1
|
Babu MA, Jyothi S R, Kaur I, Kumar S, Sharma N, Kumar MR, Rajput P, Ali H, Gupta G, Subramaniyan V, Wong LS, Kumarasamy V. The role of GATA4 in mesenchymal stem cell senescence: A new frontier in regenerative medicine. Regen Ther 2025; 28:214-226. [PMID: 39811069 PMCID: PMC11731776 DOI: 10.1016/j.reth.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
The Mesenchymal Stem Cell (MSC) is a multipotent progenitor cell with known differentiation potential towards various cell lineage, making it an appealing candidate for regenerative medicine. One major contributing factor to age-related MSC dysfunction is cellular senescence, which is the hallmark of relatively irreversible growth arrest and changes in functional properties. GATA4, a zinc-finger transcription factor, emerges as a critical regulator in MSC biology. Originally identified as a key regulator of heart development and specification, GATA4 has since been connected to several aspects of cellular processes, including stem cell proliferation and differentiation. Accumulating evidence suggests that the involvement of GATA4-nuclear signalizing in the process of MSC senescence-related traits may contribute to age-induced alterations in MSC behavior. GATA4 emerged as the central player in MSC senescence, interacting with several signaling pathways. Studies have shown that GATA4 expression is reduced with age in MSCs, which is associated with increased expression levels of senescence markers and impaired regenerative potential. At the mechanistic level, GATA4 regulates the expression of genes involved in cell cycle regulation, DNA repair, and oxidative stress response, thereby influencing the senescence phenotype in MSCs. The findings underscore the critical function of GATA4 in MSC homeostasis and suggest a promising new target to restore stem cell function during aging and disease. A better understanding of the molecular mechanisms that underlie GATA4 mediated modulation of MSC senescence would provide an opportunity to develop new therapies to revitalize old MSCs to increase their regenerative function for therapeutic purposes in regenerative medicine.
Collapse
Affiliation(s)
- M. Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali, 140307, Punjab, India
| | - M. Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Ahmed NA, Elshahawy MF, Raafat AI, Abdou FY, Tahar HA. Rat model evaluation for healing-promoting effectiveness and antimicrobial activity of electron beam synthesized (polyvinyl alcohol-pectin)- silver doped zinc oxide hydrogel dressings enriched with lavender oil. Int J Biol Macromol 2025; 288:138618. [PMID: 39672426 DOI: 10.1016/j.ijbiomac.2024.138618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Ag/ZnO NPs and lavender oil (LVO) were incorporated into (polyvinyl alcohol/pectin) (PVA/Pet) dressings using electron beam irradiation technology. The Ag/ZnO NPs were prepared using the precipitation method and characterized using XRD, FTIR, and EDX techniques. TEM micrograph shows their spherical appearance with an average size of around 27.4 nm. The increase in the (PVA: Pet) feed solution concentration up to 30% enhances the gel content to 92%. The swelling degree reaches 1674% using 80 wt% pectin content. Meanwhile, increasing the irradiation dose up to 45 kGy increases the gel fraction and negatively affects the swelling capabilities. Incorporating Ag/ZnO NPs and LVO slightly decreased the gel fraction, the swelling degree, and the dressing's porosity reached 87%. In pseudo extracellular fluids, dressings with 10% LVO demonstrate 419% swelling capacities, and their WVTR reaches 271.1 g/m2h. Dressings show biocompatibility, antimicrobial potential, and excellent wound healing capacity towards the excisional wound model in rats, as confirmed by the histological and biochemical results. LVO-(PVA/Pet)-Ag/ZnO dressings may accelerate tissue granulation and remodeling by replacing lost collagen and cause the wound to constrict by upregulating markers associated with wound healing so that it can be recommended as a wound healing candidate.
Collapse
Affiliation(s)
- Nehad A Ahmed
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mai F Elshahawy
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Fatma Y Abdou
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hadeer A Tahar
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
3
|
Karma NI, Mellou F, Pavlou P, Siamidi A, Varvaresou A. Compounds of Marine Origin with Possible Applications as Healing Agents. Mar Drugs 2024; 23:5. [PMID: 39852507 PMCID: PMC11766494 DOI: 10.3390/md23010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
It is well established that marine organisms consist of a great variety of active compounds that appear exclusively in the marine environment while having the ability to be vastly reproduced, irrespective of the existing conditions. As a result, marine organisms can be used in many scientific fields, including the ones of pharmaceutics, nutrition, and cosmetic science. As for the latter, marine ingredients have been successfully included in cosmetic formulations for many decades, providing numerous benefits for the skin. In the present review, the contribution of marine compounds in wound healing is thoroughly discussed, focusing on their role both as active ingredients in suitable formulations, designed to contribute to different stages of skin regeneration and restoration and also, indirectly, as a tool for facilitating wound closure as part of a wound dressing. Additionally, the advantages of these marine ingredients are presented, as well as ways of incorporating them effectively in formulations, so as to enhance their performance. Numerous studies have been referenced, showcasing their efficacy in wound healing. Finally, important data in regard to their stability, limitations, and challenges to their use, safety issues, and the existing legislative framework are extensively reviewed.
Collapse
Affiliation(s)
- Nektaria-Ioanna Karma
- Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece; (N.-I.K.); (P.P.); (A.V.)
| | - Fotini Mellou
- Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece; (N.-I.K.); (P.P.); (A.V.)
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece
| | - Panagoula Pavlou
- Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece; (N.-I.K.); (P.P.); (A.V.)
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece
| | - Angeliki Siamidi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, GR-15784 Athens, Greece;
| | - Athanasia Varvaresou
- Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece; (N.-I.K.); (P.P.); (A.V.)
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Department of Biomedical Sciences, University of West Attica, 28 Agios Spyridonos Street, GR-12243 Egaleo, Greece
| |
Collapse
|
4
|
Tseng RJ, Altemara J, Smart S. Breastfeeding Symptom Resolution After Sequential Labial-Lingual Frenectomies: A Case Report. Case Rep Pediatr 2024; 2024:5545986. [PMID: 39665115 PMCID: PMC11634402 DOI: 10.1155/crpe/5545986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/09/2024] [Indexed: 12/13/2024] Open
Abstract
Background: Breastfeeding is vital for infant nutrition, bonding, and overall health. However, challenges can arise with the presence of tethered oral tissues, commonly known as labial (lip) tie or lingual (tongue) tie, otherwise known as ankyloglossia. This case study explores the differential resolution of breastfeeding symptoms in a one-month-old infant with both labial and lingual ties. It outlines the diagnostic process, surgical interventions, and postoperative care, emphasizing the importance of detailed characterization of symptom resolution associated with a lingual and labial frenectomy. Case Presentation: The one-month-old male presented with 11 symptoms of feeding difficulties. Sequential surgical releases were performed for the labial and lingual ties, with a ranula also addressed. Detailed symptom assessments were conducted at one, two, and 4 weeks postsurgery, revealing differential responses to labial and lingual releases. Results: The results show that 81.8% of symptoms resolved after labial and lingual surgeries, with some symptoms responding specifically to either labial or lingual release. The study suggests that surgical intervention can significantly improve breastfeeding outcomes, including for patients who may not have access to sufficient lactation counseling resources. Conclusion: This single case study provides a valuable starting point for the exploration of which dysfunctional breastfeeding symptoms are associated with a labial tie versus lingual tie. Further research with larger samples is warranted to explore optimal treatment strategies for diverse parent-baby dyads experiencing breastfeeding difficulties, or whose access to lactation support services is limited.
Collapse
Affiliation(s)
- Raymond J. Tseng
- School of Allied Health, Curtin University, Perth, Western Australia, Australia
- North Carolina Tongue Tie Center, Cary, North Carolina, USA
- Department of Pediatric and Public Health Dentistry, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Sharon Smart
- School of Allied Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Sarkar Z, Singh H, Iqubal MK, Baboota S, Khan S, Parveen R, Ali J. Involvement of macromolecules in 3D printing for wound healing management: A narrative review. Int J Biol Macromol 2024; 282:136991. [PMID: 39476921 DOI: 10.1016/j.ijbiomac.2024.136991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/26/2024] [Indexed: 11/07/2024]
Abstract
Wound healing comprises four overlapping stages involving complex biochemical and cellular processes. Any lapse in this procedure causes irregular healing, which generates clinical and financial burdens for the health system. Personalized treatment is preferred to overcome the limitations of classical as well as modern methods of wound healing. This review discusses recently developed 3D printing models for personalized treatment with varying degrees of success. It is an effective approach for treating wounds by developing custom dressings tailored to the patient's needs and reducing incidents of infections. Additionally, incorporating natural or synthetic polymers can further enhance their effectiveness. Macromolecular polymers, laminin, cellulose, collagen, gelatin, etc. that make up the bulk of 3D printable bio-inks, have been essential in diverse 3D bioprinting technologies throughout the layered 3D manufacturing processes. The polymers need to be tailored for the specific requirements of printing and effector functions in cancer treatment, dental & oral care, biosensors, and muscle repair. We have explored how 3D printing can be utilized to fasten the process of wound healing at each of the four stages. The benefits as well as the future prospects are also discussed in this article.
Collapse
Affiliation(s)
- Zinataman Sarkar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Harshita Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
6
|
Kolour AK, Shahrousvand M, Mohammadi-Rovshandeh J, Puppi D, Farzaneh D. Absorbable and biodegradable enzyme-crosslinked gelatin/alginate semi-IPN hydrogel wound dressings containing curcumin. Int J Biol Macromol 2024; 279:134938. [PMID: 39187095 DOI: 10.1016/j.ijbiomac.2024.134938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Effective wound management presents a substantial financial and time-related obstacle for healthcare institutions. Enhancing healthcare involves implementing innovative wound treatment methods to minimize healing time and expenses. This study is centered on the development of a non-toxic wound dressing using only two natural polymers and an enzyme. By adding 10 % wt microbial transglutaminase, the mechanical properties of the dressing were improved. This formulation increased the swelling rate by 70 %, deswelling rate by 15 %, conversion rate by 9 %, and networking rate by 20 %. Additionally, the non-toxic dressing showed a cell viability rate of 106 %. In drug delivery tests, explosive release behavior was observed, which is advantageous for open wounds. Cell staining experiments were also carried out to evaluate wound behavior in terms of collagen formation, granulation, and inflammation. The results suggest that the optimized hydrogel has great potential as a wound dressing. Its excellent absorption, antioxidant, and biocompatibility characteristics enhance tissue granulation rate and reduce wound treatment time by half compared to conventional methods, while also minimizing scarring risk. This innovative treatment, which eliminates the need for frequent changes, is beneficial for both secondary intentions and severe open wounds requiring bottom-up healing.
Collapse
Affiliation(s)
- Alireza Kheradvar Kolour
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran.
| | - Jamshid Mohammadi-Rovshandeh
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 43841-119, Guilan, Rezvanshar, Iran.
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, 56124 Pisa, Italy.
| | - Dorsa Farzaneh
- Biomaterials Engineering Department, Faculty of Medical Sciences and Technology, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
David C, Rasul I, Ariestiana YY, Fauzi A. Honey as an Alternative Dressing in Post-Palatoplasty-Two Case Reports. Case Rep Med 2024; 2024:8671377. [PMID: 39493317 PMCID: PMC11531363 DOI: 10.1155/2024/8671377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Palatoplasty is a surgical procedure used to repair a cleft palate. Postsurgery there are times when the healing process is disrupted. Honey has been utilised since ancient times as an antibacterial, anti-inflammatory, and regenerative treatment for wounds, and it has been shown to expedite the wound healing process by promoting the formation of new tissue.
