1
|
Jana B, Całka J, Sikora M, Palus K. Involvement of the calcitonin gene-related peptide system in the modulation of inflamed uterus contractile function in pigs. Sci Rep 2022; 12:19146. [PMID: 36352250 PMCID: PMC9646719 DOI: 10.1038/s41598-022-23867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
This study analyzed severe acute endometritis action on myometrial density and distribution of protein gene product (PGP)9.5- and calcitonin gene-related peptide (CGRP)-like immunoreactive nerve fibers and calcitonin receptor-like receptor (CLR) expression, and on CGRP receptor (CGRPR) participation in uterine contractility in pigs. E. coli suspension (E. coli group) or saline (SAL group) were injected into the uteri, or only laparotomy was performed (CON group). In the E. coli group myometrium, a lack of significant changes in PGP9.5 and CGRP innervation patterns and increased CLR protein level were revealed. In all groups, compared to the pretreatment period, human αCGRP increased amplitude in the myometrium, while reducing it in endometrium/myometrium. In the E. coli group endometrium/myometrium, human αCGRP lowered amplitude vs other groups. Human αCGRP reduced frequency in CON and SAL groups and enhanced it in the E. coli group endometrium/myometrium. The frequency in E. coli group increased vs other groups. CGRPR antagonist, human αCGRP8-37, reversed (CON, SAL groups) and eliminated (E. coli group) the rise in human αCGRP-induced myometrial amplitude. In endometrium/myometrium, human αCGRP8-37 abolished (CON group) and reversed (SAL group) a decrease in frequency, and reduced the rise in frequency (E. coli group) caused by human αCGRP. Collectively, in the myometrium, endometritis did not change PGP9.5 and CGRP innervation patterns and enhanced CLR protein level. CGRPR also mediated in CGRP action on inflamed uterus contractility.
Collapse
Affiliation(s)
- Barbara Jana
- grid.433017.20000 0001 1091 0698Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-078 Olsztyn, Poland
| | - Jarosław Całka
- grid.412607.60000 0001 2149 6795Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Małgorzata Sikora
- grid.433017.20000 0001 1091 0698Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-078 Olsztyn, Poland
| | - Katarzyna Palus
- grid.412607.60000 0001 2149 6795Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
| |
Collapse
|
2
|
Rytel L, Könyves L, Gonkowski S. Endocrine Disruptor Bisphenol a Affects the Neurochemical Profile of Nerve Fibers in the Aortic Arch Wall in the Domestic Pig. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19105964. [PMID: 35627499 PMCID: PMC9140835 DOI: 10.3390/ijerph19105964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023]
Abstract
Bisphenol A (BPA) is a synthetic compound utilized in industry for the production of various plastics. BPA penetrates into the environment and adversely affects living organisms. Therefore, the influence of various BPA dosages on the neurochemical characteristics of nerve fibers located in the aortic branch wall was investigated in this study utilizing a double immunofluorescence method. It was found that BPA in concentration of 0.5 mg/kg body weight/day causes a clear increase in the density of nerves within aortic branch walls immunoreactive to cocaine- and amphetamine-regulated transcript (CART), calcitonin gene-related peptide (CGRP), neuronal isoform of nitric oxide synthase (nNOS), pituitary adenylate cyclase-activating peptide (PACAP), and vasoactive intestinal polypeptide (VIP). Nerves containing galanin (GAL) and/or somatostatin (SOM) did not change when BPA was introduced into the system. Changes noted after administration of BPA at a dose of 0.05 mg/kg body weight/day were less visible and concerned fibers immunoreactive to CART, CGRP, and/or PACAP. The obtained results show that BPA affects the neurochemical coding of nerves in the aortic branch wall. These fluctuations may be the first signs of the influence of this substance on blood vessels and may also be at the root of the disturbances in the cardiovascular system.
