1
|
de Aguiar Pedott V, Della Rocca DG, Weschenfelder SE, Mazur LP, Gomez Gonzalez SY, Andrade CJD, Moreira RFPM. Principles, challenges and prospects for electro-oxidation treatment of oilfield produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122638. [PMID: 39342833 DOI: 10.1016/j.jenvman.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The oil industry is facing substantial environmental challenges, especially in managing waste streams such as Oilfield Produced Water (OPW), which represents a significant component of the industrial ecological footprint. Conventional treatment methods often fail to effectively remove dissolved oils and grease compounds, leading to operational difficulties and incomplete remediation. Electrochemical oxidation (EO) has emerged as a promising alternative due to its operational simplicity and ability to degrade pollutants directly and indirectly, which has already been applied in treating several effluents containing organic compounds. The application of EO treatment for OPW is still in an initial stage, due to the intricate nature of this matrix and scattered information about it. This study provides a technological overview of EO technology for OPW treatment, from laboratory scale to the development of large-scale prototypes, identifying design and process parameters that can potentially permit high efficiency, applicability, and commercial deployment. Research in this domain has demonstrated notable rates of removal of recalcitrant pollutants (>90%), utilizing active and non-active electrodes. Electro-generated active species, primarily from chloride, play a pivotal role in the oxidation of organic compounds. However, the highly saline conditions in OPW hinder the complete mineralization of these organics, which can be improved by using non-active anodes and lower salinity levels. The performance of electrodes greatly influences the efficiency and effectiveness of OPW treatment. Various factors must be considered when selecting the electrode material, such as its conductivity, stability, surface area, corrosion resistance, and cost. Additionally, the specific contaminants present in the OPW, and their electrochemical reactivity must be considered to ensure optimal treatment outcomes. Balancing these considerations can be challenging, but it is crucial for achieving successful OPW treatment. Active electrode materials exhibit a high affinity for chloride molecules, generating more active species than non-active materials, which exhibit more significant degradation potential due to the production of hydroxyl radicals. Regarding scale-up, key challenges include low current efficiency, the formation of by-products, electrode deactivation, and limitations in mass transfer. To address these issues, enhanced mass transfer rates and appropriate residence times can be achieved using flow-through mesh anodes and moderate current densities, which have proven to be the optimal configuration for this process.
Collapse
Affiliation(s)
- Victor de Aguiar Pedott
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Gier Della Rocca
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luciana Prazeres Mazur
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sergio Yesid Gomez Gonzalez
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristiano José de Andrade
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Regina F P M Moreira
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
2
|
An Z, Sun J, Han D, Mei Q, Wei B, Wang X, He M. Theoretical study on the mechanisms, kinetics and ecotoxicity assessment of OH-initiated reactions of guaiacol in atmosphere and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:729-740. [PMID: 31234135 DOI: 10.1016/j.scitotenv.2019.06.229] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/31/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
The OH-initiated transformation mechanisms, kinetics and ecotoxicity assessment of guaiacol (2-methoxyphenol) in the presence of O2/NOx were investigated both in atmosphere and wastewater. The solvent effect lowers the energy barriers of initial OH-addition reactions more than H-abstraction reactions, leading to much higher addition branching ratio (Γadd) of 0.92 in aqueous solution than that of 0.42 in gas-phase. At 298 K, the overall rate constants of the title reactions in atmosphere and wastewater are 5.56 × 10-12 and 1.41 × 10-11 cm3 molecule-1 s-1 with corresponding half-lives of 34.6 h and 0.82 s, respectively. In atmosphere, all the proposed favorable products including nitroguaiacols, methoxybenzoquinone, 2-hydroxyphenyl formate, 2-methoxybenzene-1, 3-diol and dialdehyde could contribute to secondary organic aerosols (SOAs). In wastewater, NO2 addition reactions lead to higher toxicity of products (nitroguaiacols and 2-methoxybenzene-1, 4-diol) than that of parental guaiacol. However, O2/NO addition pathways may generate less harmful products except for methoxybenzoquinone (P3) which is with higher toxicity than guaiacol. Therefore, more attention should be focused on the products formed from OH-initiated reactions of guaiacol both in atmosphere and wastewater.
Collapse
Affiliation(s)
- Zexiu An
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Jianfei Sun
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Dandan Han
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, PR China
| | - Qiong Mei
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Bo Wei
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Xueyu Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
3
|
Jalife-Jacobo H, Feria-Reyes R, Serrano-Torres O, Gutiérrez-Granados S, Peralta-Hernández JM. Diazo dye Congo Red degradation using a Boron-doped diamond anode: An experimental study on the effect of supporting electrolytes. JOURNAL OF HAZARDOUS MATERIALS 2016; 319:78-83. [PMID: 26952083 DOI: 10.1016/j.jhazmat.2016.02.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 06/05/2023]
Abstract
Diazo dye Congo Red (CR) solutions at 100mg/L, were degraded using different supporting electrolytes in an electrochemical advanced oxidation process (EAOPs), like the anodic oxidation (AOx/BDD). All experiments were carried out in a 3L flow reactor with a Boron-doped diamond (BDD) anode and stainless steel cathode (AISI 304), at 7.5, 15, 30 and 50mA/cm(2) current densities (j). Furthermore, each experiment was carried out under a flow rate of 7L/min. Additionally, HClO4, NaCl, Na2SO4, and H2SO4 were tested as supporting electrolytes at a 50mM concentration. The degradation process was at all times considerably faster in NaCl medium. Solutions containing SO4(2-) or ClO4(-) ions were less prompted to degradation due to the low oxidation power of these species into the bulk. Dissolved organic carbon (DOC) analysis, was carried out to evaluate the mineralization of CR. The degradation of CR, was evaluated with the HPLC analysis of the treated solutions.
