1
|
Wang D, Zhang X, Huang Z, Li Y, Wang X, Wang J, Zhao Y, Lv Q, Wu M, Zha M, Yuan K, Zhu W, Xu G, Xie Y. Theta-burst transcranial magnetic stimulation attenuates chronic ischemic demyelination and vascular cognitive impairment in mice. Exp Neurol 2024; 383:115022. [PMID: 39442857 DOI: 10.1016/j.expneurol.2024.115022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Vascular cognitive impairment and dementia (VCID) is mainly caused by chronic cerebral hypoperfusion and subsequent white matter lesions. Noninvasive transcranial magnetic stimulation has been utilized in treating various neurological disorders. However, the function of theta-burst transcranial magnetic stimulation on VCID remains to be defined. We utilized 4-week bilateral carotid artery stenosis model of male mice to mimic VCID. Intermittent theta-burst stimulation (iTBS) or consecutive theta-burst stimulation (cTBS) was administered for 14 consecutive days. Through luxol fast blue staining, electron microscopy and immunofluorescence, we found that iTBS, not cTBS, significantly improved demyelination, axonal damage and β-amyloid deposition, without affecting cerebral blood flow in VCID mice. At cellular levels, iTBS rescued the loss of mature oligodendrocytes, promoted precursor cell differentiation, and inhibited pro-inflammatory activation of astrocytes and microglia. Notably, iTBS attenuated cognitive deterioration in both short-term retention and long-term spatial memory of VCID mice as indicated by serial neurobehavioral tests. To explore the molecular involvement of iTBS, mRNA sequencing was carried out. By real-time PCR and combined RNA fluorescence in situ hybridization with immunofluorescence, iTBS was confirmed to increase Rxrg expression specifically in mature oligodendrocytes. Collectively, iTBS could ameliorate vascular cognitive dysfunction, probably via mitigating white matter lesions and neuroinflammation in the corpus callosum. Rxrg signaling in mature oligodendrocytes, which was increased by iTBS, might be a potential target for VCID treatment.
Collapse
Affiliation(s)
- Di Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Xiaohao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Zhenqian Huang
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Yunzi Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Xinyi Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Jia Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Ying Zhao
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Qiushi Lv
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Min Wu
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Mingming Zha
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310006, China
| | - Kang Yuan
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Wusheng Zhu
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Gelin Xu
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China; Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
2
|
Stepanichev MY, Onufriev MV, Moiseeva YV, Nedogreeva OA, Novikova MR, Kostryukov PA, Lazareva NA, Manolova AO, Mamedova DI, Ovchinnikova VO, Kastberger B, Winter S, Gulyaeva NV. N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs). Biomedicines 2024; 12:2261. [PMID: 39457574 PMCID: PMC11503999 DOI: 10.3390/biomedicines12102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Aging and chronic stress are regarded as the most important risk factors of cognitive decline. Aged spontaneously hypertensive rats (SHRs) represent a suitable model of age-related vascular brain diseases. The aim of this study was to explore the effects of chronic isolation stress in aging SHRs on their cognitive functions and response to acute stress, as well as the influence of the chronic oral intake of N-Pep-Zn, the Zn derivative of N-PEP-12. METHODS Nine-month-old SHRs were subjected to social isolation for 3 months (SHRiso group), and one group received N-pep-Zn orally (SHRisoP, 1.5 mg/100 g BW). SHRs housed in groups served as the control (SHRsoc). The behavioral study included the following tests: sucrose preference, open field, elevated plus maze, three-chamber sociability and social novelty and spatial learning and memory in a Barnes maze. Levels of corticosterone, glucose and proinflammatory cytokines in blood plasma as well as salivary amylase activity were measured. Restraint (60 min) was used to test acute stress response. RESULTS Isolation negatively affected the SHRs learning and memory in the Barnes maze, while the treatment of isolated rats with N-Pep-Zn improved their long-term memory and working memory impairments, making the SHRisoP comparable to the SHRsoc group. Acute stress induced a decrease in the relative thymus weight in the SHRiso group (but not SHRsoc), whereas treatment with N-Pep-Zn prevented thymus involution. N-pep-Zn mitigated the increment in blood cortisol and glucose levels induced by acute stress. CONCLUSIONS N-pep-Zn enhanced the adaptive capabilities towards chronic (isolation) and acute (immobilization) stress in aged SHRs and prevented cognitive disturbances induced by chronic isolation, probably affecting the hypothalamo-pituitary-adrenal, sympathetic, and immune systems.
