone-treated cells in the LDH release assay. Structure-activity relationships for p-terphenyl derivatives, as well as possible mechanisms of cytoprotective action of all studied compounds, were discussed.
Collapse
Affiliation(s)
- Ekaterina A. Yurchenko
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Prosp. 100 Let Vladivostoku 159, 690022 Vladivostok, Russia; (E.S.M.); (E.A.P.); (E.A.C.); (D.L.A.)
- Correspondence: (E.A.Y.); (A.N.Y.); Tel.: +7-423-231-9932 (E.A.Y.)
| | - Ekaterina S. Menchinskaya
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Prosp. 100 Let Vladivostoku 159, 690022 Vladivostok, Russia; (E.S.M.); (E.A.P.); (E.A.C.); (D.L.A.)
| | - Evgeny A. Pislyagin
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Prosp. 100 Let Vladivostoku 159, 690022 Vladivostok, Russia; (E.S.M.); (E.A.P.); (E.A.C.); (D.L.A.)
| | - Ekaterina A. Chingizova
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Prosp. 100 Let Vladivostoku 159, 690022 Vladivostok, Russia; (E.S.M.); (E.A.P.); (E.A.C.); (D.L.A.)
| | - Elena V. Girich
- Laboratory of Chemistry of Microbial Metabolites, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Prosp. 100 Let Vladivostoku 159, 690022 Vladivostok, Russia;
| | - Anton N. Yurchenko
- Laboratory of Chemistry of Microbial Metabolites, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Prosp. 100 Let Vladivostoku 159, 690022 Vladivostok, Russia;
- Correspondence: (E.A.Y.); (A.N.Y.); Tel.: +7-423-231-9932 (E.A.Y.)
| | - Dmitry L. Aminin
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Prosp. 100 Let Vladivostoku 159, 690022 Vladivostok, Russia; (E.S.M.); (E.A.P.); (E.A.C.); (D.L.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| | - Valery V. Mikhailov
- Laboratory of Microbiology, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Prosp. 100 Let Vladivostoku 159, 690022 Vladivostok, Russia;
| |
Collapse
|
8
|
Yurchenko EA, Kolesnikova SA, Lyakhova EG, Menchinskaya ES, Pislyagin EA, Chingizova EA, Aminin DL. Lanostane Triterpenoid Metabolites from a Penares sp. Marine Sponge Protect Neuro-2a Cells against Paraquat Neurotoxicity. Molecules 2020; 25:molecules25225397. [PMID: 33218171 PMCID: PMC7698842 DOI: 10.3390/molecules25225397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
The results of an investigation of the protective effects of five lanostane triterpenoids: 3β-acetoxy-7β,8β-epoxy-5α-lanost-24-en-30,9α-olide (1), 3β-hydroxy-7β,8β-epoxy-5α-lanost-24-en- 30,9α-olide (2), 29-nor-penasterone (3), penasterone (4), and acetylpenasterol (5), from a marine sponge, Penares sp., against paraquat-induced neuroblastoma Neuro-2a cell damage, are described. The influence of all compounds on viability of the Neuro-2a cells treated with paraquat (PQ) was studied with MTT and fluorescein diacetate assays as well as propidium iodide straining. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of the compounds as well as their influence on reactive oxygen species (ROS) level and mitochondrial membrane potential in PQ-treated neuronal cells were analyzed. Finally, the effect of the compounds on intracellular level of heat shock protein 70 kDa (Hsp70) and neurite outgrowth in PQ-treated Neuro-2a cells were studied. Studied triterpenoids demonstrated protective effects against PQ-induced neurotoxicity associated with the ability to reduce ROS intracellular level and diminish mitochondrial dysfunction. Acetylpenasterol (5), as a more promising neuroprotective compound, significantly increased the viability of Neuro-2a cells incubated with PQ as well as decreased intracellular ROS level in these cells. Moreover, acetylpenasterol induced Hsp70 expression in PQ-treated cells. It was also shown to inhibit PQ-induced neurite loss and recovered the number of neurite-bearing cells. The relationship between neuroprotective activity of the investigated compounds 1–5 and their chemical structure was also discussed.
Collapse
Affiliation(s)
- Ekaterina A. Yurchenko
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, prosp. 100 let Vladivostoku 159, 690022 Vladivostok, Russia; (E.S.M.); (E.A.P.); (E.A.C.); (D.L.A.)
- Correspondence: or ; Tel.: +7-423-231-9932
| | - Sophia A. Kolesnikova
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, prosp. 100 let Vladivostoku 159, 690022 Vladivostok, Russia; (S.A.K.); (E.G.L.)
| | - Ekaterina G. Lyakhova
- Laboratory of Marine Natural Products Chemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, prosp. 100 let Vladivostoku 159, 690022 Vladivostok, Russia; (S.A.K.); (E.G.L.)
| | - Ekaterina S. Menchinskaya
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, prosp. 100 let Vladivostoku 159, 690022 Vladivostok, Russia; (E.S.M.); (E.A.P.); (E.A.C.); (D.L.A.)
| | - Evgeny A. Pislyagin
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, prosp. 100 let Vladivostoku 159, 690022 Vladivostok, Russia; (E.S.M.); (E.A.P.); (E.A.C.); (D.L.A.)
| | - Ekaterina A. Chingizova
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, prosp. 100 let Vladivostoku 159, 690022 Vladivostok, Russia; (E.S.M.); (E.A.P.); (E.A.C.); (D.L.A.)
| | - Dmitry L. Aminin
- Laboratory of Bioassays and Mechanism of Action of Biologically Active Substances, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, prosp. 100 let Vladivostoku 159, 690022 Vladivostok, Russia; (E.S.M.); (E.A.P.); (E.A.C.); (D.L.A.)
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
| |
Collapse
|
9
|
Can we conclude a potential therapeutic action for Parkinson's disease by using postmortem tissue and a preclinical model based on an exogenous neurotoxin? Cell Death Dis 2018; 9:748. [PMID: 29970885 PMCID: PMC6030129 DOI: 10.1038/s41419-018-0798-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/14/2018] [Indexed: 11/13/2022]
|