Collapse
Affiliation(s)
- Clara David
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Irfan Rasul
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Yossy Y. Ariestiana
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Abul Fauzi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universitas Hasanuddin, Makassar 90245, Indonesia
| |
Collapse
|
8
|
Fatahzadeh M, Ravi A, Thomas P, Ziccardi VB. Systemic Factors Affecting Healing in Dentistry. Dent Clin North Am 2024; 68:799-812. [PMID: 39244258 DOI: 10.1016/j.cden.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Healing process in the oral cavity is influenced by a range of systemic factors. More specifically, patient health status, medications, habits, and nutritional state play crucial roles in dental healing. Additionally, the body's immune response, inflammation, and overall well-being are key determinants in wound repair. Understanding these systemic factors is essential for dental professionals to optimize patient care, minimize complications, and achieve successful healing.
Collapse
Affiliation(s)
- Mahnaz Fatahzadeh
- Division of Oral Medicine, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07103, USA
| | - Anjali Ravi
- University of Pittsburgh School of Dental Medicine, 341 Darragh Street, Unit 313, Pittsburgh, PA 15213, USA.
| | - Prisly Thomas
- Diplomate American Board of Orofacial Pain, Believers Church Medical College Hospital, St. Thomas Nagar Kuttapuzha, Thiruvalla Kerala-689103, India
| | - Vincent B Ziccardi
- Department of Oral and Maxillofacial Surgery, Rutgers School of Dental Medicine, Room B854, 110 Bergen Street, Newark, NJ 07103, USA
| |
Collapse
|
9
|
Raja MS, Pannirselvam V, Srinivasan SH, Guhan B, Rayan F. Recent technological advancements in Artificial Intelligence for orthopaedic wound management. J Clin Orthop Trauma 2024; 57:102561. [PMID: 39502891 PMCID: PMC11532955 DOI: 10.1016/j.jcot.2024.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/04/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
In orthopaedics, wound care is crucial as surgical site infections carry disease burden due to increased length of stay, decreased quality of life and poorer patient outcomes. Artificial Intelligence (AI) has a vital role in revolutionising wound care in orthopaedics: ranging from wound assessment, early detection of complications, risk stratifying patients, and remote patient monitoring. Incorporating AI in orthopaedics has reduced dependency on manual physician assessment which is time-consuming. This article summarises current literature on how AI is used for wound assessment and management in the orthopaedic community.
Collapse
Affiliation(s)
- Momna Sajjad Raja
- University of Leicester, University Rd, Leicester, LE1 7RH, United Kingdom
- Leicester Royal Infirmary, Leicester, United Kingdom
| | | | | | | | - Faizal Rayan
- Kettering General Hospital, Kettering, United Kingdom
| |
Collapse
|
10
|
Shinde VS, Jajoo S, Shinde RK. Advancements in Surgical Approaches for Sacrococcygeal Pilonidal Sinus: A Comprehensive Review. Cureus 2024; 16:e68502. [PMID: 39364530 PMCID: PMC11449080 DOI: 10.7759/cureus.68502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Sacrococcygeal pilonidal sinus (SPS) is a condition involving the formation of a cavity in the lower back region. It is more common among young adults and is influenced by factors such as sitting for long periods, body hair, and certain lifestyle habits. Surgical treatment is often necessary for recurring or severe cases, and various surgical techniques available, ranging from traditional surgical methods to newer, less invasive approaches. This comprehensive review examines the progress in surgical techniques for managing SPS, emphasizing the effectiveness, safety, and patient outcomes associated with different methods. It provides an overview of traditional procedures, such as excision with primary closure, and contrasts these with recent innovations like endoscopic and laser-assisted techniques. The review also considers advanced technologies, including the potential of robotic surgery and the use of specialized materials. By assessing clinical outcomes, recurrence rates, complications, and patient satisfaction, this review seeks to identify the most effective surgical strategies for SPS. Additionally, it discusses recent technological advancements and highlights areas needing further research to improve the management and treatment of this condition.
Collapse
Affiliation(s)
- Vishal S Shinde
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suhas Jajoo
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Raju K Shinde
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Yadav R, Kumar R, Kathpalia M, Ahmed B, Dua K, Gulati M, Singh S, Singh PJ, Kumar S, Shah RM, Deol PK, Kaur IP. Innovative approaches to wound healing: insights into interactive dressings and future directions. J Mater Chem B 2024; 12:7977-8006. [PMID: 38946466 DOI: 10.1039/d3tb02912c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The objective of this review is to provide an up-to-date and all-encompassing account of the recent advancements in the domain of interactive wound dressings. Considering the gap between the achieved and desired clinical outcomes with currently available or under-study wound healing therapies, newer more specific options based on the wound type and healing phase are reviewed. Starting from the comprehensive description of the wound healing process, a detailed classification of wound dressings is presented. Subsequently, we present an elaborate and significant discussion describing interactive (unconventional) wound dressings. Latter includes biopolymer-based, bioactive-containing and biosensor-based smart dressings, which are discussed in separate sections together with their applications and limitations. Moreover, recent (2-5 years) clinical trials, patents on unconventional dressings, marketed products, and other information on advanced wound care designs and techniques are discussed. Subsequently, the future research direction is highlighted, describing peptides, proteins, and human amniotic membranes as potential wound dressings. Finally, we conclude that this field needs further development and offers scope for integrating information on the healing process with newer technologies.
Collapse
Affiliation(s)
- Radhika Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Rohtash Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Muskan Kathpalia
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Monica Gulati
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Singh
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushvinder Jit Singh
- Tynor Orthotics Private Limited, Janta Industrial Estate, Mohali 160082, Punjab, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| | - Parneet Kaur Deol
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India.
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
12
|
Valentin BC, Philippe ON, Henry MM, Salvius BA, Suzanne MK, Kasali FM, Baptiste LSJ. Ethnomedical Knowledge of Plants Used in Nonconventional Medicine for Wound Healing in Lubumbashi, Haut-Katanga Province, DR Congo. ScientificWorldJournal 2024; 2024:4049263. [PMID: 39376217 PMCID: PMC11458279 DOI: 10.1155/2024/4049263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 10/09/2024] Open
Abstract
Medicinal plants used for wound healing in Lubumbashi have yet to be discovered. Inventory or profile of their taxa has yet to be established. The present study was carried out to survey the plants used in traditional medicine in Lubumbashi to treat wounds and to define their ethnomedical characteristics. The study was conducted between March 2021 and August 2022, using semistructured interview surveys of households (n = 2730), herbalists (n = 48), and traditional practitioners: TPs (n = 128).The 2,906 interviewed (sex ratio M/F = 0.9; mean age: 56 ± 3 years; and experience: 17 ± 4 years) provided information on 166 taxa, 130 used against chronic wounds, among which Securidaca longepedunculata was the top cited. Most of these taxa are shrubs (33%), belonging to 48 botanical families dominated by the Fabaceae (16%). They are indicated in 70 other pathologies. From these 166 taxa, 198 healing recipes are obtained, 11 combining more than one plant. In all these recipes, the leaf (>36%) is the most used part, and the poultice (>36%) is the most popular form of use. Twelve taxa are cited for the first time as medicinal plants, of which Agelanthus zizyphifolius has the highest consensus and Erigeron sumatrensis has the highest usual value. For the various plants used to treat wounds, some of which are specific to the region, further studies should focus on validating this traditional use.
Collapse
Affiliation(s)
- Bashige Chiribagula Valentin
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Okusa Ndjolo Philippe
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Manya Mboni Henry
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Bakari Amuri Salvius
- Department of Pharmacology, Laboratory of Pharmacognosy, Faculty of Pharmaceutical Sciences, University of Lubumbashi (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Masengu Kabeya Suzanne
- Department of Pharmacology, Laboratory of Therapeutic Chemistry and Analysis of Natural Substances, Faculty of Pharmaceutical Sciences (UNILU), 27, Av. Kato, Commune Kampemba, Lubumbashi, Democratic Republic of the Congo
| | - Félicien Mushagalusa Kasali
- Department of Pharmacy, College of Health Sciences, Université Officielle de Bukavu (UOB), PO. Box: 570, Bukavu, Commune of Kadutu, Av. Karhale, Democratic Republic of the Congo
| | - Lumbu Simbi Jean Baptiste
- Department of Chemistry, Faculty of Sciences, University of Lubumbashi (UNILU), 1 Maternity Av., Commune of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| |
Collapse
|
13
|
Taghdi MH, Muttiah B, Chan AML, Fauzi MB, Law JX, Lokanathan Y. Exploring Synergistic Effects of Bioprinted Extracellular Vesicles for Skin Regeneration. Biomedicines 2024; 12:1605. [PMID: 39062178 PMCID: PMC11275222 DOI: 10.3390/biomedicines12071605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Regenerative medicine represents a paradigm shift in healthcare, aiming to restore tissue and organ function through innovative therapeutic strategies. Among these, bioprinting and extracellular vesicles (EVs) have emerged as promising techniques for tissue rejuvenation. EVs are small lipid membrane particles secreted by cells, known for their role as potent mediators of intercellular communication through the exchange of proteins, genetic material, and other biological components. The integration of 3D bioprinting technology with EVs offers a novel approach to tissue engineering, enabling the precise deposition of EV-loaded bioinks to construct complex three-dimensional (3D) tissue architectures. Unlike traditional cell-based approaches, bioprinted EVs eliminate the need for live cells, thereby mitigating regulatory and financial obstacles associated with cell therapy. By leveraging the synergistic effects of EVs and bioprinting, researchers aim to enhance the therapeutic outcomes of skin regeneration while addressing current limitations in conventional treatments. This review explores the evolving landscape of bioprinted EVs as a transformative approach for skin regeneration. Furthermore, it discusses the challenges and future directions in harnessing this innovative therapy for clinical applications, emphasizing the need for interdisciplinary collaboration and continued scientific inquiry to unlock its full therapeutic potential.
Collapse
Affiliation(s)
- Manal Hussein Taghdi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
- Department of Anaesthesia and Intensive Care, Faculty of Medical Technology, University of Tripoli, Tripoli P.O. Box 13932, Libya
| | - Barathan Muttiah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| | | | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.H.T.); (B.M.); (M.B.F.); (J.X.L.)
| |
Collapse
|
14
|
Nascimento D, Azevedo P, Carreira LM. Insights into Atresia Ani Type IV in Felis catus: Preliminary Epidemiolocal Findings Associated with Surgery. Animals (Basel) 2024; 14:1738. [PMID: 38929357 PMCID: PMC11200850 DOI: 10.3390/ani14121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atresia Ani (AA) is a rare congenital anomaly in companion animals affecting rectal and anal development. Its incidence in cats remains unreported. This retrospective study aimed to characterize age, body condition, fistula size, and perioperative outcomes in Type IV Atresia Ani (with recto-vaginal fistula) in female cats. Surgical intervention is the primary treatment. Conducted over 2 years, the study included nine female cats diagnosed with Type IV Atresia Ani and recto-vaginal fistula undergoing surgery. Statistical analysis used the R program (version 4.2.1) with Rstudio®® extension. Significant results were observed at a 95% confidence interval and p < 0.05. The condition had an incidence of 4.7% among the 192 cats evaluated over a 2-year period. The findings suggest that a body condition score of 3, an age of 3 to 4 weeks, and a fistula length of 1 to 2 mm correlated with better surgical outcomes, reducing the likelihood of fecal incontinence and anal stenosis development, and enhancing defecation awareness during the perioperative period. This study is the first to report the disease incidence in cats undergoing surgery, according to the authors' knowledge.
Collapse
Affiliation(s)
- Diogo Nascimento
- Anjos of Assis Veterinary Medicine Centre—CMVAA, Rua D.ª Francisca da Azambuja Nº9 -9A, 2830-077 Barreiro, Portugal; (D.N.); (P.A.)
| | - Pedro Azevedo
- Anjos of Assis Veterinary Medicine Centre—CMVAA, Rua D.ª Francisca da Azambuja Nº9 -9A, 2830-077 Barreiro, Portugal; (D.N.); (P.A.)
- Faculty of American Laser Study Club—ALSC, Altamonte Springs, FL 32714, USA
| | - L. Miguel Carreira
- Anjos of Assis Veterinary Medicine Centre—CMVAA, Rua D.ª Francisca da Azambuja Nº9 -9A, 2830-077 Barreiro, Portugal; (D.N.); (P.A.)