Collapse
Affiliation(s)
- H Jalife-Jacobo
- Universidad de Guanajuato, DCNE, Departamento de Química, Cerro de la Venada S/N, Pueblito de Rocha, Guanajuato, Gto. CP. 36040, Mexico
| | - R Feria-Reyes
- Universidad de Guanajuato, DCNE, Departamento de Química, Cerro de la Venada S/N, Pueblito de Rocha, Guanajuato, Gto. CP. 36040, Mexico
| | - O Serrano-Torres
- Universidad de Guanajuato, DCNE, Departamento de Química, Cerro de la Venada S/N, Pueblito de Rocha, Guanajuato, Gto. CP. 36040, Mexico
| | - S Gutiérrez-Granados
- Universidad de Guanajuato, DCNE, Departamento de Química, Cerro de la Venada S/N, Pueblito de Rocha, Guanajuato, Gto. CP. 36040, Mexico
| | - Juan M Peralta-Hernández
- Universidad de Guanajuato, DCNE, Departamento de Química, Cerro de la Venada S/N, Pueblito de Rocha, Guanajuato, Gto. CP. 36040, Mexico.
| |
Collapse
|
4
|
Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O. Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem Rev 2015; 115:13362-407. [PMID: 26654466 DOI: 10.1021/acs.chemrev.5b00361] [Citation(s) in RCA: 777] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Traditional physicochemical and biological techniques, as well as advanced oxidation processes (AOPs), are often inadequate, ineffective, or expensive for industrial water reclamation. Within this context, the electrochemical technologies have found a niche where they can become dominant in the near future, especially for the abatement of biorefractory substances. In this critical review, some of the most promising electrochemical tools for the treatment of wastewater contaminated by organic pollutants are discussed in detail with the following goals: (1) to present the fundamental aspects of the selected processes; (2) to discuss the effect of both the main operating parameters and the reactor design on their performance; (3) to critically evaluate their advantages and disadvantages; and (4) to forecast the prospect of their utilization on an applicable scale by identifying the key points to be further investigated. The review is focused on the direct electrochemical oxidation, the indirect electrochemical oxidation mediated by electrogenerated active chlorine, and the coupling between anodic and cathodic processes. The last part of the review is devoted to the critical assessment of the reactors that can be used to put these technologies into practice.
Collapse
Affiliation(s)
- Carlos A Martínez-Huitle
- Instituto de Química, Campus Universitário, Universidade Federal do Rio Grande do Norte , Av. Salgado Filho 3000 Campus Universitário Lagoa-Nova CEP 59078-970 Natal, RN, Brazil
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Ciudad Real, Universidad de Castilla-La Mancha , Ciudad Real 13071, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona , Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Onofrio Scialdone
- Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo , Palermo 90128, Italy
| |
Collapse
|
5
|
Antonin VS, Santos MC, Garcia-Segura S, Brillas E. Electrochemical incineration of the antibiotic ciprofloxacin in sulfate medium and synthetic urine matrix. WATER RESEARCH 2015; 83:31-41. [PMID: 26117371 DOI: 10.1016/j.watres.2015.05.066] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
The degradation of 100 mL of 0.245 mM of the antibiotic ciprofloxacin in 0.05 M Na2SO4 at pH 3.0 has been studied by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF). Electrolyses were performed with a stirred tank reactor using either a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode. In EF, PEF and SPEF, ciprofloxacin was rapidly removed due to its oxidation with (•)OH formed from Fenton's reaction between added Fe(2+) and H2O2 generated at the cathode. The larger electrochemical incineration of the antibiotic was achieved by SPEF with BDD with 95% mineralization thanks to the additional attack by hydroxyl radicals formed from water oxidation at the BDD anode surface and the photolysis of final Fe(III)-oxalate and Fe(III)-oxamate species from sunlight. Up to 10 primary intermediates and 11 hydroxylated derivatives were identified by LC-MS, allowing the proposal of a reaction sequence for ciprofloxacin mineralization. A different behavior was found when the same antibiotic concentration was oxidized in a synthetic urine matrix with high urea content and a mixture of PO4(3-), SO4(2-) and Cl(-) ions. Since Fenton's reaction was inhibited in this medium, only EO and EO-H2O2 processes were useful for mineralization, being the organics mainly degraded by HClO formed from Cl(-) oxidation. The EO process with a BDD/stainless steel cell was found to be the most powerful treatment for the urine solution, yielding 96% ciprofloxacin removal and 98% mineralization after 360 min of electrolysis at optimum values of pH 3.0 and current density of 66.6 mA cm(-2). The evolution of released inorganic ions was followed by ion chromatography.