Collapse
Affiliation(s)
- Mikhail Y. Stepanichev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Olga A. Nedogreeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Margarita R. Novikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Pavel A. Kostryukov
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Natalia A. Lazareva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Anna O. Manolova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Diana I. Mamedova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Victoria O. Ovchinnikova
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Stefan Winter
- Ever Pharma, Oberburgau 3, 4866 Unterach am Attersee, Austria
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| |
Collapse
|
3
|
Gao Y, Zhao P, Wang C, Fang K, Pan Y, Zhang Y, Miao Z, Wang M, Wei M, Zou W, Liu M, Peng K. Buqi Huoxue Tongnao prescription protects against chronic cerebral hypoperfusion via regulating PI3K/AKT and LXRα/CYP7A1 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155844. [PMID: 38959552 DOI: 10.1016/j.phymed.2024.155844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) has been confirmed as one of the pathogenesis underlying vascular cognitive impairment. A series of pathological changes, including inflammation, oxidative stress, and apoptosis, are involved in this pathophysiology and contribute to cognitive impairment and neuropathological alterations. The traditional Chinese medicine (TCM) of Buqi Huoxue Tongnao (BQHXTN) prescription possesses a remarkable clinical efficacy for treating patients with CCH, but still lacks a scientific foundation for its pharmacological mechanisms. PURPOSE To investigate the role and underlying mechanism of the effects of BQHXTN on CCH both in vitro and in vivo. METHODS In this study, we established a two-vessel occlusion (2-VO) induced CCH model in Sprague-Dawley rats, an oxygen-glucose deprivation model in BV2 cells, and a steatosis cell model in L02 cells to reveal the underlying mechanisms of BQHXTN by behavioral test, histopathological analysis and the detection of pro-inflammatory cytokine, apoptotic factors and reactive oxide species. Donepezil hydrochloride and Buyang Huanwu decoction were used as positive drugs. RESULTS Compared with the 2-VO group, BQHXTN treatment at three doses significantly enhanced the memory and learning abilities in the Y-maze and novel object recognition tests. The hematoxylin-eosin staining indicated that BQHXTN protected against hippocampal injury induced by CCH. Of note, in both in vivo and in vitro experiments, BQHXTN prominently inhibited the production of IL-1β, TNF-α, cleaved-caspase 3, and iNOS by regulating the PI3K/AKT pathway, consequently exerting anti-inflammatory, anti-apoptotic, and antioxidant effects. Moreover, it provided the first initial evidence that BQHXTN treatment mitigated dyslipidemia by increasing the LXRα/CYP7A1 expression, thereby delaying the neuropathological process. CONCLUSION In summary, these findings firstly revealed the pharmacodynamics and mechanism of BQHXTN, that is, BQHXTN could alleviate cognitive impairment, neuropathological alterations and dyslipidemia in CCH rats by activating PI3K/AKT and LXRα/CYP7A1 signaling pathways, as well as providing a TCM treatment strategy for CCH.
Collapse
Affiliation(s)
- Yinhuang Gao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China; Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peng Zhao
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China
| | - Chunyan Wang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China
| | - Keren Fang
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China
| | - Yueqing Pan
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Zhang
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhishuo Miao
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Meirong Wang
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Minlong Wei
- Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Zou
- Changsha Research and Development Center on Obstetric and Gynecologic Traditional Chinese Medicine Preparation, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Menghua Liu
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China; Key Laboratory of Drug Metabolism Research and Evaluation of the State Drug Administration, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Kang Peng
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Southern Medicine University, Guangzhou 510315, China.
| |
Collapse
|
4
|
Wei N, Zhang LM, Xu JJ, Li SL, Xue R, Ma SL, Li C, Sun MM, Chen KS. Astaxanthin Rescues Memory Impairments in Rats with Vascular Dementia by Protecting Against Neuronal Death in the Hippocampus. Neuromolecular Med 2024; 26:29. [PMID: 39014255 DOI: 10.1007/s12017-024-08796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.
Collapse
Affiliation(s)
- Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China.
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China.
| | - Luo-Man Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Jing-Jing Xu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Sheng-Lei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Rui Xue
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Sheng-Li Ma
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
| | - Cai Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, Zhengzhou, 450002, People's Republic of China
| | - Miao-Miao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| | - Kui-Sheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, No.1 Jian She Dong Avenue, Zhengzhou, 450002, People's Republic of China
- Department of Pathology, School of Basic Medicine, Zhengzhou University, No.100 Ke Xue Avenue, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
5
|
Chen J, Li CG, Yang LX, Qian Y, Zhu LW, Liu PY, Cao X, Wang Y, Zhu MS, Xu Y. MYPT1 SMKO Mice Function as a Novel Spontaneous Age- and Hypertension-Dependent Animal Model of CSVD. Transl Stroke Res 2024; 15:606-619. [PMID: 36843141 DOI: 10.1007/s12975-023-01142-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/28/2023]
Abstract