- Faculty of American Laser Study Club—ALSC, Altamonte Springs, FL 32714, USA
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Interdisciplinary Centre for Research in Animal Health (CIISA), University of Lisbon, (FMV/ULisboa) Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
15
|
Suryani IR, Shujaat S, That MT, Coucke W, Jacobs R. Prediction of wound healing status following dental extraction using Adapted-University of Connecticut osteonecrosis numerical scale: A retrospective study. Health Sci Rep 2024; 7:e2184. [PMID: 38915354 PMCID: PMC11194833 DOI: 10.1002/hsr2.2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024] Open
Abstract
Background and Aims There is a scarcity of evidence concerning the use of a prognostic instrument for predicting normal healing, delayed healing, and medication-related osteonecrosis of the jaw (MRONJ) occurrence following tooth extraction in medically compromised patients. The present study aimed to predict healing outcomes following tooth extraction in medically compromised patients using an Adapted-University of Connecticut osteonecrosis numerical scale (A-UCONNS). Methods The digital medical records of medically compromised patients were reviewed, who underwent tooth extraction. The A-UCONNS parameters included the initial pathological condition, dental procedures, comorbidities (smoking habits, type and duration of medication, and type of intervention), and administered antiresorptive (AR) medications. Each parameter was assigned a different weight, and the scores were then accumulated and classified into three categories: minimal risk (less than 10), moderate risk (10-15), and significant risk (16 or more). The patient's healing status was categorized as normal healing, delayed healing, or MRONJ. Results A total of 353 male patients (mean age: 67.4 years) were recruited from a pool of 3977 patients, where 12.46% of patients had delayed wound healing, and 18.69% developed MRONJ. The median A-UCONNS scores for MRONJ were higher based on initial pathology, comorbidity, and AR drugs compared to normal or delayed healing. In addition, a significant relationship existed between A-UCONNS and healing outcomes (p < 0.05), with a unit increase in A-UCONNS associated with 1.347 times higher odds of experiencing MRONJ compared to normal healing. In contrast, a low score was linked to an increased likelihood of normal wound healing. Conclusion The A-UCONNS could act as a promising tool for predicting wound healing outcomes. It can provide clinicians the ability to pinpoint patients at high risk and allow tailoring of patient-specific strategies for improving healing outcomes following tooth extraction.
Collapse
Affiliation(s)
- Isti R. Suryani
- Department of Imaging & Pathology, OMFS IMPATH Research Group, Faculty of Medicine, KU Leuven & Oral and Maxillofacial SurgeryUniversity Hospitals LeuvenLeuvenBelgium
- Department of Dentomaxillofacial Radiology, Faculty of DentistryUniversitas Gadjah MadaYogyakartaIndonesia
| | - Sohaib Shujaat
- Department of Imaging & Pathology, OMFS IMPATH Research Group, Faculty of Medicine, KU Leuven & Oral and Maxillofacial SurgeryUniversity Hospitals LeuvenLeuvenBelgium
- King Abdullah International Medical Research Center, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health SciencesMinistry of National Guard Health AffairsRiyadhSaudi Arabia
| | - Minh T. That
- Department of Imaging & Pathology, OMFS IMPATH Research Group, Faculty of Medicine, KU Leuven & Oral and Maxillofacial SurgeryUniversity Hospitals LeuvenLeuvenBelgium
| | | | - Reinhilde Jacobs
- Department of Imaging & Pathology, OMFS IMPATH Research Group, Faculty of Medicine, KU Leuven & Oral and Maxillofacial SurgeryUniversity Hospitals LeuvenLeuvenBelgium
- Department of Dental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
16
|
Pathak D, Mazumder A. A critical overview of challenging roles of medicinal plants in improvement of wound healing technology. Daru 2024; 32:379-419. [PMID: 38225520 PMCID: PMC11087437 DOI: 10.1007/s40199-023-00502-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024] Open
Abstract
PURPOSE Chronic diseases often hinder the natural healing process, making wound infections a prevalent clinical concern. In severe cases, complications can arise, potentially leading to fatal outcomes. While allopathic treatments offer numerous options for wound repair and management, the enduring popularity of herbal medications may be attributed to their perceived minimal side effects. Hence, this review aims to investigate the potential of herbal remedies in efficiently treating wounds, presenting a promising alternative for consideration. METHODS A literature search was done including research, reviews, systematic literature review, meta-analysis, and clinical trials considered. Search engines such as Pubmed, Google Scholar, and Scopus were used while retrieving data. Keywords like Wound healing 'Wound healing and herbal combinations', 'Herbal wound dressing', Nanotechnology and Wound dressing were used. RESULT This review provides valuable insights into the role of natural products and technology-based formulations in the treatment of wound infections. It evaluates the use of herbal remedies as an effective approach. Various active principles from herbs, categorized as flavonoids, glycosides, saponins, and phenolic compounds, have shown effectiveness in promoting wound closure. A multitude of herbal remedies have demonstrated significant efficacy in wound management, offering an additional avenue for care. The review encompasses a total of 72 studies, involving 127 distinct herbs (excluding any common herbs shared between studies), primarily belonging to the families Asteraceae, Fabaceae, and Apiaceae. In research, rat models were predominantly utilized to assess wound healing activities. Furthermore, advancements in herbal-based formulations using nanotechnology-based wound dressing materials, such as nanofibers, nanoemulsions, nanofiber mats, polymeric fibers, and hydrogel-based microneedles, are underway. These innovations aim to enhance targeted drug delivery and expedite recovery. Several clinical-based experimental studies have already been documented, evaluating the efficacy of various natural products for wound care and management. This signifies a promising direction in the field of wound treatment. CONCLUSION In recent years, scientists have increasingly utilized evidence-based medicine and advanced scientific techniques to validate the efficacy of herbal medicines and delve into the underlying mechanisms of their actions. However, there remains a critical need for further research to thoroughly understand how isolated chemicals extracted from herbs contribute to the healing process of intricate wounds, which may have life-threatening consequences. This ongoing research endeavor holds great promise in not only advancing our understanding but also in the development of innovative formulations that expedite the recovery process.
Collapse
Affiliation(s)
- Deepika Pathak
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India.
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, UP, 201306, India
| |
Collapse
|
17
|
Jeevitha M, Kaarthikeyan G, Ramalingam K, Rajeshkumar S. Efficacy of a Novel Nanohydrogel Formulation Containing Dopamine, Chitosan Nanoparticles, and Tridax procumbens Extract for Enhanced Wound Healing in Human Gingival Fibroblast Cells: An In Vitro Study. Cureus 2024; 16:e62819. [PMID: 39040712 PMCID: PMC11260696 DOI: 10.7759/cureus.62819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Background Natural compounds and biomaterials, such as nanohydrogels, have gained interest due to their biocompatibility and tissue regeneration potential. A novel nanohydrogel was prepared by employing Tridax procumbens, a traditional plant with anti-inflammatory properties and chitosan nanoparticles and a natural bioadhesive with potent antimicrobial and antioxidant effects and dopamine, which has been shown to regulate angiogenesis and influence cell growth. The objective of this study was to examine how human gingival fibroblast (HGF) cells respond to a nanohydrogel formulation containing dopamine, chitosan nanoparticles, and T. procumbens extract in terms of cell viability and cell migration. Methods From human gingival tissue, fibroblasts were cultured. A nanohydrogel formulation was prepared by combining dopamine, chitosan nanoparticles, and T. procumbens extract. Three groups were evaluated: Group 1 (nanohydrogel containing dopamine, chitosan nanoparticles, and T. procumbens extract (DnCTP)), Group 2 (chitosan nanoparticles and T. procumbens extract (nCTP)), and Group 3(T. procumbens extract (TP)). The MTT assay was used to measure the percentage of cell viability and a scratch assay to observe cell migration in the wounded area at different concentrations. The data were tabulated in Microsoft Excel (Microsoft Corporation, USA) and imported to IBM SPSS Statistics for Windows, version 23.0 (released 2015, IBM Corp., Armonk, NY), and the Mann-Whitney U test was conducted to statistically analyze the cell viability for different concentrations within the three groups. Results The nanohydrogel formulation (DnCTP) showed dose-dependent effects on cell viability with the highest cell viability at 40 µL/mL concentration, and higher concentrations of 80 µL/mL exhibited cytotoxic effects. nCTP and TP showed decreased cell viability at 80 µL/mL concentration (p < 0.05), indicating potential cytotoxicity at higher concentrations. DnCTP showed improved cell migration in the scratch assay as compared to other groups (nCTP and TP), indicating its potential for facilitating wound healing. Conclusion Dopamine, chitosan nanoparticles, and T. procumbens worked together synergistically to create a nanohydrogel formulation (DnCTP) that showed promise for improving wound healing in human gingival fibroblast cells at a dose-dependent concentration, which may therefore work as an excellent wound-healing agent in periodontal and peri-implant therapy.
Collapse
Affiliation(s)
- M Jeevitha
- Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - G Kaarthikeyan
- Periodontology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - S Rajeshkumar
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
18
|
Zhao Y, Liu M, Li W, Tao G. Topical lyophilized thrombin application improves wound healing for posterior spinal surgery. Heliyon 2024; 10:e31335. [PMID: 38813190 PMCID: PMC11133810 DOI: 10.1016/j.heliyon.2024.e31335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Background The erector spinae plane block (ESPB) was proposed as a part of the postoperative multimodal analgesic regimen to improve pain management after posterior spinal surgery. However, ESPB might cause more surgical incisional wound exudate and poor wound healing, which might be improved after topical lyophilized thrombin application. Materials and methods We performed a retrospective study on patients who received posterior spinal surgery between January 2018 and December 2021. These patients were assigned into three groups: group A (general anesthesia), group B (general anesthesia with ESPB), and group C (general anesthesia with ESPB and topical 1000-unit thrombin application). Postoperative outcomes, including times of dressing changes, duration of suture removal, and incisional wound healing, were compared among these groups. Results Our study included 89 patients, with 48, 20, and 21 patients in groups A, B, and C, respectively. Baseline demographics, height, weight, comorbidities, and operation duration were comparable among the three groups. Group B required statistically significantly more dressing changes and had a prolonged duration of suture removal than group A (9.4 ± 4.7 versus 6.5 ± 2.0 times, 16.2 ± 3.7 versus 14.2 ± 1.4 days, respectively), which could be statistically significantly improved after the thrombin application in group C. Group B also had more frequent poor wound healing (25.0 %), which could also be improved after the thrombin application (0.0 %). Conclusions ESPB could cause more dressing changes and poor surgical wound healing after posterior spinal surgery, which could be improved by topical lyophilized thrombin powder application.
Collapse
Affiliation(s)
- Yinjie Zhao
- Department of Anesthesiology, Guiqian International General Hospital, Guiyang, 550024, China
| | - Ming Liu
- Department of Orthopedics and Sports Medicine, Heyou International Hospital, Guangdong, 528000, China
| | - Wenyao Li
- Department of Pain Management, Guigian International General Hospital, Gui Yang, 550024, China
| | - Guocai Tao
- Department of Anesthesiology, Guiqian International General Hospital, Guiyang, 550024, China
| |
Collapse
|
19
|
Zhang S, Ji L, Xu K, Xiong X, Ai B, Qian W, Dong J. Detection of redox potential evolution during the initial stage of an acute wound based on a redox-sensitive SERS-active optical fiber. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3263-3270. [PMID: 38738477 DOI: 10.1039/d4ay00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
To detect redox potential evolution during the initial stage of an acute wound, a redox-sensitive SERS-active optical fiber was fabricated by integrating redox-sensitive SERS probes in a hole of an optical fiber. The redox-sensitive SERS-active optical fibers carried redox-sensitive SERS probes into the inside of a wound to sense its redox potential. The laser was transmitted to the redox-sensitive SERS probes in the body by optical fibers, and the SERS signals of the redox-sensitive SERS probes were transferred out of the body by optical fibers to indicate the redox potentials in the wound. The redox-sensitive SERS probes dynamically sensed the redox potential in vivo, and their SERS signals were collected constantly to indicate the redox potentials. The assessments in vivo and in vitro proved the responsiveness of redox-sensitive SERS-active optical fibers. The redox potential evolution during the initial stage of an acute wound with the treatments of different concentrations of glucose was detected to verify the feasibility of redox-sensitive SERS-active optical fibers to dynamically detect redox potentials in vivo. The redox-sensitive SERS-active optical fiber would be a versatile tool to explore the roles of redox potentials in living organisms.