Collapse
Affiliation(s)
- Liliana Rytel
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland
- Correspondence:
| | - László Könyves
- Department of Animal Hygiene, Herd Health and Mobile Clinic, University of Veterinary Medicine, 1078 Budapest, Hungary;
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| |
Collapse
|
3
|
Vidal MS, Menon R, Yu GFB, Amosco MD. Actions of Bisphenol A on Different Feto-Maternal Compartments Contributing to Preterm Birth. Int J Mol Sci 2022; 23:ijms23052411. [PMID: 35269554 PMCID: PMC8910111 DOI: 10.3390/ijms23052411] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Preterm birth remains to be one of the most prevalent obstetric complications worldwide. Since there are multiple etiological factors associated with this disease process, an integrative literature search in PubMed and Scopus databases on possible mechanism of action and effect of bisphenols on exposure on human or animal placental samples in preterm birth was conducted. From 2332 articles on initial literature search, 63 studies were included for full data extraction. Altogether, several pathways were shown to be possibly affected by bisphenols, leading to dysregulations in structural and endocrine foundation in the placenta, potential induction of senescence and failure of decidualization in the decidua, and possible propagation of inflammation in the fetal membranes. Combined, these actions may eventually counteract bisphenol-induced relaxation of the myometrium and promote contractility alongside fetal membrane weakening. In totality, these individual impairments in gestation-critical processes may lead to failure of maintenance of pregnancy, and thus effecting preterm birth.
Collapse
Affiliation(s)
- Manuel S. Vidal
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Correspondence:
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Gracia Fe B. Yu
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila 1000, Philippines;
| | - Melissa D. Amosco
- Department of Obstetrics and Gynecology, Philippine General Hospital, University of the Philippines Manila, Manila 1000, Philippines;
| |
Collapse
|
4
|
Chen H, Chen J, Shi X, Li L, Xu S. Naringenin protects swine testis cells from bisphenol A-induced apoptosis via Keap1/Nrf2 signaling pathway. Biofactors 2022; 48:190-203. [PMID: 34914851 DOI: 10.1002/biof.1814] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA) has caused serious pathologies in varying organs of humans and animals, especially reproductive organs. Naringenin (NRG) is a flavanone compound that has shown protective effects against several environmental chemicals through suppression of oxidative stress and activation of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Herein, we described the discovery path of NRG inhibition on apoptosis in BPA exposed swine testis (ST) cells through targeting Kelch-like ech-associated protein (Keap1). We found that NRG could specifically bound to the active residues of DGR domain in Keap1, thereby activating Nrf2 signaling pathway, and then increasing the levels of SOD, GPx and CAT, and finally inhibiting oxidative stress and mitochondrial apoptosis induced by BPA in ST cells. Altogether, our results showed that NRG inhibits oxidative stress and mitochondrial apoptosis induced by BPA in ST cells by targeting Keap1/Nrf2 signaling pathway, indicating that NRG could serve as an antagonistic therapy against BPA.
Collapse
Affiliation(s)
- Huijie Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin, China
| | - Jianqing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Regulatory Influence of Galanin and GALR1/GALR2 Receptors on Inflamed Uterus Contractility in Pigs. Int J Mol Sci 2021; 22:ijms22126415. [PMID: 34203944 PMCID: PMC8232690 DOI: 10.3390/ijms22126415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Uterine inflammation is a very common and serious pathology in domestic animals, the development and progression of which often result from disturbed myometrial contractility. We investigated the effect of inflammation on the protein expression of galanin (GAL) receptor subtypes (GALR)1 and GALR2 in myometrium and their role in the contractile amplitude and frequency of an inflamed gilt uterus. The gilts of the E. coli and SAL groups received E. coli suspension or saline in their uteri, respectively, and only laparotomy was performed (CON group). Eight days later, the E. coli group developed severe acute endometritis and lowered GALR1 protein expression in the myometrium. Compared to the pretreatment period, GAL (10−7 M) reduced the amplitude and frequency in myometrium and endometrium/myometrium of the CON and SAL groups, the amplitude in both stripes and frequency in endometrium/myometrium of the E. coli group. In this group, myometrial frequency after using GAL increased, and it was higher than in other groups. GALR2 antagonist diminished the decrease in amplitude in myometrium and the frequency in endometrium/myometrium (SAL, E. coli groups) induced by GAL (10−7 M). GALR1/GALR2 antagonist and GAL (10−7 M) reversed the decrease in amplitude and diminished the decrease in frequency in both examined stripes (CON, SAL groups), and diminished the drop in amplitude and abolished the rise in the frequency in the myometrium (E. coli group). In summary, the inflammation reduced GALR1 protein expression in pig myometrium, and GALR1 and GALR2 participated in the contractile regulation of an inflamed uterus.