Collapse
Affiliation(s)
- Vanessa S Antonin
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN), Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Rua Santa Adélia, 166, 09210-170 Santo André-SP, Brazil
| | - Mauro C Santos
- Laboratório de Eletroquímica e Materiais Nanoestruturados (LEMN), Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Rua Santa Adélia, 166, 09210-170 Santo André-SP, Brazil.
| | - Sergi Garcia-Segura
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Thiam A, Brillas E, Centellas F, Cabot PL, Sirés I. Electrochemical reactivity of Ponceau 4R (food additive E124) in different electrolytes and batch cells. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.085] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Thiam A, Sirés I, Garrido JA, Rodríguez RM, Brillas E. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2015; 290:34-42. [PMID: 25734532 DOI: 10.1016/j.jhazmat.2015.02.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 05/16/2023]
Abstract
The decolorization and mineralization of solutions containing 230 mg L(-1) of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H2O2. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between H2O2 and added Fe(2+). The oxidation ability increased in the sequence EO-H2O2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO4(2-), ClO4(-) and NO3(-) media, whereas in Cl(-) medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC-MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO4(2-) medium and three chloroaromatics in Cl(-) solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH4(+), NO3(-) and SO4(2-) ions were released during the mineralization.
Collapse
Affiliation(s)
- Abdoulaye Thiam
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ignasi Sirés
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José A Garrido
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Rosa M Rodríguez
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
8
|
Thiam A, Sirés I, Garrido JA, Rodríguez RM, Brillas E. Effect of anions on electrochemical degradation of azo dye Carmoisine (Acid Red 14) using a BDD anode and air-diffusion cathode. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2014.11.012] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Chen M, Ren H, Ding L, Gao B. Effect of different carriers and operating parameters on degradation of flax wastewater by fluidized-bed Fenton process. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 71:1760-1767. [PMID: 26067494 DOI: 10.2166/wst.2015.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This investigation evaluates the effectiveness of a fluidized-bed Fenton process in treating flax wastewater. Flax wastewater was taken from a paper-making factory in a secondary sedimentation tank effluent of a paper-making factory in Hebei. The performance of three carriers (SiO2, Al2O3, Fe2O3) used in the reactor was compared, and the effects of different operational conditions, and Fenton reagent concentrations were studied. Experimental results indicated that SiO2 was the most appropriate carrier in the system. The dose of Fe2+ and H2O2 was a significant operating factor in the degradation progress. The bed expansion was considered to be another factor influencing the treatment effect. Under the appropriate conditions (300 mg/L Fe2+, 600 mg/L H2O2, and 74.07 g/L SiO2 as the carrier, at pH=3, 50% bed expansion), the highest removal rate of total organic carbon (TOC) and color was 89% and 94%, respectively. The article also discussed the process of the colority removal of flax wastewater and the kinetics of TOC removal.
Collapse
Affiliation(s)
- Mengtian Chen
- School of Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, China and State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China E-mail:
| | - Hongqiang Ren
- School of Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, China and State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China E-mail:
| | - Lili Ding
- School of Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, China and State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023 Jiangsu, China E-mail:
| | - Baotian Gao
- Suzhou Dingyu Energy-efficient Equipment Co., Ltd, Suzhou, China
| |
Collapse
|
10
|
Nava JL, Sirés I, Brillas E. Electrochemical incineration of indigo. A comparative study between 2D (plate) and 3D (mesh) BDD anodes fitted into a filter-press reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8485-8492. [PMID: 24737017 DOI: 10.1007/s11356-014-2781-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
This paper compares the performance of 2D (plate) and 3D (mesh) boron-doped diamond (BDD) electrodes, fitted into a filter-press reactor, during the electrochemical incineration of indigo textile dye as a model organic compound in chloride medium. The electrolyses were carried out in the FM01-LC reactor at mean fluid velocities between 0.9 ≤ u ≤ 10.4 and 1.2 ≤ u ≤ 13.9 cm s(-1) for the 2D BDD and the 3D BDD electrodes, respectively, at current densities of 5.63 and 15 mA cm(-2). The oxidation of the organic matter was promoted, on the one hand, via the physisorbed hydroxyl radicals (BDD(·OH)) formed from water oxidation at the BDD surface and, on the other hand, via active chlorine formed from the oxidation of chloride ions on BDD. The performance of 2D BDD and 3D BDD electrodes in terms of current efficiency, energy consumption, and charge passage during the treatments is discussed.
Collapse
Affiliation(s)
- José L Nava
- Departamento de Ingeniería Geomática e Hidráulica, Universidad de Guanajuato, Av. Juárez 77, Zona Centro, C.P. 36000, Guanajuato, Guanajuato, Mexico,
| | | | | |
Collapse
|