Collapse
Affiliation(s)
- Shuyu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Lingling Ji
- Department of Acupuncture-Moxibustion, Massage and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Department of Acupuncture and Moxibustion, Suzhou Chinese Medicine Hospital Affiliated to Nanjing Chinese Medicine University, Suzhou 215003, China
| | - Kun Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xiulei Xiong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Bingwei Ai
- Department of Acupuncture-Moxibustion, Massage and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jian Dong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
- Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou 215123, China
| |
Collapse
|
20
|
Ching EEB, Chaiyasamut T, Vorakulpipat C. In Vitro Study of Tensile Strength Comparison of Selected Nonabsorbable and Absorbable Suture Materials after Immersion in 0.12% Chlorhexidine Gluconate. J Int Soc Prev Community Dent 2024; 14:201-210. [PMID: 39055294 PMCID: PMC11268532 DOI: 10.4103/jispcd.jispcd_162_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 07/27/2024] Open
Abstract
Aim To compare the tensile strength (TS) of absorbable and nonabsorbable suture materials after immersion in 0.12% chlorhexidine gluconate. Materials and Methods Six 4-0-gauge suture materials were used, namely silk (S), polypropylene (PP), polyamide 6 (PA6), polyglactin 910 (PG910), poliglecaprone 25 (PL25), and polydioxanone (PDX). A total of 540 suture materials were divided equally (90) into six groups and tested. These materials were divided into a nonimmersed condition (10) and two thermostatically controlled immersion media (40 each), using artificial saliva for the control group (CG) and 0.12% chlorhexidine gluconate for the test group (TG). The specimens were tied to prefabricated rubber rods before immersion and removed at the testing timepoint. By using a universal testing machine (Instron 5566) with hooks attached, a hook-mounted specimen TS testing was performed on days 0, 1, 3, 7, and 14 at a 10 mm/min crosshead speed until the material was stretched to failure, and the maximum TS was recorded in Newtons (N). The continuous variables were taken as the mean and standard deviation across the six study groups to assess the significance at α = 0.05. A two-factor analysis of variance (ANOVA) was performed to assess the TSs over time in different media. A Bonferroni correction was performed when the data were statistically significant according to a two-factor ANOVA. Intragroup statistical comparisons were performed by repeated ANOVA for each study group. All data were analyzed using SPSS 26. Results The suture material TS analysis showed that nonabsorbable suture materials maintained their TS throughout the study; silk exhibited different behaviors, decreasing in TS from baseline to day 1 and maintaining its TS until day 14. All absorbable suture materials decreased in TSs by day 14. The silk and PG910 samples in the TG performed significantly better than those in the CG. Conclusions Prescribing 0.12% chlorhexidine gluconate as a postsurgical mouth rinse is safest when silk and PG910 are the optimal suture materials.
Collapse
Affiliation(s)
- Ezra Emmanuel B Ching
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Teeranut Chaiyasamut
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Chakorn Vorakulpipat
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Manikandan R, Anantanarayan P, Kumar DN, Ponvel K. Oral Wound Healing: A Scoping Review and Proposal of a New Index for Palatal Mucosa. J Maxillofac Oral Surg 2024; 23:416-423. [PMID: 38601226 PMCID: PMC11001815 DOI: 10.1007/s12663-023-02052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/20/2023] [Indexed: 04/12/2024] Open
Abstract
Purpose The aim of this scoping review was to evaluate the wound healing indices available in literature and propose a new intra-oral wound healing index to assess the healing of palatal mucosa. Materials and Methods A PubMed database search was conducted to identify relevant studies using the search strategy: ('Oral Wound healing') OR ('Palatal tissue healing') OR ('Healing indices in Oral and Maxillofacial Surgery') OR ('Palatal wound healing') OR ('Complications in wound healing'). A qualitative and quantitative synthesis of the results was done and data was presented following the PRISMA-ScR guidelines. Results The search resulted in 9 articles published between 2019 and 2022, which were eligible for inclusion in the study. The data revealed that the indices currently available for the assessment of intra-oral healing were limited and primarily concerned with the assessment of gingival and periodontal tissues. Conclusion The healing indices devised for gingival and periodontal tissues cannot be applied to palatal healing due to the differences in clinical and histological aspects. Therefore, a new index to monitor the healing response specifically for the soft tissues in the palate has been proposed. This maybe particularly useful in cleft palate repair and other procedures performed over the palatal tissues.
Collapse
Affiliation(s)
- R. Manikandan
- Department of Oral & Maxillofacial Surgery, Meenakshi Cleft and Craniofacial Center, Meenakshi Ammal Dental College & Hospital, Maduravoyal, Chennai, 600095 India
| | - P. Anantanarayan
- Department of Oral & Maxillofacial Surgery, Meenakshi Cleft and Craniofacial Center, Meenakshi Ammal Dental College & Hospital, Maduravoyal, Chennai, 600095 India
| | - Divya Nirmal Kumar
- Department of Oral & Maxillofacial Surgery, Meenakshi Cleft and Craniofacial Center, Meenakshi Ammal Dental College & Hospital, Maduravoyal, Chennai, 600095 India
| | - Keerthana Ponvel
- Department of Oral & Maxillofacial Surgery, Meenakshi Cleft and Craniofacial Center, Meenakshi Ammal Dental College & Hospital, Maduravoyal, Chennai, 600095 India
| |
Collapse
|
22
|
Kumar Periyasamy I, Mehthaf A, Elangovan GP, D V, Vijaykumar G, Elumalai A. Efficacy of Amniotic and Chorionic Membrane in Facial Wound Healing: A Comparative Study. Cureus 2024; 16:e58160. [PMID: 38741866 PMCID: PMC11089579 DOI: 10.7759/cureus.58160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Background Advancements in regenerative techniques have been utilized in placental amnion and chorion for a variety of purposes. Their ability to regenerate tissues has led to their usage in tissue engineering, wound healing, and other therapeutic applications. This study aims to evaluate and compare the efficacy of amnion and chorion in facial tissue wound healing. Methodology The study was an observational comparative study conducted in the Department of Oral and Maxillofacial Surgery, involving 20 participants divided into two groups (Group I and Group II). Study groups were selected according to the inclusion and exclusion criteria. A dehydrated human amnion/ chorion membrane was applied to the affected site of each group respectively. Its efficacy in wound healing was analyzed in the first, third, seventh day, and second week. Statistical analysis was done using SPSS software (IBM Corp., Armonk, NY). Results Patients treated with amnion membrane showed a decrease in wound size and the wound was completely healed by second week with mean scores of wound sizes of 0.00 whereas the wound remained unhealed by second week with mean of 1.70 to those treated with chorion membrane. Conclusion Amnion showed superior efficacy in wound healing at two-week intervals when compared to the chorion. Hence, this could be used in regenerative medicine as a graft to induce healing in facial wounds.
Collapse
Affiliation(s)
- Indra Kumar Periyasamy
- Oral and Maxillofacial Surgery, Vivekanandha Dental college for women, Tiruchengode, IND
| | - Ayisha Mehthaf
- Oral and Maxillofacial Surgery, Vivekanandha Dental College for Women, Tiruchengode, IND
| | | | - Vijayalakshmi D
- Oral Pathology, Dhanalakshmi Srinivasan Dental College, Perambalur, IND
| | - Gowthaman Vijaykumar
- Dentistry, Ex-servicemen Contributory Health Scheme (ECHS) Polyclinic Ministry of Defence, Chennai, IND
| | - Ahila Elumalai
- Periodontics, Sri Venkateshwaraa Dental College, Puducherry, IND
| |
Collapse
|
23
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
24
|
Dhir R, Chauhan S, Subham P, Kumar S, Sharma P, Shidiki A, Kumar G. Plant-mediated synthesis of silver nanoparticles: unlocking their pharmacological potential-a comprehensive review. Front Bioeng Biotechnol 2024; 11:1324805. [PMID: 38264582 PMCID: PMC10803431 DOI: 10.3389/fbioe.2023.1324805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
In recent times, nanoparticles have experienced a significant upsurge in popularity, primarily owing to their minute size and their remarkable ability to modify physical, chemical, and biological properties. This burgeoning interest can be attributed to the expanding array of biomedical applications where nanoparticles find utility. These nanoparticles, typically ranging in size from 10 to 100 nm, exhibit diverse shapes, such as spherical, discoidal, and cylindrical configurations. These variations are not solely influenced by the manufacturing processes but are also intricately linked to interactions with surrounding stabilizing agents and initiators. Nanoparticles can be synthesized through physical or chemical methods, yet the biological approach emerges as the most sustainable and eco-friendly alternative among the three. Among the various nanoparticle types, silver nanoparticles have emerged as the most encountered and widely utilized due to their exceptional properties. What makes the synthesis of silver nanoparticles even more appealing is the application of plant-derived sources as reducing agents. This approach not only proves to be cost-effective but also significantly reduces the synthesis time. Notably, silver nanoparticles produced through plant-mediated processes have garnered considerable attention in recent years due to their notable medicinal capabilities. This comprehensive review primarily delves into the diverse medicinal attributes of silver nanoparticles synthesized using plant-mediated techniques. Encompassing antimicrobial properties, cytotoxicity, wound healing, larvicidal effects, anti-angiogenesis activity, antioxidant potential, and antiplasmodial activity, the paper extensively covers these multifaceted roles. Additionally, an endeavor is made to provide an elucidated summary of the operational mechanisms underlying the pharmacological actions of silver nanoparticles.
Collapse
Affiliation(s)
- Rajan Dhir
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Sakshi Chauhan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Praddiuman Subham
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Saksham Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Pratham Sharma
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| | - Amrullah Shidiki
- Department of Microbiology, National Medical College and Teaching Hospital, Birgunj, Nepal
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab, India
| |
Collapse
|
25
|
Singh P, Sharma S, Sharma PK, Alam A. Topical Anti-ulcerogenic Effect of the Beta-adrenergic Blockers on Diabetic Foot Ulcers: Recent Advances and Future Prospectives. Curr Diabetes Rev 2024; 20:23-37. [PMID: 37867269 DOI: 10.2174/0115733998249061231009093006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Patients with diabetes suffer from major complications like Diabetic Retinopathy, Diabetic Coronary Artery Disease, and Diabetic Foot ulcers (DFUs). Diabetes complications are a group of ailments whose recovery time is especially delayed, irrespective of the underlying reason. The longer duration of wound healing enhances the probability of problems like sepsis and amputation. The delayed healing makes it more critical for research focus. By understanding the molecular pathogenesis of diabetic wounds, it is quite easy to target the molecules involved in the healing of wounds. Recent research on beta-adrenergic blocking drugs has revealed that these classes of drugs possess therapeutic potential in the healing of DFUs. However, because the order of events in defective healing is adequately defined, it is possible to recognize moieties that are currently in the market that are recognized to aim at one or several identified molecular processes. OBJECTIVE The aim of this study was to explore some molecules with different therapeutic categories that have demonstrated favorable effects in improving diabetic wound healing, also called the repurposing of drugs. METHOD Various databases like PubMed/Medline, Google Scholar and Web of Science (WoS) of all English language articles were searched, and relevant information was collected regarding the role of beta-adrenergic blockers in diabetic wounds or diabetic foot ulcers (DFUs) using the relevant keywords for the literature review. RESULT The potential beta-blocking agents and their mechanism of action in diabetic foot ulcers were studied, and it was found that these drugs have a profound effect on diabetic foot ulcer healing as per reported literatures. CONCLUSION There is a need to move forward from preclinical studies to clinical studies to analyze clinical findings to determine the effectiveness and safety of some beta-antagonists in diabetic foot ulcer treatment.
