1
|
Ponciano R, Hallak JEC, Crippa JA, Guimarães FS, Bel EAD. Cannabigerol Mitigates Haloperidol-Induced Vacuous Chewing Movements in Mice. Neurotox Res 2024; 43:2. [PMID: 39699828 DOI: 10.1007/s12640-024-00724-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Chronic use of typical antipsychotics can lead to varying motor effects depending on the timing of analysis. Acute treatment typically induces hypokinesia, resembling parkinsonism, while repeated use can result in tardive dyskinesia, a hyperkinetic syndrome marked by involuntary orofacial movements, such as vacuous chewing movements in mice. Tardive dyskinesia is particularly concerning due to its potential irreversibility and associated motor discomfort. One prevailing theory suggests that tardive dyskinesia arises from hypersensitivity of D2-type dopaminergic receptors caused by continuous blockade from typical antipsychotics like haloperidol. Additionally, increased inflammation, oxidative stress, and elevated FosB protein expression in the dorsolateral striatum are implicated in its pathophysiology. Current treatments for tardive dyskinesia often lack clear efficacy and may lead to significant side effects. Cannabigerol, a non-psychotomimetic cannabinoid with antioxidant and anti-inflammatory properties, has been investigated for its potential antidyskinetic effects. In this study, mice were treated with cannabigerol at doses of 3 and 10 mg/kg to evaluate its ability to prevent, ameliorate, or reverse haloperidol-induced vacuous chewing movements. Cannabigerol successfully reduced vacuous chewing movements without affecting normal motor activity, exacerbating haloperidol-induced hypokinesia, or inducing dyskinetic effects on its own. However, no significant reversal of the haloperidol-induced motor effects was observed under the current protocol. Furthermore, cannabigerol did not alter FosB expression or microglia morphology. These findings underscore the need for further research to explore cannabigerol's therapeutic potential and contribute to our understanding of its possible clinical applications in managing tardive dyskinesia.
Collapse
Affiliation(s)
- R Ponciano
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J E C Hallak
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J A Crippa
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - F S Guimarães
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine Ap Del Bel
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Do Café s/n, Ribeirão Preto, São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
2
|
Hossain MK, Chae HJ. Medical cannabis: From research breakthroughs to shifting public perceptions and ensuring safe use. Integr Med Res 2024; 13:101094. [PMID: 39640076 PMCID: PMC11617882 DOI: 10.1016/j.imr.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Abstract
The landscape of medical cannabis has evolved dramatically over the past few decades. Once stigmatized and illegal in most parts of the world, cannabis is now recognized for its potential therapeutic benefits, supported by an expanding body of scientific research. However, the transition from prohibition to medical recognition is shaped by complex interactions among scientific advancements, public perception and regulatory frameworks for its legalization. This review examines the recent breakthroughs in medical cannabis research, explores the shifting public perceptions and the stigma associated with its use and discusses strategies for enhancing the safety of medical cannabis. We also synthesize the connections between scientific research, public perception and safety considerations in the uses of medical cannabis, providing a comprehensive understanding of how these elements influence each other and shape the future of medical cannabis use for patient adherence.
Collapse
Affiliation(s)
| | - Han Jung Chae
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
- Korea Medical Cannabis Research Association, Jeonbuk National University, Jeonju, Republic of Korea
- Non-Clinical Evaluation Center (NCEC), Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
3
|
Li S, Li W, Malhi NK, Huang J, Li Q, Zhou Z, Wang R, Peng J, Yin T, Wang H. Cannabigerol (CBG): A Comprehensive Review of Its Molecular Mechanisms and Therapeutic Potential. Molecules 2024; 29:5471. [PMID: 39598860 PMCID: PMC11597810 DOI: 10.3390/molecules29225471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Cannabigerol (CBG), a non-psychoactive cannabinoid found in cannabis, has emerged as a promising therapeutic agent with a diverse range of potential applications. Unlike its well-known counterpart tetrahydrocannabinol (THC), CBG does not induce intoxication, making it an attractive option in the clinic. Recent research has shed light on CBG's intriguing molecular mechanisms, highlighting its potential to modulate multiple physiological processes. This review delves into the current understanding of CBG's molecular interactions and explores its therapeutic power to alleviate various conditions, including cancer, metabolic, pain, and inflammatory disorders, amongst others. We discuss how CBG interacts with the endocannabinoid system and other key signaling pathways, such as CB1, CB2, TPR channels, and α2-adrenoceptor, potentially influencing inflammation, pain, neurodegeneration, and other ailments. Additionally, we highlight the ongoing research efforts aimed at elucidating the full spectrum of CBG's therapeutic potential and its safety profile in clinical settings. Through this comprehensive analysis, we aim to provide a deeper understanding of CBG's role in promoting human health and pave the way for future research endeavors.
Collapse
Affiliation(s)
- Shijia Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Weini Li
- Department of Biomedical Science, Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Los Angeles, CA 90067, USA; (W.L.); (R.W.)
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA;
| | - Junwei Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Quanqi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Ziwei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Ruiheng Wang
- Department of Biomedical Science, Cedars-Sinai Medical Center, Cedars-Sinai Cancer Institute, Los Angeles, CA 90067, USA; (W.L.); (R.W.)
| | - Jiangling Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (S.L.); (J.H.); (Q.L.); (Z.Z.)
| | - Tong Yin
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Honggen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China;
| |
Collapse
|
4
|
Carone M, Premoli M, Bonini SA, Latsi R, Maccarinelli G, Memo M. Behavioral effects of two cannabidiol and cannabigerol-rich formulas on mice. Heliyon 2024; 10:e39938. [PMID: 39583801 PMCID: PMC11582752 DOI: 10.1016/j.heliyon.2024.e39938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Cannabis sativa L. produces more than 100 specific bioactive compounds, known as cannabinoids. The major non-psychotropic Cannabis constituent is cannabidiol (CBD), which displays beneficial properties in a variety of medical conditions. However, the potential therapeutic role of other minor phytocannabinoids, such as cannabigerol (CBG), and their use in combination with CBD, has remained largely unexplored. In this study, we wanted to assess the in vivo effects of two novel non-psychotropic cannabinoid formulas, both containing relatively high percentages of CBD but differing mainly for CBG content, hereafter called CBG+ and CBG-formulas. We employed different behavioral tests to evaluate the effects of these formulas at three different dosages on mice locomotor activity, anxiety-related behaviors, short-term memory and sociability. We found that these two formulas display unique behavioral profiles: CBG + formula produced an increase in mice locomotor activity and displayed anxiolytic properties, whereas both formulas improved spatial short-term memory and social interactions. The results obtained suggest that different combinations of phytocannabinoids are able to determine different behavioral effects and highlight the importance of studying the effects of less known phytocannabinoids (like CBG), which used in combination with other phytocannabinoids can change the profile of action of other active compounds (such as CBD).