Collapse
|
6
|
Bisphenol A affects vipergic nervous structures in the porcine urinary bladder trigone. Sci Rep 2021; 11:12147. [PMID: 34108533 PMCID: PMC8190307 DOI: 10.1038/s41598-021-91529-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
Bisphenol A (BPA) is used in the production of plastics approved for contact with feed and food. Upon entering living organisms, BPA, as a potent endocrine disruptor, negatively affects various internal organs and regulatory systems, especially in young individuals. Although previous studies have described the neurotoxic effects of BPA on various tissues, it should be underlined that the putative influence of this substance on the chemical architecture of the urinary bladder intrinsic innervation has not yet been studied. One of the most important neuronal substances involved in the regulation of urinary bladder functions is vasoactive intestinal polypeptide (VIP), which primarily participates in the regulation of muscular activity and blood flow. Therefore, this study aimed to determine the influence of various doses of BPA on the distribution pattern of VIP-positive neural structures located in the wall of the porcine urinary bladder trigone using the double-immunofluorescence method. The obtained results show that BPA influence leads to an increase in the number of both neurons and nerve fibres containing VIP in the porcine urinary bladder trigone. This may indicate that VIP participates in adaptive processes of the urinary bladder evoked by BPA.
Collapse
|
7
|
Jana B, Całka J. Role of beta-adrenergic receptor subtypes in pig uterus contractility with inflammation. Sci Rep 2021; 11:11512. [PMID: 34075189 PMCID: PMC8169833 DOI: 10.1038/s41598-021-91184-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Uterine inflammation is a very common and serious condition in domestic animals. To development and progression of this pathology often lead disturbances in myometrial contractility. Participation of β1-, β2- and β3-adrenergic receptors (ARs) in noradrenaline (NA)-influenced contractility of the pig inflamed uterus was studied. The gilts of SAL- and E.coli-treated groups were administered saline or E.coli suspension into the uterine horns, respectively. Laparotomy was only done in the CON group. Compared to the period before NA administration, this neurotransmitter reduced the tension, amplitude and frequency in uterine strips of the CON and SAL groups. In the E.coli group, NA decreased the amplitude and frequency, and these parameters were lower than in other groups. In the CON, SAL and E.coli groups, β1- and β3-ARs antagonists in more cases did not significantly change and partly eliminated NA inhibitory effect on amplitude and frequency, as compared to NA action alone. In turn, β2-ARs antagonist completely abolished NA relaxatory effect on these parameters in three groups. Summarizing, NA decreases the contractile amplitude and frequency of pig inflamed uterus via all β-ARs subtypes, however, β2-ARs have the greatest importance. Given this, pharmacological modulation of particular β-ARs subtypes can be used to increase inflamed uterus contractility.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Str., 10-748, Olsztyn, Poland.
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-718, Olsztyn, Poland
| |
Collapse
|
8
|
Szymańska K, Makowska K, Całka J, Gonkowski S. The Endocrine Disruptor Bisphenol A (BPA) Affects the Enteric Neurons Immunoreactive to Neuregulin 1 (NRG1) in the Enteric Nervous System of the Porcine Large Intestine. Int J Mol Sci 2020; 21:E8743. [PMID: 33228092 PMCID: PMC7699376 DOI: 10.3390/ijms21228743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
The enteric nervous system (ENS), located in the wall of the gastrointestinal (GI) tract, is characterized by complex organization and a high degree of neurochemical diversity of neurons. One of the less known active neuronal substances found in the enteric neurons is neuregulin 1 (NRG1), a factor known to be involved in the assurance of normal development of the nervous system. During the study, made up using the double immunofluorescence technique, the presence of NRG1 in the ENS of the selected segment of porcine large intestine (caecum, ascending and descending colon) was observed in physiological conditions, as well as under the impact of low and high doses of bisphenol A (BPA) which is commonly used in the production of plastics. In control animals in all types of the enteric plexuses, the percentage of NRG1-positive neurons oscillated around 20% of all neurons. The administration of BPA caused an increase in the number of NRG1-positive neurons in all types of the enteric plexuses and in all segments of the large intestine studied. The most visible changes were noted in the inner submucous plexus of the ascending colon, where in animals treated with high doses of BPA, the percentage of NRG1-positive neurons amounted to above 45% of all neuronal cells. The mechanisms of observed changes are not entirely clear, but probably result from neurotoxic, neurodegenerative and/or proinflammatory activity of BPA and are protective and adaptive in nature.