Collapse
Affiliation(s)
- Prateek Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shweta Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
26
|
Reddy K, Gharde P, Tayade H, Patil M, Reddy LS, Surya D. Unknown and Unacknowledged Dangers to Every Medical Student: A Rare Case of Nitric Acid Burns. Cureus 2024; 16:e52203. [PMID: 38348010 PMCID: PMC10860366 DOI: 10.7759/cureus.52203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/13/2024] [Indexed: 02/15/2024] Open
Abstract
This case report delves into the often overlooked and unacknowledged hazards faced by medical students, exemplified by a rare incident of nitric acid burns. A 19-year-old male medical student with no notable medical, surgical, or familial history suffered a spillage of 69% nitric acid on the anterior aspect of the right thigh while engaged in laboratory work. Swift action, including immediate wound irrigation, application of silver sulfadiazine, and subsequent hospitalization, proved crucial in mitigating the burn's severity. Though vitally stable, the patient exhibited a distinctive color change in the wound during observation. Admitted to the general surgery ward, outpatient follow-ups revealed successful wound healing within four weeks, emphasizing the importance of prompt intervention and meticulous care in addressing chemical burn injuries among medical students. This report sheds light on the often-underestimated dangers inherent in pursuing medical education.
Collapse
Affiliation(s)
- Kavyanjali Reddy
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pankaj Gharde
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshal Tayade
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Mihir Patil
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Lucky Srivani Reddy
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Dheeraj Surya
- Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
27
|
Raghav SS, Kumar B, Sethiya NK, Lal DK. Diabetic Foot Ulcer Management and Treatment: An Overview of Published Patents. Curr Diabetes Rev 2024; 20:e120623217906. [PMID: 37309771 DOI: 10.2174/1573399820666230612161846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND One of the most challenging effects of diabetes is diabetic foot ulceration (DFU). DFU may occur in up to one-third of individuals with diabetes mellitus (D.M.) at some point in their lives. The major cause of morbidity in D.M. patients is DFU. The length of treatment is difficult, and DFU recurrence is common. OBJECTIVE The most crucial element for the treatment and prevention of DFUs require a multidisciplinary approach. Patients who are at risk should be identified, depending on the type of risk, prophylactic actions etc. It is imperative to identify at-risk patients and take preventative measures accordingly. METHOD The at-risk diabetes-related foot ulcer was identified based on the risk category classification, while the foot ulcers were evaluated using Wagner's classification system. RESULTS Literature reported that patients with lower limb vascular insufficiency, loss of vibratory sensation, or protective sensation loss have an increased risk of developing foot ulcers. Proper categorization and therapeutic measures will be implemented after the DFU has been formed. The appropriate assessment and management of general health status should include glycemic control, the diagnosis and treatment of vascular disease, standard care for wounds, diagnosis, and infection treatments. CONCLUSION The review reflects the updated awareness of the treatment and management of DFU based on the current and past literature and patent analysis.
Collapse
Affiliation(s)
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | | | - Diwya Kumar Lal
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| |
Collapse
|
28
|
Saifullah Q, Sharma A. Current Trends on Innovative Technologies in Topical Wound Care for Advanced Healing and Management. Curr Drug Res Rev 2024; 16:319-332. [PMID: 37807417 DOI: 10.2174/0125899775262048230925054922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES To investigate critically traditional and modern techniques for cutaneous wound healing and to provide comprehensive information on these novel techniques to encounter the challenges with the existing wound healing methods. SIGNIFICANCE The financial burden and mortality associated with wounds is increasing, so managing wounds is essential. Traditional wound treatments include surgical and non-surgical methods, while modern techniques are advancing rapidly. This review examines the various traditional and modern techniques used for cutaneous wound healing. KEY FINDINGS Traditional wound treatments include surgical techniques such as debridement, skin flaps, and grafts. Non-surgical treatments include skin replacements, topical formulations, scaffold-based skin grafts, and hydrogel-based skin dressings. More modern techniques include using nanoparticles, growth factors, and bioactive substances in wound dressings. Bioengineered skin substitutes using biomaterials, cells, and growth factors are also being developed. Other techniques include stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and 3D-printed/bio-printed wound dressings. CONCLUSION Traditional wound treatments have been replaced by modern techniques such as stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and bioengineered skin substitutes. However, most of these strategies lack effectiveness and thorough evaluation. Therefore, further research is required to develop new techniques for cutaneous wound healing that are effective, cost-efficient, and appealing to patients.
Collapse
Affiliation(s)
- Qazi Saifullah
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Abhishek Sharma
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| |
Collapse
|
29
|
Nasra S, Patel M, Shukla H, Bhatt M, Kumar A. Functional hydrogel-based wound dressings: A review on biocompatibility and therapeutic efficacy. Life Sci 2023; 334:122232. [PMID: 37918626 DOI: 10.1016/j.lfs.2023.122232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Chronic wounds, burns, and surgical incisions represent critical healthcare challenges that significantly impact patient quality of life and strain healthcare resources. In response to these pressing needs, the field of wound healing has witnessed a radical advancement with the emergence of functional hydrogel-based dressings. This review article underscores the severity and importance of this transformative study in the domain of wound healing. The hydrogel matrix offers a moist and supportive environment that facilitates cellular migration, proliferation, and tissue regeneration, vital for efficient wound closure. Their conformable nature ensures patient comfort, reducing pain and uneasiness during dressing changes, particularly in chronic wounds where frequent interventions are required. Beyond their structural merits, functional hydrogel dressings possess the capability of incorporating bioactive molecules such as growth factors and antimicrobial agents. This facilitates targeted and sustained delivery of therapeutics directly to the wound site, addressing the multifactorial nature of chronic wounds and enhancing the healing trajectory. The integration of advanced nanotechnology has propelled the design of hydrogel dressings with enhanced mechanical strength and controlled drug release profiles, amplifying their therapeutic potential. In conclusion, the significance of this study lies in its ability to revolutionize wound healing practices and positively impact the lives of countless individuals suffering from chronic wounds and burns. As this transformative technology gains momentum, it holds the promise of addressing a major healthcare burden worldwide, thus heralding a new era in wound care management.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Milonee Patel
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Haly Shukla
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Mahek Bhatt
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
30
|
Lackmann F, Rohwedder T, Maron A, Stegen L, Brunnberg M, Brunnberg L, Burger M, Böttcher P. Quantification of skin wound tension using a newly designed wound tensiometer. TIERARZTLICHE PRAXIS. AUSGABE K, KLEINTIERE/HEIMTIERE 2023; 51:386-393. [PMID: 38056476 PMCID: PMC10699892 DOI: 10.1055/a-2150-0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/17/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE To (i) quantitatively measure wound tension in experimental skin wounds using a newly developed wound tensiometer and (ii) establish reference values for primary skin wound closure in medium- and large-breed dogs. STUDY DESIGN Experimental cadaveric study. ANIMAL POPULATION Nineteen dogs of medium to large breeds (BW 20 to 40 kg). METHODS Elliptical skin wounds of different sizes were created on the chest and abdomen. The wounds were gradually enlarged. Experienced surgeons (ECVS diplomates or professors of small animal surgery) and inexperienced surgeons (1st year after graduation) independently assessed wound tension through manual manipulation and determined whether the wound could be closed without tension-relieving measures. In addition, wound tension was objectively quantified using a newly developed wound tensiometer. RESULTS The upper threshold for wound tension at which direct appositional wound closure was recommended by the experienced surgeons was 5.4 N, and the median minimal tension without recommendations for closure was 6.0 N. The data also demonstrate that wound tension and wound size do not necessarily correlate, and inexperienced surgeons need to develop a feel for wound tension. CONCLUSION The intraoperative use of the wound tensiometer, in combination with established cut-off values, might facilitate decision-making regarding primary wound closure. CLINICAL RELEVANCE The findings of this study provide evidence for the applicability of a wound tensiometer in guiding inexperienced surgeons in their choice of the skin wound closure method.
Collapse
Affiliation(s)
- Felix Lackmann
- Small Animal Clinic, Freie Universität Berlin, Berlin,
Germany
| | | | | | | | | | - Leo Brunnberg
- Small Animal Clinic, Freie Universität Berlin, Berlin,
Germany
| | | | - Peter Böttcher
- Small Animal Clinic, Freie Universität Berlin, Berlin,
Germany
| |
Collapse
|
31
|
Alcântara SBC, de Araújo JG, Santos DF, da Silva TR, Goulart IMB, Bernardes da Silva AM, Antunes DE. Identification of types of wound bed tissue as a percentage and total wound area by planimetry in neuropathic and venous ulcers. JOURNAL OF VASCULAR NURSING 2023; 41:164-170. [PMID: 38072568 DOI: 10.1016/j.jvn.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/13/2023] [Accepted: 06/27/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Neuropathic and venous leg ulcers are chronic wounds associated with devitalized tissue and recurrent infection. Management should be guided by accurate tissue assessment, including the use of planimetry, which provides tissue types as a percentage of the total wound bed surface area. OBJECTIVE This innovative study aimed to assess and identify the wound bed tissues, as a percentage, of neuropathic and venous ulcers using digital planimetry, providing support to nurses optimize the management of necrotic tissues and, consequently, to avoid wound infection. METHODS This cross-sectional study enrolled 24 patients with chronic wounds who were assessed from January to March 2021 at the Wound Outpatients Clinic. The wound photographs were analyzed using Image J 1.53e and a smartphone with WoundDoc Plus® 2.8.2 via digital planimetry. Statistical analyses were performed using the binomial test, t-test, and Mann-Whitney. RESULTS Median wound areas (p=0.3263) did not differ between the group with 2 or 3 risk factors for delayed healing (Md: 31.7) and the group with up to 1 risk factor (Md: 5.3). A low exudate level was associated with the up-to-1-risk-factor-for-delayed-healing group (p=0.0405), while a medium level was associated with the two-or-three-risk-factor group (p=0.0247). A heat map displayed the tissue percentages in the wound bed. In the group with 2 or 3 risk factors for delayed healing, 91.7% (11/12) had less than 70% granulation tissue, which was the primary factor for this group (p<0.0001). Additionally, 66.7% (8/12) of patients with 2 or 3 risk factors for delayed healing exhibited discolored and/or dark red granulation tissue as the primary factor (p=0.0130). CONCLUSION This novel identification of wound area and tissue types as a percentage, using digital planimetry, can play a crucial role in assisting nurses in decision-making related to the appropriate management of devitalized tissues. Furthermore, this measurements may facilitate the conducting of virtual wound consultations and offer valuable support in the development of protocols aimed at preventing infection and biofilm formation in the wound bed.