Collapse
Affiliation(s)
| | | | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Rozana Latsi
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| |
Collapse
|
5
|
Duczmal D, Bazan-Wozniak A, Niedzielska K, Pietrzak R. Cannabinoids-Multifunctional Compounds, Applications and Challenges-Mini Review. Molecules 2024; 29:4923. [PMID: 39459291 PMCID: PMC11510081 DOI: 10.3390/molecules29204923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabinoids represent a highly researched group of plant-derived ingredients. The substantial investment of funds from state and commercial sources has facilitated a significant increase in knowledge about these ingredients. Cannabinoids can be classified into three principal categories: plant-derived phytocannabinoids, synthetic cannabinoids and endogenous cannabinoids, along with the enzymes responsible for their synthesis and degradation. All of these compounds interact biologically with type 1 (CB1) and/or type 2 (CB2) cannabinoid receptors. A substantial body of evidence from in vitro and in vivo studies has demonstrated that cannabinoids and inhibitors of endocannabinoid degradation possess anti-inflammatory, antioxidant, antitumour and antifibrotic properties with beneficial effects. This review, which spans the period from 1940 to 2024, offers an overview of the potential therapeutic applications of natural and synthetic cannabinoids. The development of these substances is essential for the global market of do-it-yourself drugs to fully exploit the promising therapeutic properties of cannabinoids.
Collapse
Affiliation(s)
- Dominik Duczmal
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Polygen Sp. z o.o., Górnych Wałów 46/1, 44-100 Gliwice, Poland;
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | | | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
6
|
Cuttler C, Stueber A, Cooper ZD, Russo E. Acute effects of cannabigerol on anxiety, stress, and mood: a double-blind, placebo-controlled, crossover, field trial. Sci Rep 2024; 14:16163. [PMID: 39003387 PMCID: PMC11246434 DOI: 10.1038/s41598-024-66879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024] Open
Abstract
Cannabigerol (CBG) is a phytocannabinoid increasing in popularity, with preclinical research indicating it has anxiolytic and antidepressant effects. However, there are no published clinical trials to corroborate these findings in humans. The primary objective of this study was to examine acute effects of CBG on anxiety, stress, and mood. Secondary objectives were to examine whether CBG produces subjective drug effects or motor and cognitive impairments. A double-blind, placebo-controlled cross-over field trial was conducted with 34 healthy adult participants. Participants completed two sessions (with a one-week washout period) via Zoom. In each, they provided ratings of anxiety, stress, mood, and subjective drug effects prior to double-blind administration of 20 mg hemp-derived CBG or placebo tincture (T0). These ratings were collected again after participants ingested the product and completed an online survey (T1), the Trier Social Stress Test (T2), a verbal memory test and the DRUID impairment app (T3). Relative to placebo, there was a significant main effect of CBG on overall reductions in anxiety as well as reductions in stress at T1. CBG also enhanced verbal memory relative to placebo. There was no evidence of subjective drug effects or impairment. CBG may represent a novel option to reduce stress and anxiety in healthy adults.
Collapse
Affiliation(s)
- Carrie Cuttler
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA.
| | - Amanda Stueber
- Department of Psychology, Washington State University, PO Box 644820, Pullman, WA, 99164-4820, USA
| | - Ziva D Cooper
- UCLA Center for Cannabis and Cannabinoids, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, USA
| | | |
Collapse
|
7
|
Bellone ML, Syed AA, Vitale RM, Sigismondo G, Mensitieri F, Pollastro F, Amodeo P, Appendino G, De Tommasi N, Krijgsveld J, Dal Piaz F. Eukaryotic Initiation Translation Factor 2A activation by cannabidiolic acid alters the protein homeostasis balance in glioblastoma cells. Int J Biol Macromol 2024; 273:132968. [PMID: 38871097 DOI: 10.1016/j.ijbiomac.2024.132968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Eukaryotic Initiation Translation Factor 2A (EIF2A) is considered to be primarily responsible for the initiation of translation when a cell is subjected to stressful conditions. However, information regarding this protein is still incomplete. Using a combination of proteomic approaches, we demonstrated that EIF2A is the molecular target of the naturally occurring bioactive compound cannabidiolic acid (CBDA) within human glioblastoma cells. This finding allowed us to undertake a study aimed at obtaining further information on the functions that EIF2A plays in tumor cells. Indeed, our data showed that CBDA is able to activate EIF2A when the cells are in no-stress conditions. It induces conformational changes in the protein structure, thus increasing EIF2A affinity towards the proteins participating in the Eukaryotic Translation Machinery. Consequently, following glioblastoma cells incubation with CBDA we observed an enhanced neosynthesis of proteins involved in the stress response, nucleic acid translation and organization, and protein catabolism. These changes in gene expression resulted in increased levels of ubiquitinated proteins and accumulation of the autophagosome. Our results, in addition to shedding light on the molecular mechanism underlying the biological effect of a phytocannabinoid in cancer cells, demonstrated that EIF2A plays a critical role in regulation of protein homeostasis.
Collapse
Affiliation(s)
| | - Azmal Ali Syed
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Vercelli, Italy
| | - Pietro Amodeo
- Institute of Biomolecular Chemistry (ICB-CNR), Pozzuoli, Italy
| | - Giovanni Appendino
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Vercelli, Italy
| | | | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabrizio Dal Piaz
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy.
| |
Collapse
|
8
|
Del-Bel E, Barros-Pereira N, Moraes RPD, Mattos BAD, Alves-Fernandes TA, Abreu LBD, Nascimento GC, Escobar-Espinal D, Pedrazzi JFC, Jacob G, Milan BA, Bálico GG, Antonieto LR. A journey through cannabidiol in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 177:65-93. [PMID: 39029991 DOI: 10.1016/bs.irn.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Parkinson's disease is a chronic neurodegenerative disorder with no known cure characterized by motor symptoms such as tremors, rigidity, bradykinesia (slowness of movement), and postural instability. Non-motor symptoms like cognitive impairment, mood disturbances, and sleep disorders often accompany the disease. Pharmacological treatments for these symptoms are limited and frequently induce significant adverse reactions, underscoring the necessity for appropriate treatment options. Cannabidiol is a phytocannabinoid devoid of the euphoric and cognitive effects of tetrahydrocannabinol. The study of cannabidiol's pharmacological effects has increased exponentially in recent years. Preclinical and preliminary clinical studies suggest that cannabidiol holds therapeutic potential for alleviating symptoms of Parkinson's disease, offering neuroprotective, anti-inflammatory, and antioxidant properties. However, knowledge of cannabidiol neuromolecular mechanisms is limited, and its pharmacology, which appears complex, has not yet been fully elucidated. By examining the evidence, this review aims to provide and synthesize scientifically proven evidence for the potential use of cannabidiol as a novel treatment option for Parkinson's disease. We focus on studies that administrated cannabidiol alone. The results of preclinical trials using cannabidiol in models of Parkinson's disease are encouraging. Nevertheless, drawing firm conclusions on the therapeutic efficacy of cannabidiol for patients is challenging. Cannabidiol doses, formulations, outcome measures, and methodologies vary considerably across studies. Though, cannabidiol holds promise as a novel therapeutic option for managing both motor and non-motor symptoms of Parkinson's disease, offering hope for improved quality of life for affected individuals.