Collapse
Affiliation(s)
- Kamila Szymańska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Str. 30, 10-082 Olsztyn, Poland
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland;
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland; (J.C.); (S.G.)
| | - Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland; (J.C.); (S.G.)
| |
Collapse
|
9
|
Rytel L, Gonkowski S. The Influence of Bisphenol a on the Nitrergic Nervous Structures in the Domestic Porcine Uterus. Int J Mol Sci 2020; 21:E4543. [PMID: 32604714 PMCID: PMC7353066 DOI: 10.3390/ijms21124543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Bisphenol A (BPA) is one of the most common environmental pollutants among endocrine disruptors. Due to its similarity to estrogen, BPA may affect estrogen receptors and show adverse effects on many internal organs. The reproductive system is particularly vulnerable to the impact of BPA, but knowledge about BPA-induced changes in the innervation of the uterus is relatively scarce. Therefore, this study aimed to investigate the influence of various doses of BPA on nitrergic nerves supplying the uterus with the double immunofluorescence method. It has been shown that even low doses of BPA caused an increase in the number of nitrergic nerves in the uterine wall and changed their neurochemical characterization. During the present study, changes in the number of nitrergic nerves simultaneously immunoreactive to substance P, vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating peptide, and/or cocaine- and amphetamine-regulated transcript were found under the influence of BPA. The obtained results strongly suggest that nitrergic nerves in the uterine wall participate in adaptive and/or protective processes aimed at homeostasis maintenance in the uterine activity under the impact of BPA.
Collapse
Affiliation(s)
- Liliana Rytel
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland;
| |
Collapse
|
10
|
Endometritis Changes the Neurochemical Characteristics of the Caudal Mesenteric Ganglion Neurons Supplying the Gilt Uterus. Animals (Basel) 2020; 10:ani10050891. [PMID: 32443879 PMCID: PMC7278384 DOI: 10.3390/ani10050891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Uterine inflammation is a very frequent pathology in domestic animals leading to disturbances in reproductive processes and causing significant economic losses. The uterus possesses nerves from either the autonomic or sensory part of the peripheral nervous system. Most of the uterus-projecting neurons are localized in the caudal mesenteric ganglion. These neurons synthesize and release numerous biologically active substances in the uterus, which regulate uterine functions. The effect of inflammation on uterine innervation is poorly recognized. This study showed that Escherichia coli-induced uterine inflammation in pig led to a reduction in the total population of uterine neurons in the caudal mesenteric ganglion, and in the populations of these cells in the dorsal and central areas of this ganglion. In the caudal mesenteric ganglion of gilts after intrauterine bacterial injection, the population of uterine neurons presenting positive staining for dopamine-β-hydroxylase (an enzyme participating in noradrenaline synthesis) and negative staining for galanin, as well as the population of uterine neurons presenting negative staining for dopamine-β-hydroxylase but positive staining for neuropeptide Y, were decreased. In these gilts, there were increased numbers of uterine neurons which, besides dopamine-β-hydroxylase, also expressed neuropeptide Y, galanin and vasoactive intestinal peptide. The above changes suggest that inflammation of the gilt uterus may affect the function(s) of this organ by its action on the neurons of the caudal mesenteric ganglion. Abstract This study analyzed the influence of uterine inflammation on the neurochemical characteristics of the gilt caudal mesenteric ganglion (CaMG) uterus-supplying neurons. The horns of uteri were injected with retrograde tracer Fast Blue on day 17 of the first studied estrous cycle. Twenty-eight days later (the expected day 3 of the third studied estrous cycle), either saline or Escherichia coli suspension were administered into each uterine horn. Only the laparotomy was done in the control gilts. After 8 days, the CaMGs and uteri were harvested. The infected gilts presented a severe acute endometritis. In the CaMGs, the populations of uterine perikarya possessing dopamine-β-hydroxylase (DβH) and/or neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL) and vasoactive intestinal polypeptide (VIP) were analyzed using the double immunofluorescence method. In the CaMG, bacterial injection decreased the total number of the perikarya (Fast Blue-positive), the small and large perikarya populations in the dorsal and central regions, and the small and large perikarya populations coded DβH+/GAL- and DβH-/NPY+. After bacterial treatment, there was an increase in the numbers of small and large perikarya coded DβH+/NPY+, small perikarya coded DβH+/GAL+ and DβH+/SOM- and large perikarya coded DβH+/VIP+. To summarize, uterine inflammation influences the neurochemical characteristics of the CaMG uterus-supplying neurons, which may be important for pathologically changed organ functions.
Collapse
|