Collapse
Affiliation(s)
- Silvia Bottaro Carvalho Alcântara
- National Reference Center for Sanitary Dermatology and Leprosy, Clinics Hospital, Federal University of Uberlândia, Uberlândia, MG 38.413-018, Brazil
| | - Juliano Gonçalves de Araújo
- National Reference Center for Sanitary Dermatology and Leprosy, Clinics Hospital, Federal University of Uberlândia, Uberlândia, MG 38.413-018, Brazil
| | - Diogo Fernandes Santos
- National Reference Center for Sanitary Dermatology and Leprosy, Clinics Hospital, Federal University of Uberlândia, Uberlândia, MG 38.413-018, Brazil; School of Medicine, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil
| | | | - Isabela Maria Bernardes Goulart
- National Reference Center for Sanitary Dermatology and Leprosy, Clinics Hospital, Federal University of Uberlândia, Uberlândia, MG 38.413-018, Brazil; Postgraduate Program in Health Sciences, School of Medicine, Federal University of Uberlândia, Uberlândia, MG 38400-902, Brazil
| | | | - Douglas Eulálio Antunes
- National Reference Center for Sanitary Dermatology and Leprosy, Clinics Hospital, Federal University of Uberlândia, Uberlândia, MG 38.413-018, Brazil.
| |
Collapse
|
32
|
Patel H, Pundkar A, Shrivastava S, Chandanwale R, Jaiswal AM. A Comprehensive Review on Platelet-Rich Plasma Activation: A Key Player in Accelerating Skin Wound Healing. Cureus 2023; 15:e48943. [PMID: 38106716 PMCID: PMC10725573 DOI: 10.7759/cureus.48943] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023] Open
Abstract
Platelet-rich plasma (PRP) activation is emerging as a promising and multifaceted tool for accelerating skin wound healing. This review extensively examines PRP's role in wound healing, focusing on its composition, mechanisms of action, activation methods, and clinical applications. PRP's potential to enhance both chronic and acute wound healing and its applications in cosmetic and aesthetic procedures are explored. Furthermore, this review investigates safety concerns, including adverse reactions, infection risks, and long-term safety implications. Looking to the future, emerging technologies, combination therapies, personalized medicine approaches, and regulatory developments are discussed, pointing towards an important and transformative era in wound healing and regenerative medicine. With its wide-ranging implications for healthcare, PRP activation has the potential to become a ubiquitous and essential therapeutic option, improving patient outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Hardik Patel
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Aditya Pundkar
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sandeep Shrivastava
- Orthopedic Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Rohan Chandanwale
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Ankit M Jaiswal
- Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
33
|
Ronghe V, Modak A, Gomase K, Mahakalkar MG. From Prevention to Management: Understanding Postoperative Infections in Gynaecology. Cureus 2023; 15:e46319. [PMID: 37916257 PMCID: PMC10617751 DOI: 10.7759/cureus.46319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
This narrative review examines the multifaceted realm of postoperative infections in gynaecology, addressing their significance, types, risk factors, prevention, management, and emerging trends. Postoperative infections, encompassing surgical site infections, urinary tract infections, and pelvic inflammatory disease, pose considerable challenges in patient care, warranting comprehensive exploration. Strategies for prevention include preoperative patient assessment, antimicrobial prophylaxis, and aseptic techniques. Intraoperative measures encompass infection control and instrument sterilization, while postoperative care involves wound management and early infection detection. Diagnostic tools, including blood tests, imaging, and microbiological cultures, aid in timely identification. Management strategies encompass antibiotic therapy, surgical interventions, supportive care, and addressing complications. The review underscores the necessity of personalized approaches, multidisciplinary collaboration, and innovative technologies in future infection management. It calls for ongoing research, heightened awareness, and meticulous care to minimize the impact of postoperative infections and optimize patient outcomes.
Collapse
Affiliation(s)
- Vaishnavi Ronghe
- Obstetrics and Gynaecology, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Anushree Modak
- Obstetrics and Gynaecology, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Kavita Gomase
- Obstetrics and Gynaecology, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Manjusha G Mahakalkar
- Obstetrics and Gynaecology, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
34
|
Adebayo OE, Urcun S, Rolin G, Bordas SPA, Trucu D, Eftimie R. Mathematical investigation of normal and abnormal wound healing dynamics: local and non-local models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:17446-17498. [PMID: 37920062 DOI: 10.3934/mbe.2023776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The movement of cells during (normal and abnormal) wound healing is the result of biomechanical interactions that combine cell responses with growth factors as well as cell-cell and cell-matrix interactions (adhesion and remodelling). It is known that cells can communicate and interact locally and non-locally with other cells inside the tissues through mechanical forces that act locally and at a distance, as well as through long non-conventional cell protrusions. In this study, we consider a non-local partial differential equation model for the interactions between fibroblasts, macrophages and the extracellular matrix (ECM) via a growth factor (TGF-$ \beta $) in the context of wound healing. For the non-local interactions, we consider two types of kernels (i.e., a Gaussian kernel and a cone-shaped kernel), two types of cell-ECM adhesion functions (i.e., adhesion only to higher-density ECM vs. adhesion to higher-/lower-density ECM) and two types of cell proliferation terms (i.e., with and without decay due to overcrowding). We investigate numerically the dynamics of this non-local model, as well as the dynamics of the localised versions of this model (i.e., those obtained when the cell perception radius decreases to 0). The results suggest the following: (ⅰ) local models explain normal wound healing and non-local models could also explain abnormal wound healing (although the results are parameter-dependent); (ⅱ) the models can explain two types of wound healing, i.e., by primary intention, when the wound margins come together from the side, and by secondary intention when the wound heals from the bottom up.
Collapse
Affiliation(s)
- O E Adebayo
- Laboratoire de mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, Besançon 25000, France
| | - S Urcun
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - G Rolin
- INSERM CIC-1431, CHU Besançon, Besançon 25000, France
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - S P A Bordas
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - D Trucu
- Division of Mathematics, University of Dundee, Dundee, DD1 4HN, United Kingdom
| | - R Eftimie
- Laboratoire de mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, Besançon 25000, France
- Division of Mathematics, University of Dundee, Dundee, DD1 4HN, United Kingdom
| |
Collapse
|
35
|
Hao M, Wang D, Duan M, Kan S, Li S, Wu H, Xiang J, Liu W. Functional drug-delivery hydrogels for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2023; 11:1241660. [PMID: 37600316 PMCID: PMC10434880 DOI: 10.3389/fbioe.2023.1241660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The repair process for oral and maxillofacial injuries involves hemostasis, inflammation, proliferation, and remodeling. Injury repair involves a variety of cells, including platelets, immune cells, fibroblasts, and various cytokines. Rapid and adequate healing of oral and maxillofacial trauma is a major concern to patients. Functional drug-delivery hydrogels play an active role in promoting wound healing and have shown unique advantages in wound dressings. Functional hydrogels promote wound healing through their adhesive, anti-inflammatory, antioxidant, antibacterial, hemostatic, angiogenic, and re-epithelialization-promoting properties, effectively sealing wounds and reducing inflammation. In addition, functional hydrogels can respond to changes in temperature, light, magnetic fields, pH, and reactive oxygen species to release drugs, enabling precise treatment. Furthermore, hydrogels can deliver various cargos that promote healing, including nucleic acids, cytokines, small-molecule drugs, stem cells, exosomes, and nanomaterials. Therefore, functional drug-delivery hydrogels have a positive impact on the healing of oral and maxillofacial injuries. This review describes the oral mucosal structure and healing process and summarizes the currently available responsive hydrogels used to promote wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Mengna Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
36
|
ElHawary H, Covone J, Abdulkarim S, Janis JE. Practical Review on Delayed Primary Closure: Basic Science and Clinical Applications. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5172. [PMID: 37547342 PMCID: PMC10402984 DOI: 10.1097/gox.0000000000005172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023]
Abstract
Wound healing complications present a significant burden on both patients and health-care systems, and understanding wound healing principles is crucial across medical and surgical specialties to help mitigate such complications. One of these longstanding principles, specifically delayed primary closure (DPC), described as mechanically closing a wound after several days of secondary intention healing, lacks clear consensus on its definition, indications, and outcomes. This practical review examines wound healing fundamentals, focusing on DPC, its execution, indications, and comparative outcomes. A PubMed literature search was conducted to retrieve studies on DPC. Inclusion criteria included comparative studies assessing outcomes and complications between DPC and other closure techniques, as well as articles investigating DPC's underlying physiology. Twenty-three comparative studies met inclusion criteria. DPC wounds have significantly higher partial pressure of oxygen, higher blood flow, and higher rates of collagen synthesis and remodeling activity, all of which help explain DPC wounds' superior mechanical strength. DPC seems most beneficial in contaminated wounds, such as complicated appendectomies, postcardiac surgery wounds, and complicated abdominal wall reconstructions, where it has been associated with lower rates of surgical site infections. This practical review provides an evidence-based approach to DPC, its physiology, technique, and indications. Based on the existing literature, the authors recommend that DPC wounds should be dressed in saline/betadine soaks, changed and irrigated daily, with delayed closure lasting between 3 and 5 days or until the infection has resolved. The clearest indications for DPC are in the context of contaminated abdominal surgery and sternal wound dehiscence post cardiac surgery.
Collapse
Affiliation(s)
- Hassan ElHawary
- From the Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montréal, Quebec, Canada
| | - Jason Covone
- Faculty of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Shafic Abdulkarim
- Department of Surgery, McGill University Health Centre, Montréal, Quebec, Canada
| | - Jeffrey E. Janis
- Department of Plastic Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
37
|
Kandathil AM, Aslam SA, Abidha R, Cherian MP, Soman S, Sudarsanan M. Evaluation of Microbial Adherence on Antibacterial Suture Materials during Intraoral Wound Healing: A Prospective Comparative Study. J Contemp Dent Pract 2023; 24:515-520. [PMID: 38193173 DOI: 10.5005/jp-journals-10024-3553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
AIM To assess the efficacy of antiseptic-coated silk sutures with triclosan-coated polyglactin 910 suture in reducing bacterial colonization after oral surgical procedures. MATERIALS AND METHODS The patients who required multiple sutures after surgical procedures in the mandible were the study subjects. The sites of suturing were divided into three groups. Group A - surgical site receiving black-braided silk suture (control group). Group B - surgical site receiving triclosan-coated Polyglactin 910 suture (experimental group). Group C - surgical site receiving antiseptic-coated silk suture (experimental group). Evaluation was done on the 3rd postoperative and 7th postoperative day. Microbial adherence was evaluated by microbiological study. RESULTS The mean comparison of microbial count between 3rd and 7th post-op day in the three groups shows an increased microbial colonization in the control group when compared with the experimental groups. The combined mean microbial adherence in the three groups showed microbial count in the uncoated silk suture (group A) as 10.35 ± 3.74, triclosan-coated suture (group B) as 6.28 ± 2.17 and iodoform + calendula oil-coated suture (group C) as 7.1 ± 2.02 which is statistically significant (p < 0.05). CONCLUSION The present research concluded that the pomade-coated silk suture is as efficient as triclosan-coated VICRYL PLUS Polyglactin 910 sutures in reducing the bacterial colonization in intraoral wound healing. CLINICAL SIGNIFICANCE The pomade (iodoform + calendula oil) may be advocated in the field of oral and maxillofacial surgery for impregnating the suture materials which act as an antiseptic agent and a promoter of wound healing which is easily accessible and also cost-effective.
Collapse
Affiliation(s)
- Ayisha Moonnam Kandathil
- Department of Oral and Maxillofacial Surgery, MES Dental College and Hospital, Perinthalmanna, Kerala, India, Phone: +91 8589899343, e-mail:
| | - Sachin Aslam Aslam
- Department of Oral and Maxillofacial Surgery, MES Dental College and Hospital, Perinthalmanna, Kerala, India
| | - Roshni Abidha
- Department of Oral and Maxillofacial Surgery, MES Dental College and Hospital, Perinthalmanna, Kerala, India
| | - Mathew Pynummoottil Cherian
- Department of Oral and Maxillofacial Surgery, MES Dental College and Hospital, Perinthalmanna, Kerala, India
| | - Sooraj Soman
- Department of Oral and Maxillofacial Surgery, MES Dental College and Hospital, Perinthalmanna, Kerala, India
| | - Manju Sudarsanan
- Department of Oral and Maxillofacial Surgery, MES Dental College and Hospital, Perinthalmanna, Kerala, India
| |
Collapse
|
38
|
Afrooghe A, Damavandi AR, Ahmadi E, Jafari RM, Dehpour AR. The current state of knowledge on how to improve skin flap survival: A review. J Plast Reconstr Aesthet Surg 2023; 82:48-57. [PMID: 37149909 DOI: 10.1016/j.bjps.2023.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023]
Abstract
The incorporation of skin flaps in wound closure management with its cosmetic implications has appeared as a gleam of hope in providing desirable outcomes. Given the influence of extrinsic and intrinsic factors, skin flaps are prone to several complications, including ischemia-reperfusion injury (IRI). Numerous attempts have been undertaken to enhance the survival rate of skin flaps entailing pre/post-conditioning with surgical and pharmacological modalities. Various cellular and molecular mechanisms are employed in these approaches in order to reduce inflammation, promote angiogenesis and blood perfusion, and induce apoptosis and autophagy. With the emerging role of multiple stem cell lineages and their ability to improve skin flap viability, these approaches are increasingly being used to develop even more translationally applicable methods. Therefore, this review aims at providing current evidence around pharmacological interventions for improving skin flap survival and discussing their underlying mechanism of action.