Collapse
Affiliation(s)
- Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; National Institute for Science and Technology, Translational Medicine, University of Sao Paulo, Ribeirao Preto, SP Brazil; Center for Cannabinoid Research, Mental Health Building, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP Brazil.
| | - Nubia Barros-Pereira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Rafaela Ponciano de Moraes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Bianca Andretto de Mattos
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Thaís Antonia Alves-Fernandes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Phisiology, Medical School of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Lorena Borges de Abreu
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Glauce Crivelaro Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Daniela Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - João Francisco Cordeiro Pedrazzi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Neurociences and Neurology, Medical School of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Gabrielle Jacob
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Bruna A Milan
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Gabriela Gonçalves Bálico
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Livia Rodrigues Antonieto
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
9
|
Echeverry C, Richeri A, Fagetti J, Martínez GF, Vignolo F, Prunell G, Cuñetti L, Martínez Busi M, Pérez S, de Medina VS, Ferreiro C, Scorza C. Neuroprotective Effect of a Pharmaceutical Extract of Cannabis with High Content on CBD Against Rotenone in Primary Cerebellar Granule Cell Cultures and the Relevance of Formulations. Cannabis Cannabinoid Res 2024; 9:e907-e916. [PMID: 37155642 DOI: 10.1089/can.2022.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Introduction: Preclinical research supports the benefits of pharmaceutical cannabis-based extracts for treating different medical conditions (e.g., epilepsy); however, their neuroprotective potential has not been widely investigated. Materials and Methods: Using primary cultures of cerebellar granule cells, we evaluated the neuroprotective activity of Epifractan (EPI), a cannabis-based medicinal extract containing a high level of cannabidiol (CBD), components like terpenoids and flavonoids, trace levels of Δ9-tetrahydrocannabinol, and the acid form of CBD. We determined the ability of EPI to counteract the rotenone-induced neurotoxicity by analyzing cell viability and morphology of neurons and astrocytes by immunocytochemical assays. The effect of EPI was compared with XALEX, a plant-derived and highly purified CBD formulation (XAL), and pure CBD crystals (CBD). Results: The results revealed that EPI induced a significant reduction in the rotenone-induced neurotoxicity in a wide range of concentrations without causing neurotoxicity per se. EPI showed a similar effect to XAL suggesting that no additive or synergistic interactions between individual substances present in EPI occurred. In contrast, CBD did show a different profile to EPI and XAL because a neurotoxic effect per se was observed at higher concentrations assayed. Medium-chain triglyceride oil used in EPI formulation could explain this difference. Conclusion: Our data support a neuroprotective effect of EPI that may provide neuroprotection in different neurodegenerative processes. The results highlight the role of CBD as the active component of EPI but also support the need for an appropriate formulation to dilute pharmaceutical cannabis-based products that could be critical to avoid neurotoxicity at very high doses.
Collapse
Affiliation(s)
- Carolina Echeverry
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Analía Richeri
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Jimena Fagetti
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Gaby F Martínez
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Federico Vignolo
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Giselle Prunell
- Laboratorio de Mecanismos de Neurodegeneración y Neuroprotección and Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | - Marcela Martínez Busi
- Plataforma de Química Analítica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Sandra Pérez
- Plataforma de Química Analítica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
10
|
Jantas D, Leśkiewicz M, Regulska M, Procner M, Warszyński P, Lasoń W. Protective Effects of Cannabidiol (CBD) against Qxidative Stress, but Not Excitotoxic-Related Neuronal Cell Damage-An In Vitro Study. Biomolecules 2024; 14:564. [PMID: 38785971 PMCID: PMC11117811 DOI: 10.3390/biom14050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Cannabidiol (CBD) appears to possess some neuroprotective properties, but experimental data are still inconsistent. Therefore, this in vitro study aimed to compare the effects of CBD in a wide range of concentrations on oxidative stress and excitotoxic-related cell damage. Results showed that low concentrations of CBD ameliorated the H2O2-evoked cell damage of primary cortical neuronal cell culture. However, higher concentrations of CBD alone (5-25 μM) decreased the viability of cortical neurons in a concentration-dependent manner and aggravated the toxic effects of hydrogen peroxide (H2O2). Neuroprotection mediated by CBD in primary neurons against H2O2 was not associated with a direct influence on ROS production nor inhibition of caspase-3, but we found protective effects of CBD at the level of mitochondrial membrane potential and DNA fragmentation. However, CBD had no protective effect on the glutamate-induced cell damage of cortical neurons, and in higher concentrations, it enhanced the toxic effects of this cell-damaging factor. Likewise, CBD, depending on its concentration, at least did not affect or even enhance cortical cellular damage exposed to oxygen-glucose deprivation (OGD). Finally, we showed that CBD in submicromolar or low micromolar concentrations significantly protected human neuronal-like SH-SY5Y cells against H2O2- and 6-hydroxydopamine (6-OHDA)-induced cell damage. Our data indicate that CBD has a dual effect on oxidative stress-induced neuronal death-in low concentrations, it is neuroprotective, but in higher ones, it may display neurotoxic activity. On the other hand, in excitotoxic-related models, CBD was ineffective or enhanced cell damage. Our data support the notion that the neuroprotective effects of CBD strongly depend on its concentration and experimental model of neuronal death.
Collapse
Affiliation(s)
- Danuta Jantas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31343 Krakow, Poland
| | - Monika Leśkiewicz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31343 Krakow, Poland
| | - Magdalena Regulska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31343 Krakow, Poland
| | - Magdalena Procner
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31343 Krakow, Poland
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL 30239 Krakow, Poland
| | - Władysław Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, PL 31343 Krakow, Poland
| |
Collapse
|
11
|
Walczyńska-Dragon K, Kurek-Górecka A, Niemczyk W, Nowak Z, Baron S, Olczyk P, Nitecka-Buchta A, Kempa WM. Cannabidiol Intervention for Muscular Tension, Pain, and Sleep Bruxism Intensity-A Randomized, Double-Blind Clinical Trial. J Clin Med 2024; 13:1417. [PMID: 38592260 PMCID: PMC10932451 DOI: 10.3390/jcm13051417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Temporomandibular disorders (TMDs) are the most prevalent non-dental pain issues in the maxillofacial region. Despite advancements, diagnosing and managing TMDs continues to pose challenges. This study aimed to assess the efficacy of cannabidiol (CBD) formulations, with different concentrations, in patients experiencing sleep bruxism and muscle-related TMDs, with a particular emphasis on their myorelaxant, pain-relieving, and bruxism-reducing properties. Methods: The Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMDs) was utilized as the diagnostic framework. Sixty patients completed the study, which followed a parallel-group, three-arm, randomized, double-blind clinical trial design, with a 1:1:1 allocation ratio across three groups: 1a, 1b, and 2. Groups 1a and 1b received CBD formulations at concentrations of 10% and 5%, respectively, while Group 2 received a placebo formulation. The trial consisted of four main visits, namely screening, baseline, first follow-up after 14 days, and second follow-up after 30 days, during which surface electromyography (sEMG), the visual analogue scale (VAS) for pain assessment, and Bruxoff examinations were conducted. Results: The reduction in pain, as measured by the visual analogue scale (VAS), among patients using the 10% CBD formulation was 57.4% (p < 0.05), accompanied by a decrease in sEMG activity by 42.1% (p < 0.05). Conversely, individuals using the 5% CBD formulation experienced a 40.8% (p < 0.05) decrease in pain. Regarding the decrease in the sleep bruxism index, users of the 10% CBD formulation saw the highest reduction of 51% (p < 0.05). These findings underscore the efficacy of the proposed treatment in both experimental groups, with a notable advantage observed in Group 1a. Conversely, the outcomes of the selected variables for the control group did not exhibit significant differences throughout the study. Conclusions: The intraoral use of CBD formulations in patients with TMDs have proven to be a successful treatment for reducing pain, muscle tension, and bruxing activity in individuals with sleep bruxism and muscle-related TMDs. Specifically, a concentration of 10% CBD has demonstrated superior results compared to 5% CBD.