Collapse
Affiliation(s)
- Arya Afrooghe
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Elham Ahmadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Naghsh N, Yaghini J, Arab A, Soltani S. Comparison of the number of bacterial colonies among four types of suture threads using simple loop method following periodontal surgery in patients with periodontitis: A single-blind randomized clinical trial. Dent Res J (Isfahan) 2023; 20:71. [PMID: 37483897 PMCID: PMC10361267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background This study investigated the number of bacterial colonies in four types of suture threads, including silk, nylon, monocryl, and monocryl plus after periodontal surgery in patients with moderate-to-severe periodontitis. Materials and Methods In this single-blind randomized clinical trial, a total of 12 patients with periodontitis who required periodontal flap surgery in all quadrants were included. One type of suture, either silk, nylon, monocryl, or monocryl plus (coated with triclosan), was used following each surgery in each quadrant. Sutures (3 mm) were removed from the mid, posterior, and anterior regions of the flap 7 days postoperatively, and placed in a tube-containing buffer medium to transfer to the culture medium in a laboratory. Then, the bacterial colonies on each culture medium were counted manually. Finally, the mean number of grown colonies (anaerobic and aerobic) was computed and compared in each group of sutures. Data were analyzed by SPSS (Version 20) using the repeated measures ANOVA and least significant difference follow-up tests (α = 0.05). Results The findings of this study indicated a significantly higher mean number of aerobic, anaerobic, and aerobic-anaerobic colonies in silk suture than in the other three types of sutures (P < 0.05). However, no significant difference was observed among other types of sutures (P > 0.05). Conclusion The results of this study showed that silk suture had a higher bacterial adhesion (aerobic, anaerobic, and aerobic-anaerobic) than monofilament sutures, including nylon, monocryl, and monocryl plus. Moreover, no significant difference was found among the monofilament sutures in the number of colonies grown on them.
Collapse
Affiliation(s)
- Narges Naghsh
- Department of Periodontics, Dental Implants Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaber Yaghini
- Department of Periodontics, Dental Implants Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Samaneh Soltani
- Department of Periodontics, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
40
|
Onuoha EO, Adekunle AA, Ajike SO, Gbotolorun OM, Adeyemo WL. Effect of manuka honey socket dressing on postoperative sequelae and complications following third molar extraction: A randomized controlled study. J Craniomaxillofac Surg 2023:S1010-5182(23)00072-0. [PMID: 37164834 DOI: 10.1016/j.jcms.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023] Open
Abstract
To evaluate the effect of manuka honey on the healing of mandibular third molar extraction sockets. This was a prospective randomized study at a tertiary health institution in Lagos, Nigeria. All extractions were transalveolar, using the distobuccal bone guttering technique. Participants were randomized into two study groups. Group A underwent intrasocket application of manuka honey, after which sockets were completely closed using the mucosal flap, while participants in group B underwent mucosal flap closure of the socket without application of manuka honey. The primary outcome was healing of the extraction socket at 7 days postoperatively. The secondary outcomes measured were postoperative sequelae, namely pain, swelling, and trismus on postoperative days 1, 3, and 7, and socket healing complications - specifically inflamed socket, infected socket, and alveolar osteitis. In total, 112 participants completed the study, with 56 participants per group. There were no significant differences in demographic variables between both groups. On the 7th day postoperatively, 26.8% of participants in group B had an unhealed extraction site, compared with 10.3% of participants in group A (p = 0.029). A significant difference was observed between pre- and postoperative pain scores in both study groups (p = 0.001). A comparison of postoperative mean facial swelling between the two groups showed no statistically significant differences on all the review days (p = 0.66). The difference in postoperative socket healing complication rate between both groups was statistically significant (χ2 = 4.747, p = 0.029). Within the limitations of the study it seems that the application of manuka honey appears to aid earlier healing of the third molar extraction socket, with a significantly lower frequency of complications. Therefore, the application of manuka honey is recommended whenever appropriate.
Collapse
Affiliation(s)
- Emmanuel Onyebuchi Onuoha
- Department of Oral and Maxillofacial Surgery, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria.
| | - Adegbayi Adeola Adekunle
- Department of Oral and Maxillofacial Surgery, Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| | - Sunday Olusegun Ajike
- Department of Oral and Maxillofacial Surgery, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - Olalekan Micah Gbotolorun
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos/ Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| | - Wasiu Lanre Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos/ Lagos University Teaching Hospital, Idi-Araba, Lagos, Nigeria
| |
Collapse
|
41
|
Mansour RN, Hasanzadeh E, Abasi M, Gholipourmalekabadi M, Mellati A, Enderami SE. The Effect of Fetal Bovine Acellular Dermal Matrix Seeded with Wharton's Jelly Mesenchymal Stem Cells for Healing Full-Thickness Skin Wounds. Genes (Basel) 2023; 14:genes14040909. [PMID: 37107668 PMCID: PMC10138153 DOI: 10.3390/genes14040909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The treatment of full-thickness skin wounds is a problem in the clinical setting, as they do not heal spontaneously. Extensive pain at the donor site and a lack of skin grafts limit autogenic and allogeneic skin graft availability. We evaluated fetal bovine acellular dermal matrix (FADM) in combination with human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) to heal full-thickness skin wounds. FADM was prepared from a 6-month-old trauma-aborted fetus. WJ-MSCs were derived from a human umbilical cord and seeded on the FADM. Rat models of full-thickness wounds were created and divided into three groups: control (no treatment), FADM, and FADM-WJMSCs groups. Wound treatment was evaluated microscopically and histologically on days 7, 14, and 21 post-surgery. The prepared FADM was porous and decellularized with a normal range of residual DNA. WJ-MSCs were seeded and proliferated on FADM effectively. The highest wound closure rate was observed in the FADM-WJMSC group on days 7 and 14 post-surgery. Furthermore, this group had fewer inflammatory cells than other groups. Finally, in this study, we observed that, without using the differential cell culture media of fibroblasts, the xenogeneic hWJSCs in combination with FADM could promote an increased rate of full-thickness skin wound closure with less inflammation.
Collapse
Affiliation(s)
- Reyhaneh Nassiri Mansour
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Amir Mellati
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran
| |
Collapse
|
42
|
Bayat M, Sarojini H, Chien S. The role of cluster of differentiation 163-positive macrophages in wound healing: a preliminary study and a systematic review. Arch Dermatol Res 2023; 315:359-370. [PMID: 36283990 DOI: 10.1007/s00403-022-02407-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/13/2022] [Indexed: 02/01/2023]
Abstract
This is a literature assessment of essential information and current knowledge that pertains to the potential role for cluster of differentiation (CD) 163+ macrophages in different wound healing models, including extremely rapid tissue regeneration for regenerative medicine purposes. We intend to focus on the beneficial strategies that activate macrophage performance in order to advance the CD163+ macrophage-based therapy approaches to accelerate wound healing. We conducted an extensive literature search of peer reviewed articles obtained from the PubMed, Google Scholar, Scopus, Web of Science, and Cochrane databases by using the keywords "wound healing, CD163+ macrophages, diabetes mellitus, and burn." There were no limitations in terms of publication date. Our search resulted in 300 papers from which 17 articles were screened according to the inclusion criteria. We divided the selected articles into four distinct groups: healthy humans (n = 5); healthy animals (n = 7); humans with diabetes (n = 2); and animals with diabetes (n = 3). CD163 is a biomarker of the M2c macrophage subtype in mammals. Functions of M2c macrophages include angiogenesis, matrix maturation, and phagocytosis, and they activate prior to wounding. M2c produces many cytokines and growth factors, and also contains receptors for numerous cytokines and growth factors. Induction of M2c macrophages from tissue-resident macrophages in the wound bed by a suitable agent, such as delivery of intracellular ATP, appears to induce rapid granulation tissue formation without hypertrophic scarring and significantly reduces the lag time of the wound healing process.
Collapse
Affiliation(s)
- Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Harshini Sarojini
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
| |
Collapse
|
43
|
Ribeiro E, Araújo D, Pereira M, Lopes B, Sousa P, Sousa AC, Coelho A, Rêma A, Alvites R, Faria F, Oliveira C, Porto B, Maurício AC, Amorim I, Vale N. Repurposing Benztropine, Natamycin, and Nitazoxanide Using Drug Combination and Characterization of Gastric Cancer Cell Lines. Biomedicines 2023; 11:799. [PMID: 36979779 PMCID: PMC10044866 DOI: 10.3390/biomedicines11030799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Gastric cancer (GC) ranked as the fifth most incident cancer in 2020 and the third leading cause of cancer mortality. Surgical prevention and radio/chemotherapy are the main approaches used in GC treatment, and there is an urgent need to explore and discover innovative and effective drugs to better treat this disease. A new strategy arises with the use of repurposed drugs. Drug repurposing coupled with drug combination schemes has been gaining interest in the scientific community. The main objective of this project was to evaluate the therapeutic effects of alternative drugs in GC. For that, three GC cell lines (AGS, MKN28, and MKN45) were used and characterized. Cell viability assays were performed with the reference drug 5-fluororacil (5-FU) and three repurposed drugs: natamycin, nitazoxanide, and benztropine. Nitazoxanide displayed the best results, being active in all GC cells. Further, 5-FU and nitazoxanide in combination were tested in MKN28 GC cells, and the results obtained showed that nitazoxanide alone was the most promising drug for GC therapy. This work demonstrated that the repurposing of drugs as single agents has the ability to decrease GC cell viability in a concentration-dependent manner.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mariana Pereira
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fátima Faria
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
44
|
Shah S, Joga R, Kolipaka T, Sabnis Dushyantrao C, Khairnar P, Phatale V, Pandey G, Srivastava S, Kumar S. Paradigm of lyotropic liquid crystals in tissue regeneration. Int J Pharm 2023; 634:122633. [PMID: 36690130 DOI: 10.1016/j.ijpharm.2023.122633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The liquid crystalline phase has attracted tremendous attention from researchers across the globe due to its intriguing properties. In this article, we enumerate the different classes of liquid crystals. Lyotropic liquid crystals (LLCs) exhibit their liquid crystalline nature based on the surrounding solvent media, which opens novel horizons in drug delivery and tissue regeneration. The advantages of LLCs in the said fields and the thermodynamic mechanistic insights responsible for their structural stabilization have been conveyed. Various fabrication and characterization techniques, along with factors influencing the formation of LLCs, have been discussed. Applications in novel therapeutic avenues like bone extracellular matrix, cardiac remodeling, wound management, and implants have been unveiled. Also, regulatory considerations, patent, and clinical portfolios to circumvent the hurdles of clinical translation have been discussed. LLCs could be a promising approach in diverse avenues of tissue regeneration.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chetan Sabnis Dushyantrao
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
45
|
Anushree U, Punj P, Vasumathi, Bharati S. Phosphorylated chitosan accelerates dermal wound healing in diabetic wistar rats. Glycoconj J 2023; 40:19-31. [PMID: 36447107 PMCID: PMC9925528 DOI: 10.1007/s10719-022-10093-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022]
Abstract
Phosphorylated chitosan (PC), a water-soluble derivative of chitosan possesses several biological and chemical properties suitable for diabetic wound healing. In the present study, we report the synthesis and diabetic wound healing capabilities of PC. Elemental analysis, FT-IR, 13C-NMR and 31P-NMR techniques were employed for the chemical characterization of PC. In vitro, antioxidant properties of PC were determined in terms of Fe3+ reducing, metal chelating, lipid peroxidation and superoxide scavenging ability. The wound healing potential of PC was assessed in diabetic excisional wound rat model. PC exhibited good water solubility, and in vitro antioxidant capacity. Wound contraction was higher in PC-treated wounds (91.11%) as compared to untreated wounds (67.26%) on 14th-day post wound creation. Histopathology of PC-treated wounds revealed improved tissue morphology with higher number of fibroblasts, a thicker epithelial layer, enhanced collagen deposits and angiogenesis as compared to untreated wounds. An overall increase of 57% and 25% in hydroxylamine and hexosamine content respectively were noted as compared to untreated wounds. A significant (P ≤ 0.05) increase in SOD activity and a significant (P ≤ 0.05) decrease in lipid peroxides were recorded in PC-treated wounds as compared to untreated wounds. These observations demonstrated that PC can be used as an effective agent in diabetic wound healing. Illustration of phosphorylated chitosan (PC) synthesis and its wound healing potential: Chitosan was phosphorylated to impart diabetic wound healing properties. Chemical characterizations such as elemental analysis, FT-IR and NMR confirmed successful phosphorylation of chitosan. PC exhibited good in vitro antioxidant properties. To assess the diabetic wound healing potential, an excisional wound model was developed in diabetic rats. PC treatment demonstrated accelerated wound healing.