Collapse
Affiliation(s)
- Karolina Walczyńska-Dragon
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, Traugutta Sq. 2, 41-800 Zabrze, Poland; (W.N.); (Z.N.); (S.B.); (A.N.-B.)
| | - Anna Kurek-Górecka
- Department of Community Pharmacy, Medical University of Silesia in Katowice, Kasztanowa 3, 41-205 Sosnowiec, Poland; (A.K.-G.); (P.O.)
| | - Wojciech Niemczyk
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, Traugutta Sq. 2, 41-800 Zabrze, Poland; (W.N.); (Z.N.); (S.B.); (A.N.-B.)
| | - Zuzanna Nowak
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, Traugutta Sq. 2, 41-800 Zabrze, Poland; (W.N.); (Z.N.); (S.B.); (A.N.-B.)
| | - Stefan Baron
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, Traugutta Sq. 2, 41-800 Zabrze, Poland; (W.N.); (Z.N.); (S.B.); (A.N.-B.)
| | - Paweł Olczyk
- Department of Community Pharmacy, Medical University of Silesia in Katowice, Kasztanowa 3, 41-205 Sosnowiec, Poland; (A.K.-G.); (P.O.)
| | - Aleksandra Nitecka-Buchta
- Department of Temporomandibular Disorders, Medical University of Silesia in Katowice, Traugutta Sq. 2, 41-800 Zabrze, Poland; (W.N.); (Z.N.); (S.B.); (A.N.-B.)
| | - Wojciech M. Kempa
- Department of Mathematics Applications and Methods for Artificial Intelligence, Faculty of Applied Mathematics, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland;
| |
Collapse
|
12
|
Anand R, Anand LK, Rashid N, Painuli R, Malik F, Singh PP. Synthesis and Evaluation of Natural and Unnatural Tetrahydrocannabiorcol for Its Potential Use in Neuropathologies. JOURNAL OF NATURAL PRODUCTS 2024; 87:167-175. [PMID: 38355400 DOI: 10.1021/acs.jnatprod.3c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
(-)-trans-Δ9-Tetrahydrocannabinol (trans-(-)-Δ9-THC) has shown neuroprotective potential, but its medicinal benefits are not fully exploited due to the limitations of psychoactive properties. The lower homologues are non-psychoactive in nature but lack comprehensive scientific validation regarding neuroprotective potential. The present study describes the synthesis of non-psychoactive lower homologues of THC-type compounds and their neuroprotective potential. Both natural tetrahydro-cannabiorcol (trans-(-)-Δ9-THCO) and unnatural Δ9-tetrahydrocannabiorcol (trans-(+)-Δ9-THCO) were successfully synthesized starting from R-limonene and S-limonene, respectively, and investigated for neuroprotective potential in cellular models. The structures of both enantiomers were confirmed by NMR, HMBC, HQSC, NOESY, and COSY experiments. Results indicated that both enantiomers were nontoxic to the cells treated up to 50 μM. Neuroprotective properties of the enantiomers showed that treatments could significantly reverse the corticosterone-induced toxicity in SH-SY5Y cells and simultaneously cause elevated expression of brain-derived neurotrophic factor (BDNF). It was also observed that unnatural trans-(+)-Δ9-THCO displayed better activity than the natural enantiomer and can be further explored for its potential use in neuropathological ailments.
Collapse
Affiliation(s)
- Radhika Anand
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Loveleena Kaur Anand
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nadia Rashid
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, India
| | - Ritu Painuli
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Dehradun-248007, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Parvinder Pal Singh
- Natural Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
13
|
Romariz SAA, Sanabria V, da Silva KR, Quintella ML, de Melo BAG, Porcionatto M, de Almeida DC, Longo BM. High Concentrations of Cannabidiol Induce Neurotoxicity in Neurosphere Culture System. Neurotox Res 2024; 42:14. [PMID: 38349488 DOI: 10.1007/s12640-024-00692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/30/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024]
Abstract
Recent studies have demonstrated that cannabinoids are potentially effective in the treatment of various neurological conditions, and cannabidiol (CBD), one of the most studied compounds, has been proposed as a non-toxic option. However, the adverse effects of CBD on neurodevelopmental processes have rarely been studied in cell culture systems. To better understand CBD's influence on neurodevelopment, we exposed neural progenitor cells (NPCs) to different concentrations of CBD (1 µM, 5 µM, and 10 µM). We assessed the morphology, migration, differentiation, cell death, and gene expression in 2D and 3D bioprinted models to stimulate physiological conditions more effectively. Our results showed that CBD was more toxic at higher concentrations (5 µM and 10 µM) and affected the viability of NPCs than at lower concentrations (1 µM), in both 2D and 3D models. Moreover, our study revealed that higher concentrations of CBD drastically reduced the size of neurospheres and the number of NPCs within neurospheres, impaired the morphology and mobility of neurons and astrocytes after differentiation, and reduced neurite sprouting. Interestingly, we also found that CBD alters cellular metabolism by influencing the expression of glycolytic and β-oxidative enzymes in the early and late stages of metabolic pathways. Therefore, our study demonstrated that higher concentrations of CBD promote important changes in cellular functions that are crucial during CNS development.
Collapse
Affiliation(s)
- Simone A A Romariz
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Viviam Sanabria
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Karina Ribeiro da Silva
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Miguel L Quintella
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Bruna A G de Melo
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marimélia Porcionatto
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Danilo Candido de Almeida
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Beatriz M Longo
- Department of Physiology, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Ding YK, Ning Y, Xin D, Fu YJ. Dual cytoplasmic-peroxisomal compartmentalization engineering and multiple metabolic engineering strategies for high yield non-psychoactive cannabinoid in Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2300590. [PMID: 38375558 DOI: 10.1002/biot.202300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 02/21/2024]
Abstract
CBG (Cannabigerol), a nonpsychoactive cannabinoid, has garnered attention due to its extensive antimicrobial and anti-inflammatory properties. However, the natural content of CBG in Cannabis sativa L. is minimal. In this study, we developed an engineered cell factory for CBG production using Saccharomyces cerevisiae. We introduced the CBGA biosynthetic pathway into S. cerevisiae and employed several strategies to enhance CBGA production. These strategies included dynamically inhibiting the competitive bypass of key metabolic pathways regulated by Erg20p. Additionally, we implemented a dual cytoplasmic-peroxisomal compartmentalization approach to further increase CBGA production. Furthermore, we ensured efficient CBGA production by optimizing NADPH and acetyl-CoA pools. Ultimately, our engineered strain achieved a CBG titer of 138 mg L-1 through fed-batch fermentation in a 5 L bioreactor, facilitated by microwave decarboxylation extraction. These findings underscore the significant potential of yeast cell factories for achieving higher yields in cannabinoid production.
Collapse
Affiliation(s)
- Yun-Kun Ding
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yuan Ning
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Di Xin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Kim J, Yang S, Choi IS. Neutralization of Cannabidiol Neurotoxicity in Neuron-Astrocyte Sandwich Coculture. Adv Biol (Weinh) 2023; 7:e2300090. [PMID: 37080943 DOI: 10.1002/adbi.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Indexed: 04/22/2023]
Abstract
Cannabidiol (CBD), a main nonpsychoactive phytocannabinoid in the Cannabis genus, has been in the limelight for its potential health benefits in various neurological diseases. However, the safety issue of CBD in the nervous system has not been settled fully, while CBD has been reported to have mild side effects including dizziness and somnolence. In this work, a platform of neuron-astrocyte sandwich coculture to investigate the neurotoxicity of CBD, as well as the neuronal responses to CBD, in a more in vivo relevant mode is constructed. CBD (15 and 30 µm) causes the viability decrease, along with morphological damage, in the neuron-alone culture, whereas its neurotoxic effects are significantly attenuated by the supports of astrocytes in the neuron-astrocyte coculture. In addition, it is found that CBD-induced increase of intracellular Ca2+ concentration and depolarization of mitochondrial membrane potential, via activation of transient receptor potential vanilloid 1, are noticeably ameliorated by coculturing neurons with astrocytes. This work provides crucial information in the development of CBD as therapeutics for neurological disorders, as well as in a fundamental understanding of how CBD works in the nervous system.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Seoin Yang
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, 34141, South Korea
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, South Korea
| |
Collapse
|
16
|
Yan G, Zhang X, Li H, Guo Y, Yong VW, Xue M. Anti-oxidant effects of cannabidiol relevant to intracerebral hemorrhage. Front Pharmacol 2023; 14:1247550. [PMID: 37841923 PMCID: PMC10568629 DOI: 10.3389/fphar.2023.1247550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with a high mortality rate. Oxidative stress cascades play an important role in brain injury after ICH. Cannabidiol, a major non-psychotropic phytocannabinoids, has drawn increasing interest in recent years as a potential therapeutic intervention for various neuropsychiatric disorders. Here we provide a comprehensive review of the potential therapeutic effects of cannabidiol in countering oxidative stress resulting from ICH. The review elaborates on the various sources of oxidative stress post-ICH, including mitochondrial dysfunction, excitotoxicity, iron toxicity, inflammation, and also highlights cannabidiol's ability to inhibit ROS/RNS generation from these sources. The article also delves into cannabidiol's role in promoting ROS/RNS scavenging through the Nrf2/ARE pathway, detailing both extranuclear and intranuclear regulatory mechanisms. Overall, the review underscores cannabidiol's promising antioxidant effects in the context of ICH and suggests its potential as a therapeutic option.
Collapse
Affiliation(s)
- Gaili Yan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongmin Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Guo
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - V. Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Stasiłowicz-Krzemień A, Szulc P, Cielecka-Piontek J. Co-Dispersion Delivery Systems with Solubilizing Carriers Improving the Solubility and Permeability of Cannabinoids (Cannabidiol, Cannabidiolic Acid, and Cannabichromene) from Cannabis sativa (Henola Variety) Inflorescences. Pharmaceutics 2023; 15:2280. [PMID: 37765249 PMCID: PMC10537421 DOI: 10.3390/pharmaceutics15092280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cannabinoids: cannabidiol (CBD), cannabidiolic acid (CBDA), and cannabichromene (CBC) are lipophilic compounds with limited water solubility, resulting in challenges related to their bioavailability and therapeutic efficacy upon oral administration. To overcome these limitations, we developed co-dispersion cannabinoid delivery systems with the biopolymer polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (Soluplus) and magnesium aluminometasilicate (Neusilin US2) to improve solubility and permeability. Recognizing the potential therapeutic benefits arising from the entourage effect, we decided to work with an extract instead of isolated cannabinoids. Cannabis sativa inflorescences (Henola variety) with a confirming neuroprotective activity were subjected to dynamic supercritical CO2 (scCO2) extraction and next they were combined with carriers (1:1 mass ratio) to prepare the co-dispersion cannabinoid delivery systems (HiE). In vitro dissolution studies were conducted to evaluate the solubility of CBD, CBDA, and CBC in various media (pH 1.2, 6.8, fasted, and fed state simulated intestinal fluid). The HiE-Soluplus delivery systems consistently demonstrated the highest dissolution rate of cannabinoids. Additionally, HiE-Soluplus exhibited the highest permeability coefficients for cannabinoids in gastrointestinal tract conditions than it was during the permeability studies using model PAMPA GIT. All three cannabinoids exhibited promising blood-brain barrier (BBB) permeability (Papp higher than 4.0 × 10-6 cm/s), suggesting their potential to effectively cross into the central nervous system. The improved solubility and permeability of cannabinoids from the HiE-Soluplus delivery system hold promise for enhancement in their bioavailability.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
18
|
Brunetti L. Pharmacological Studies on Neuromodulatory Effects of Plant Extracts. Int J Mol Sci 2023; 24:10653. [PMID: 37445829 DOI: 10.3390/ijms241310653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Central nervous system (CNS) disorders represent a public health priority and demand significant scientific efforts for the development and study of new drugs and their possible beneficial effects [...].