Collapse
Affiliation(s)
- U Anushree
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Pratik Punj
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vasumathi
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
46
|
Beylin D, Haik J, Biros E, Kornhaber R, Cleary M, Harats M, Cohn D, Sapir Y, Weisberg O. Smart Polymeric Wound Dressing for Treating Partial-Thickness Burns: A Preliminary Preclinical Study on the Porcine Model. EUROPEAN BURN JOURNAL 2023; 4:20-34. [PMID: 39599968 PMCID: PMC11571835 DOI: 10.3390/ebj4010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 11/29/2024]
Abstract
Several so-called "smart" dressings are available for burn injuries to promote faster wound healing, and this technology has recently reported substantial advancements. However, the selection of an appropriate dressing for partial-thickness burns requires consideration of several crucial elements, including exudate management, conformability, antimicrobial properties, ease of application and removal, patient comfort, and cost-effectiveness. This preliminary feasibility study uses a porcine model to test the INTELIGELS product (Smart Bandage) for partial-thickness burns treatment. Artificially made wounds, mimicking partial-thickness burns, were assessed in two studies with and without antimicrobial additives, where wounds were randomly assigned to the experimental group treated with Smart Bandage and two control groups treated with a simple saline gauze dressing or Aquacel® products with and without silver additives. In addition, all dressings were evaluated for their ability to reduce wound size, quantified by histological analysis using punch biopsies. This study demonstrates comparable healing properties of Smart Bandage and Aquacel® dressings that are superior to the simple saline gauze dressing. The superiority is demonstrated by better regeneration, less inflammation of the epidermis and dermis, and better dermis remodeling with more granulation tissue maturation within the wound area when Smart Bandage/Aquacel® dressings are applied as compared with the simple gauze dressing.
Collapse
Affiliation(s)
- Dmitry Beylin
- The National Burn Center, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv-Yafo 69978, Israel
| | - Josef Haik
- The National Burn Center, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv-Yafo 69978, Israel
- Institute for Health Research, University of Notre Dame, Fremantle, WA 6959, Australia
- The Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan 52621, Israel
- College of Health and Medicine, University of Tasmania, Sydney, NSW 2015, Australia
| | - Erik Biros
- College of Medicine & Dentistry, James Cook University, Townsville, QLD 4811, Australia
| | - Rachel Kornhaber
- The National Burn Center, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
- College of Health and Medicine, University of Tasmania, Sydney, NSW 2015, Australia
| | - Michelle Cleary
- School of Nursing, Midwifery & Social Sciences, CQ University, Sydney, NSW 2000, Australia
| | - Moti Harats
- The National Burn Center, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv-Yafo 69978, Israel
- Institute for Health Research, University of Notre Dame, Fremantle, WA 6959, Australia
- The Talpiot Medical Leadership Program, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Daniel Cohn
- Casali Center of Applied Chemistry, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yair Sapir
- Inteligels Ltd., Hoshaya 1791500, Israel
| | | |
Collapse
|
47
|
The Effects of Combined Exposure to Simulated Microgravity, Ionizing Radiation, and Cortisol on the In Vitro Wound Healing Process. Cells 2023; 12:cells12020246. [PMID: 36672184 PMCID: PMC9857207 DOI: 10.3390/cells12020246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Human spaceflight is associated with several health-related issues as a result of long-term exposure to microgravity, ionizing radiation, and higher levels of psychological stress. Frequent reported skin problems in space include rashes, itches, and a delayed wound healing. Access to space is restricted by financial and logistical issues; as a consequence, experimental sample sizes are often small, which limits the generalization of the results. Earth-based simulation models can be used to investigate cellular responses as a result of exposure to certain spaceflight stressors. Here, we describe the development of an in vitro model of the simulated spaceflight environment, which we used to investigate the combined effect of simulated microgravity using the random positioning machine (RPM), ionizing radiation, and stress hormones on the wound-healing capacity of human dermal fibroblasts. Fibroblasts were exposed to cortisol, after which they were irradiated with different radiation qualities (including X-rays, protons, carbon ions, and iron ions) followed by exposure to simulated microgravity using a random positioning machine (RPM). Data related to the inflammatory, proliferation, and remodeling phase of wound healing has been collected. Results show that spaceflight stressors can interfere with the wound healing process at any phase. Moreover, several interactions between the different spaceflight stressors were found. This highlights the complexity that needs to be taken into account when studying the effect of spaceflight stressors on certain biological processes and for the aim of countermeasures development.
Collapse
|
48
|
Sadat Z, Farrokhi-Hajiabad F, Lalebeigi F, Naderi N, Ghafori Gorab M, Ahangari Cohan R, Eivazzadeh-Keihan R, Maleki A. A comprehensive review on the applications of carbon-based nanostructures in wound healing: from antibacterial aspects to cell growth stimulation. Biomater Sci 2022; 10:6911-6938. [PMID: 36314845 DOI: 10.1039/d2bm01308h] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wound is defined as damage to the integrity of biological tissue, including skin, mucous membranes, and organ tissues. The treatment of these injuries is an important challenge for medical researchers. Various materials have been used for wound healing and dressing applications among which carbon nanomaterials have attracted significant attention due to their remarkable properties. In the present review, the latest studies on the application of carbon nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), carbon quantum dots (CQDs), carbon nanotubes (CNTs), carbon nanofibers (CNFs), and nanodiamonds (NDs) in wound dressing applications are evaluated. Also, a variety of carbon-based nanocomposites with advantages such as biocompatibility, hemocompatibility, reduced wound healing time, antibacterial properties, cell-adhesion, enhanced mechanical properties, and enhanced permeability to oxygen has been reported for the treatment of various wounds.
Collapse
Affiliation(s)
- Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farzaneh Farrokhi-Hajiabad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
49
|
Mechchate H, de Castro Alves CE, Es-safi I, Amaghnouje A, Jawhari FZ, Costa de Oliveira R, de Freitas Gomes A, Conte R, Soares Pontes G, Bousta D, Grafov A. Antileukemic, Antioxidant, Anti-Inflammatory and Healing Activities Induced by a Polyphenol-Enriched Fraction Extracted from Leaves of Myrtus communis L. Nutrients 2022; 14:nu14235055. [PMID: 36501085 PMCID: PMC9740279 DOI: 10.3390/nu14235055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Natural products have offered a number of exciting approaches in cancer treatment over the years. In this study, we investigated the prophylactic and therapeutic effects of the polyphenol-enriched fraction extracted from Myrtus communis (PEMC) on acute and chronic leukemia. According to the UHPLC-MSn, the fraction is rich in flavonoids. Protective activity of the PEMC was assessed by evaluating the antioxidant, anti-inflammatory, wound healing, and hemolysis potential in a series of in vivo and in vitro assays, while the therapeutic approach consisted of the evaluation of cytotoxic activity of the PEMC against HL60 and K562 leukemia cell lines. Safety of the fraction was also evaluated on a non-cancerous Vero cell line and by an acute toxicity test performed in mice. The PEMC demonstrated a significant anti-inflammatory and healing potential. The activities found at the dose of 100 mg/kg were better than those observed using a reference drug. The PEMC demonstrated a significant antioxidant effect and a specific cytotoxicity towards HL60 (IC50 = 19.87 µM) and K562 (IC50 = 29.64 µM) cell lines being non-toxic to the Vero cell line. No hemolytic activity was observed in vitro and no toxicity effect was found in mice. Thus, the PEMC has a pharmacological potential as both preventive and therapeutic agent. However, further research is necessary to propose its mechanism of action.
Collapse
Affiliation(s)
- Hamza Mechchate
- Laboratory of Biotechnology, Environment, Agrifood, and Health, University of Sidi Mohamed Ben Abdellah (USMBA), Fez B.P. 1796, Morocco
| | - Carlos Eduardo de Castro Alves
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Sciences, Federal University of Amazonas, Manaus 69077-000, AM, Brazil
| | - Imane Es-safi
- Laboratory of Biotechnology, Environment, Agrifood, and Health, University of Sidi Mohamed Ben Abdellah (USMBA), Fez B.P. 1796, Morocco
| | - Amal Amaghnouje
- Laboratory of Biotechnology, Environment, Agrifood, and Health, University of Sidi Mohamed Ben Abdellah (USMBA), Fez B.P. 1796, Morocco
| | - Fatima Zahra Jawhari
- Laboratory of Biotechnology, Environment, Agrifood, and Health, University of Sidi Mohamed Ben Abdellah (USMBA), Fez B.P. 1796, Morocco
| | - Regiane Costa de Oliveira
- Post-Graduate Program in Hematology, The State University of Amazonas, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Alice de Freitas Gomes
- Post-Graduate Program in Hematology, The State University of Amazonas, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gemilson Soares Pontes
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Sciences, Federal University of Amazonas, Manaus 69077-000, AM, Brazil
- Post-Graduate Program in Hematology, The State University of Amazonas, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil
| | - Dalila Bousta
- Laboratory of Biotechnology, Environment, Agrifood, and Health, University of Sidi Mohamed Ben Abdellah (USMBA), Fez B.P. 1796, Morocco
| | - Andriy Grafov
- Materials Chemistry Division, Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland
- Correspondence:
| |
Collapse
|
50
|
Nair AB, Gorain B, Pandey M, Jacob S, Shinu P, Aldhubiab B, Almuqbil RM, Elsewedy HS, Morsy MA. Tocotrienol in the Treatment of Topical Wounds: Recent Updates. Pharmaceutics 2022; 14:pharmaceutics14112479. [PMID: 36432670 PMCID: PMC9699634 DOI: 10.3390/pharmaceutics14112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Healing wounds is an important attempt to keep the internal higher organs safe. Complications in topical wound healing may lead to the formation of scars, which can affect the patient's quality of life. Although several approaches are ongoing in parallel in the exploration of natural compounds via advanced delivery, in this article, an attempt has been made to highlight tocotrienol. Tocotrienol is a natural form of vitamin E and has shown its potential in certain pharmacological activities better than tocopherol. Its antioxidant, anti-inflammatory, cell signal-mediating effects, angiogenic properties, management of scar, and promotion of wound environment with essential factors have shown potential in the management of topical wound healing. Therefore, this review has aimed to focus on recent advances in topical wound healing through the application of tocotrienols. Challenges in delivering tocotrienols to the topical wound due to its large molecular weight and higher logP have also been explored using nanotechnological-based carriers, which has made tocotrienol a potential tool to facilitate the closure of wounds. Exploration of tocotrienol has also been made in human volunteers for biopsy wounds; however, the results are yet to be reported. Overall, based on the current findings in the literature, it could be inferred that tocotrienol would be a viable alternative to the existing wound dressing components for the management of topical wounds.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (A.B.N.); (B.G.); Tel.: +966-536219868 (A.B.N.); +91-9088585676 (B.G.)
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
- Correspondence: (A.B.N.); (B.G.); Tel.: +966-536219868 (A.B.N.); +91-9088585676 (B.G.)
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Mahendergarh 123031, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|