Collapse
Affiliation(s)
- Luigi Brunetti
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66013 Chieti, Italy
| |
Collapse
|
19
|
Mendiguren A, Aostri E, Rodilla I, Pujana I, Noskova E, Pineda J. Cannabigerol modulates α 2-adrenoceptor and 5-HT 1A receptor-mediated electrophysiological effects on dorsal raphe nucleus and locus coeruleus neurons and anxiety behavior in rat. Front Pharmacol 2023; 14:1183019. [PMID: 37305529 PMCID: PMC10249961 DOI: 10.3389/fphar.2023.1183019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
The pharmacological profile of cannabigerol (CBG), which acid form constitutes the main precursor of the most abundant cannabinoids, has been scarcely studied. It has been reported to target α2-adrenoceptor and 5-HT1A receptor. The locus coeruleus (LC) and the dorsal raphe nucleus (DRN) are the main serotonergic (5-HT) and noradrenergic (NA) areas in the rat brain, respectively. We aimed to study the effect of CBG on the firing rate of LC NA cells and DRN 5-HT cells and on α2-adrenergic and 5-HT1A autoreceptors by electrophysiological techniques in male Sprague-Dawley rat brain slices. The effect of CBG on the novelty-suppressed feeding test (NSFT) and the elevated plus maze test (EPMT) and the involvement of the 5-HT1A receptor was also studied. CBG (30 μM, 10 min) slightly changed the firing rate of NA cells but failed to alter the inhibitory effect of NA (1-100 µM). However, in the presence of CBG the inhibitory effect of the selective α2-adrenoceptor agonist UK14304 (10 nM) was decreased. Perfusion with CBG (30 μM, 10 min) did not change the firing rate of DRN 5-HT cells or the inhibitory effect of 5-HT (100 μM, 1 min) but it reduced the inhibitory effect of ipsapirone (100 nM). CBG failed to reverse ipsapirone-induced inhibition whereas perfusion with the 5-HT1A receptor antagonist WAY100635 (30 nM) completely restored the firing rate of DRN 5-HT cells. In the EPMT, CBG (10 mg/kg, i.p.) significantly increased the percentage of time the rats spent on the open arms and the number of head-dipping but it reduced the anxiety index. In the NSFT, CBG decreased the time latency to eat in the novel environment but it did not alter home-cage consumption. The effect of CBG on the reduction of latency to feed was prevented by pretreatment with WAY100635 (1 mg/kg, i.p.). In conclusion, CBG hinders the inhibitory effect produced by selective α2-adrenoceptor and 5-HT1A receptor agonists on the firing rate of NA-LC and 5-HT-DRN neurons by a yet unknown indirect mechanism in rat brain slices and produces anxiolytic-like effects through 5-HT1A receptor.
Collapse
Affiliation(s)
- Aitziber Mendiguren
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Patel V, Abu-Hijleh F, Rigg N, Mishra R. Cannabidiol Protects Striatal Neurons by Attenuating Endoplasmic Reticulum Stress. Cannabis Cannabinoid Res 2022; 8:299-308. [PMID: 36454179 DOI: 10.1089/can.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction: The aggregation of misfolded proteins in the endoplasmic reticulum (ER) is a pathological trait shared by many neurodegenerative disorders. This aggregation leads to the persistent activation of the unfolded protein response (UPR) and ultimately apoptosis as a result of ER stress. Cannabidiol (CBD) has been demonstrated to be neuroprotective in various cellular and animal models of neurodegeneration, which has been attributed to its antioxidant and anti-inflammatory properties. However, little is known about the role of CBD in the context of protein folding and ER stress. The purpose of this study was to investigate whether CBD is neuroprotective against an in vitro model of ER stress. Materials and Methods: Using different exposure models, mouse striatal STHdhQ7/Q7 cells were exposed to either the ER stress inducer thapsigargin (TG) and/or CBD. Cell viabilities assays were used to investigate the effect of CBD pre-treatment, co-treatment, and post-treatment on TG-induced cell death. Real-time quantitative polymerase chain reaction was used to measure changes in ER stress regulators and UPR genes such as glucose-regulated protein-78 (GRP78), mesencephalic astrocyte-derived neurotrophic factor (MANF), B cell lymphoma 2 (BCL-2), BCL-2 interacting mediator of cell death (BIM), and caspase-12. Results: Cell viability increased significantly when cells were pre-treated with CBD before TG exposure. An increase in the gene expression of pro-survival ER chaperone GRP78 and ER-resident neurotrophic factor MANF coincided with this effect and decreased ER-mediated pro-apoptotic markers such as BIM, and caspase-12 was observed. Conclusions: These data suggest that CBD pre-treatment is neuroprotective against TG-induced cell death. Understanding the role of ER stress in CBD-driven neuroprotection provides insight into the therapeutic potential of CBD and the role of ER dysfunction in neurodegenerative disorders.
Collapse
Affiliation(s)
- Vidhi Patel
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Fahed Abu-Hijleh
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Nicolette Rigg
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Ram Mishra
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Lana D, Landucci E, Mazzantini C, Magni G, Pellegrini-Giampietro DE, Giovannini MG. The Protective Effect of CBD in a Model of In Vitro Ischemia May Be Mediated by Agonism on TRPV2 Channel and Microglia Activation. Int J Mol Sci 2022; 23:12144. [PMID: 36292998 PMCID: PMC9603301 DOI: 10.3390/ijms232012144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 09/21/2023] Open
Abstract
Cannabinoids, used for centuries for recreational and medical purposes, have potential therapeutic value in stroke treatment. Cannabidiol (CBD), a non-psychoactive compound and partial agonist of TRPV2 channels, is efficacious in many neurological disorders. We investigated the effects of CBD or Δ9-tetrahydrocannabinol (THC) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of ischemia. Neuronal TRPV2 expression decreased after OGD, but it increased in activated, phagocytic microglia. CBD increased TRPV2 expression, decreased microglia phagocytosis, and increased rod microglia after OGD. THC had effects contrary to those of CBD. Our results show that cannabinoids have different effects in ischemia. CBD showed neuroprotective effects, mediated, at least in part, by TRPV2 channels, since the TRPV2 antagonist tranilast blocked them, while THC worsened the neurodegeneration caused by ischemia. In conclusion, our results suggest that different cannabinoid molecules play different roles in the mechanisms of post-ischemic neuronal death. These different effects of cannabinoid observed in our experiments caution against the indiscriminate use of cannabis or cannabinoid preparations for recreational or therapeutic use. It was observed that the positive effects of CBD may be counteracted by the negative effects caused by high levels of THC.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| | - Giada Magni
- Institute of Applied Physics “Nello Carrara”, National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy
| |
Collapse
|
22
|
Jastrząb A, Jarocka-Karpowicz I, Skrzydlewska E. The Origin and Biomedical Relevance of Cannabigerol. Int J Mol Sci 2022; 23:7929. [PMID: 35887277 PMCID: PMC9322760 DOI: 10.3390/ijms23147929] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
The constant search for new pharmacologically active compounds, especially those that do not exhibit toxic effects, intensifies the interest in plant-based ingredients and their potential use in pharmacotherapy. One of the plants that has great therapeutic potential is Cannabis sativa L., a source of the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC), namely cannabidiol (CBD), which exhibits antioxidant and anti-inflammatory properties, and cannabigerol (CBG)-a biologically active compound that is present in much smaller quantities. CBG is generated during the non-enzymatic decarboxylation of cannabigerolic acid, a key compound in the process of biosynthesis of phytocannabinoids and consequently the precursor to various phytocannabinoids. By interacting with G-protein-coupled receptors, CBG exhibits a wide range of biological activities, inter alia, anti-inflammatory, antibacterial and antifungal activities, regulation of the redox balance, and neuromodulatory effects. Due to the wide spectrum of biological activities, CBG seems to be a very promising compound to be used in the treatment of diseases that require multidirectional pharmacotherapy. Moreover, it is suggested that due to the relatively rapid metabolism of cannabigerol, determination of the concentration of the phytocannabinoid in blood or oral fluid can be used to determine cannabis use. Therefore, it seems obvious that new therapeutic approaches using CBG can be expected.
Collapse
Affiliation(s)
| | | | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, A. Mickiewicza 2D, 15-222 Bialystok, Poland; (A.J.); (I.J.-K.)
| |
Collapse
|
23
|
Zhou C, Assareh N, Arnold JC. The Cannabis Constituent Cannabigerol Does Not Disrupt Fear Memory Processes or Stress-Induced Anxiety in Mice. Cannabis Cannabinoid Res 2022; 7:294-303. [PMID: 34182770 PMCID: PMC9225414 DOI: 10.1089/can.2021.0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Medicinal cannabis has proliferated around the world and there is increasing interest in the therapeutic potential of individual plant-derived cannabinoids (phytocannabinoids). Preclinical evidence suggests the phytocannabinoid cannabigerol (CBG) could be useful in treating brain disorders, including stress and anxiety-related disorders. In this study, we aimed to explore whether CBG disrupts various contextually conditioned fear memory processes and trauma-induced anxiety-related behavior in a mouse model of post-traumatic stress disorder (PTSD). Materials and Methods: All mice underwent contextual fear conditioning. CBG was administered between 1 and 60 mg/kg intraperitoneally (i.p.). We first assessed the effects of repeated CBG exposure on long-term fear memories. We also examined whether acute CBG affected various fear memory processes, namely expression, acquisition, consolidation, and reconsolidation of conditioned fear. Finally, the effect of acute CBG administration on stress-induced anxiety in the light/dark test was assessed. Results: Repeated CBG exposure did not affect long-term conditioned fear that was observed 24 days after the conditioning session. Moreover, acute CBG administration did not influence the acquisition, consolidation, reconsolidation, or expression of contextually conditioned fear. Acute CBG treatment also did not affect stress-induced anxiety-related behaviors in the light/dark test. Conclusions: CBG was ineffective in disrupting long-term fear memories, various conditioned fear memory processes, or stress-induced anxiety-related behavior in mice. These preclinical data suggest CBG may have limited scope in the treatment of PTSD and stress-related anxiety.
Collapse
Affiliation(s)
- Cilla Zhou
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Neda Assareh
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, Australia
| | - Jonathon C. Arnold
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Address correspondence to: Jonathon C. Arnold, PhD, Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown 2050, New South Wales, Australia,
| |
Collapse
|
24
|
Franco R, Morales P, Navarro G, Jagerovic N, Reyes-Resina I. The Binding Mode to Orthosteric Sites and/or Exosites Underlies the Therapeutic Potential of Drugs Targeting Cannabinoid CB2 Receptors. Front Pharmacol 2022; 13:852631. [PMID: 35250601 PMCID: PMC8889005 DOI: 10.3389/fphar.2022.852631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
The classical terms agonists and antagonists for G protein coupled receptors (GPCRs) have often become misleading. Even the biased agonism concept does not describe all the possibilities already demonstrated for GPCRs. The cannabinoid CB2 receptor (CB2R) emerged as a promising target for a variety of diseases. Reasons for such huge potential are centered around the way drugs sit in the orthosteric and/or exosites of the receptor. On the one hand, a given drug in a specific CB2R conformation leads to a signaling cascade that differs qualitatively and/or quantitatively from that triggered by another drug. On the other hand, a given drug may lead to different signaling outputs in two different tissues (or cell contexts) in which the conformation of the receptor is affected by allosteric effects derived from interactions with other proteins or with membrane lipids. This highlights the pharmacological complexity of this receptor and the need to further unravel the binding mode of CB2R ligands in order to fine-tune signaling effects and therapeutic propositions.
Collapse
Affiliation(s)
- Rafael Franco
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biolomedicine, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Rafael Franco,
| | - Paula Morales
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Gemma Navarro
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Nadine Jagerovic
- Medicinal Chemistry Institute, Spanish National Research Council, Madrid, Spain
| | - Irene Reyes-Resina
- CiberNed. Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biolomedicine, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
25
|
Kim J, Choi H, Kang EK, Ji GY, Kim Y, Choi IS. In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Stem Cells. Molecules 2021; 26:molecules26196077. [PMID: 34641624 PMCID: PMC8512311 DOI: 10.3390/molecules26196077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal—if not scientific or clinical—evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Eunhye K. Kang
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Gil Yong Ji
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Youjeong Kim
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Insung S. Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
- Correspondence:
| |
Collapse
|
26
|
Landucci E, Mazzantini C, Lana D, Davolio PL, Giovannini MG, Pellegrini-Giampietro DE. Neuroprotective Effects of Cannabidiol but Not Δ 9-Tetrahydrocannabinol in Rat Hippocampal Slices Exposed to Oxygen-Glucose Deprivation: Studies with Cannabis Extracts and Selected Cannabinoids. Int J Mol Sci 2021; 22:ijms22189773. [PMID: 34575932 PMCID: PMC8468213 DOI: 10.3390/ijms22189773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Over the past 10 years, a number of scientific studies have demonstrated the therapeutic potential of cannabinoid compounds present in the Cannabis Sativa and Indica plants. However, their role in mechanisms leading to neurodegeneration following cerebral ischemia is yet unclear. (2) Methods: We investigated the effects of Cannabis extracts (Bedrocan, FM2) or selected cannabinoids (Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabigerol) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of forebrain global ischemia. Cell death in the CA1 subregion of slices was quantified by propidium iodide fluorescence, and morphological analysis and tissue organization were examined by immunohistochemistry and confocal microscopy. (3) Results: Incubation with the Bedrocan extract or THC exacerbated, whereas incubation with the FM2 extract or cannabidiol attenuated CA1 injury induced by OGD. Δ9-THC toxicity was prevented by CB1 receptor antagonists, the neuroprotective effect of cannabidiol was blocked by TRPV2, 5-HT1A, and PPARγ antagonists. Confocal microscopy confirmed that CBD, but not THC, had a significant protective effect toward neuronal damage and tissue disorganization caused by OGD in organotypic hippocampal slices. (4) Conclusions: Our results suggest that cannabinoids play different roles in the mechanisms of post-ischemic neuronal death. In particular, appropriate concentrations of CBD or CBD/THC ratios may represent a valid therapeutic intervention in the treatment of post-ischemic neuronal death.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
- Correspondence: ; Tel.: +39-055-2758378
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | | | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| |
Collapse
|
27
|
Stone NL, England TJ, O'Sullivan SE. Protective Effects of Cannabidivarin and Cannabigerol on Cells of the Blood-Brain Barrier Under Ischemic Conditions. Cannabis Cannabinoid Res 2021; 6:315-326. [PMID: 33998890 PMCID: PMC8380798 DOI: 10.1089/can.2020.0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives: Preclinical studies have shown cannabidiol is protective in models of ischemic stroke. Based on results from our recent systematic review, we investigated the effects of two promising neuroprotective phytocannabinoids, cannabigerol (CBG) and cannabidivarin (CBDV), on cells of the blood-brain barrier (BBB), namely human brain microvascular endothelial cells (HBMECs), pericytes, and astrocytes. Experimental Approach: Cultures were subjected to oxygen-glucose deprivation (OGD) protocol to model ischemic stroke and cell culture medium was assessed for cytokines and adhesion molecules post-OGD. Astrocyte cell lysates were also analyzed for DNA damage markers. Antagonist studies were conducted where appropriate to study receptor mechanisms. Results: In astrocytes CBG and CBDV attenuated levels of interleukin-6 (IL-6) and lactate dehydrogenase (LDH), whereas CBDV (10 nM-10 μM) also decreased vascular endothelial growth factor (VEGF) secretion. CBDV (300 nM-10 μM) attenuated levels of monocyte chemoattractant protein (MCP)-1 in HBMECs. In astrocytes, CBG decreased levels of DNA damage proteins, including p53, whereas CBDV increased levels of DNA damage markers. Antagonists for CB1, CB2, PPAR-γ, PPAR-α, 5-HT1A, and TRPV1 had no effect on CBG (3 μM) or CBDV (1 μM)-mediated decreases in LDH in astrocytes. GPR55 and GPR18 were partially implicated in the effects of CBDV, but no molecular target was identified for CBG. Conclusions: We show that CBG and CBDV were protective against OG mediated injury in three different cells that constitute the BBB, modulating different hallmarks of ischemic stroke pathophysiology. These data enhance our understanding of the protective effects of CBG and CBDV and warrant further investigation into these compounds in ischemic stroke. Future studies should identify other possible neuroprotective effects of CBG and CBDV and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Nicole L Stone
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Timothy J England
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom.,University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, United Kingdom
| | - Saoirse E O'Sullivan
- University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, United Kingdom.,CanPharmaConsulting, Nottingham, United Kingdom
| |
Collapse
|
28
|
Patricio F, Morales-Andrade AA, Patricio-Martínez A, Limón ID. Cannabidiol as a Therapeutic Target: Evidence of its Neuroprotective and Neuromodulatory Function in Parkinson's Disease. Front Pharmacol 2020; 11:595635. [PMID: 33384602 PMCID: PMC7770114 DOI: 10.3389/fphar.2020.595635] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
The phytocannabinoids of Cannabis sativa L. have, since ancient times, been proposed as a pharmacological alternative for treating various central nervous system (CNS) disorders. Interestingly, cannabinoid receptors (CBRs) are highly expressed in the basal ganglia (BG) circuit of both animals and humans. The BG are subcortical structures that regulate the initiation, execution, and orientation of movement. CBRs regulate dopaminergic transmission in the nigro-striatal pathway and, thus, the BG circuit also. The functioning of the BG is affected in pathologies related to movement disorders, especially those occurring in Parkinson’s disease (PD), which produces motor and non-motor symptoms that involving GABAergic, glutamatergic, and dopaminergic neural networks. To date, the most effective medication for PD is levodopa (l-DOPA); however, long-term levodopa treatment causes a type of long-term dyskinesias, l-DOPA-induced dyskinesias (LIDs). With neuromodulation offering a novel treatment strategy for PD patients, research has focused on the endocannabinoid system (ECS), as it participates in the physiological neuromodulation of the BG in order to control movement. CBRs have been shown to inhibit neurotransmitter release, while endocannabinoids (eCBs) play a key role in the synaptic regulation of the BG. In the past decade, cannabidiol (CBD), a non-psychotropic phytocannabinoid, has been shown to have compensatory effects both on the ECS and as a neuromodulator and neuroprotector in models such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and reserpine, as well as other PD models. Although the CBD-induced neuroprotection observed in animal models of PD has been attributed to the activation of the CB1 receptor, recent research conducted at a molecular level has proposed that CBD is capable of activating other receptors, such as CB2 and the TRPV-1 receptor, both of which are expressed in the dopaminergic neurons of the nigro-striatal pathway. These findings open new lines of scientific inquiry into the effects of CBD at the level of neural communication. Cannabidiol activates the PPARγ, GPR55, GPR3, GPR6, GPR12, and GPR18 receptors, causing a variety of biochemical, molecular, and behavioral effects due to the broad range of receptors it activates in the CNS. Given the low number of pharmacological treatment alternatives for PD currently available, the search for molecules with the therapeutic potential to improve neuronal communication is crucial. Therefore, the investigation of CBD and the mechanisms involved in its function is required in order to ascertain whether receptor activation could be a treatment alternative for both PD and LID.
Collapse
Affiliation(s)
- Felipe Patricio
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alan Axel Morales-Andrade
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Facultad De Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Ilhuicamina Daniel Limón
- Laboratorio De Neurofarmacología, Facultad De Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
29
|
Nachnani R, Raup-Konsavage WM, Vrana KE. The Pharmacological Case for Cannabigerol. J Pharmacol Exp Ther 2020; 376:204-212. [PMID: 33168643 DOI: 10.1124/jpet.120.000340] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Medical cannabis and individual cannabinoids, such as Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), are receiving growing attention in both the media and the scientific literature. The Cannabis plant, however, produces over 100 different cannabinoids, and cannabigerol (CBG) serves as the precursor molecule for the most abundant phytocannabinoids. CBG exhibits affinity and activity characteristics between Δ9-THC and CBD at the cannabinoid receptors but appears to be unique in its interactions with α-2 adrenoceptors and 5-hydroxytryptamine (5-HT1A). Studies indicate that CBG may have therapeutic potential in treating neurologic disorders (e.g., Huntington disease, Parkinson disease, and multiple sclerosis) and inflammatory bowel disease, as well as having antibacterial activity. There is growing interest in the commercial use of this unregulated phytocannabinoid. This review focuses on the unique pharmacology of CBG, our current knowledge of its possible therapeutic utility, and its potential toxicological hazards. SIGNIFICANCE STATEMENT: Cannabigerol is currently being marketed as a dietary supplement and, as with cannabidiol (CBD) before, many claims are being made about its benefits. Unlike CBD, however, little research has been performed on this unregulated molecule, and much of what is known warrants further investigation to identify potential areas of therapeutic uses and hazards.
Collapse
Affiliation(s)
- Rahul Nachnani
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| | | | - Kent E Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|