Cerebral small vessel disease (CSVD) is the most common progressive vascular disease that causes vascular dementia. Aging and hypertension are major contributors to CSVD, but the pathophysiological mechanism remains unclear, mainly due to the lack of an ideal animal model. Our previous study revealed that vascular smooth muscle cell (VSMC)-specific myosin phosphatase target subunit 1 (MYPT1) knockout (MYPT1SMKO) leads to constant hypertension, prompting us to explore whether hypertensive MYPT1SMKO mice can be considered a novel CSVD animal model. Here, we found that MYPT1SMKO mice displayed age-dependent CSVD-like neurobehaviors, including decreased motion speed, anxiety, and cognitive decline. MYPT1SMKO mice exhibited remarkable white matter injury compared with control mice, as shown by the more prominent loss of myelin at 12 months of age. Additionally, MYPT1SMKO mice were found to exhibit CSVD-like small vessel impairment, including intravascular hyalinization, perivascular space enlargement, and microbleed and blood-brain barrier (BBB) disruption. Last, our results revealed that the brain of MYPT1SMKO mice was characterized by an exacerbated inflammatory microenvironment, which is similar to patients with CSVD. In light of the above structural and functional phenotypes that closely mimic the conditions of human CSVD, we suggest that MYPT1SMKO mice are a novel age- and hypertension-dependent animal model of CSVD.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Cheng-Gang Li
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Li-Xuan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yi Qian
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Li-Wen Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Pin-Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Ye Wang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Min-Sheng Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
| |
Collapse
|
6
|
Ren H, Zhu M, Yu H, Weng Y, Yu W. The Effect of Propofol on the Hippocampus in Chronic Cerebral Hypoxia in a Rat Model Through Klotho Regulation. In Vivo 2024; 38:1162-1169. [PMID: 38688607 PMCID: PMC11059908 DOI: 10.21873/invivo.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 05/02/2024]
Abstract
BACKGROUND/AIM Chronic cerebral hypoxia often leads to brain damage and inflammation. Propofol is suggested to have neuroprotective effects under anaesthesia. MATERIALS AND METHODS This study used rat models with carotid artery coarctation or closure. Four groups of rats were compared: a control group, a propofol-treated group, a group with bilateral common carotid artery blockage (BCAO), and a BCAO group treated with propofol post-surgery. RESULTS The Morris water maze test indicated cognitive impairment in BCAO rats, which also showed hippocampal structure changes, oxidative stress markers alteration, and reduced Klotho expression. Propofol treatment post-BCAO surgery improved these outcomes, suggesting its potential in mitigating chronic cerebral hypoxia effects. CONCLUSION Propofol may increase klotho levels and reduce apoptosis and inflammation linked to oxidative stress in cognitively impaired mice.
Collapse
Affiliation(s)
- Hengchang Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Min Zhu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Hongli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, P.R. China
| |
Collapse
|
7
|
Thomas RJ. A matter of fragmentation. Sleep 2024; 47:zsae030. [PMID: 38285604 DOI: 10.1093/sleep/zsae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 01/31/2024] Open
Affiliation(s)
- Robert Joseph Thomas
- Professor of Medicine, Harvard Medical School, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
8
|
Tian M, Kawaguchi R, Shen Y, Machnicki M, Villegas NG, Cooper DR, Montgomery N, Haring J, Lan R, Yuan AH, Williams CK, Magaki S, Vinters HV, Zhang Y, De Biase LM, Silva AJ, Carmichael ST. Intercellular Signaling Pathways as Therapeutic Targets for Vascular Dementia Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.585301. [PMID: 38585718 PMCID: PMC10996514 DOI: 10.1101/2024.03.24.585301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Vascular dementia (VaD) is a white matter ischemic disease and the second-leading cause of dementia, with no direct therapy. Within the lesion site, cell-cell interactions dictate the trajectory towards disease progression or repair. To elucidate the underlying intercellular signaling pathways, a VaD mouse model was developed for transcriptomic and functional studies. The mouse VaD transcriptome was integrated with a human VaD snRNA-Seq dataset. A custom-made database encompassing 4053 human and 2032 mouse ligand-receptor (L-R) interactions identified significantly altered pathways shared between human and mouse VaD. Two intercellular L-R systems, Serpine2-Lrp1 and CD39-A3AR, were selected for mechanistic study as both the ligand and receptor were dysregulated in VaD. Decreased Seprine2 expression enhances OPC differentiation in VaD repair. A clinically relevant drug that reverses the loss of CD39-A3AR function promotes tissue and behavioral recovery in the VaD model. This study presents novel intercellular signaling targets and may open new avenues for VaD therapies.
Collapse
|
9
|
Gannon O, Tremble SM, McGinn C, Guth R, Scoppettone N, Hunt RD, Prakash K, Johnson AC. Angiotensin II-mediated hippocampal hypoperfusion and vascular dysfunction contribute to vascular cognitive impairment in aged hypertensive rats. Alzheimers Dement 2024; 20:890-903. [PMID: 37817376 PMCID: PMC10917018 DOI: 10.1002/alz.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Chronic hypertension increases the risk of vascular cognitive impairment (VCI) by ∼60%; however, how hypertension affects the vasculature of the hippocampus remains unclear but could contribute to VCI. METHODS Memory, hippocampal perfusion, and hippocampal arteriole (HA) function were investigated in male Wistar rats or spontaneously hypertensive rats (SHR) in early (4 to 5 months old), mid (8 to 9 months old), or late adulthood (14 to 15 months old). SHR in late adulthood were chronically treated with captopril (angiotensin converting enzyme inhibitor) or apocynin (antioxidant) to investigate the mechanisms by which hypertension contributes to VCI. RESULTS Impaired memory in SHR in late adulthood was associated with HA endothelial dysfunction, hyperconstriction, and ∼50% reduction in hippocampal blood flow. Captopril, but not apocynin, improved HA function, restored perfusion, and rescued memory function in aged SHR. DISCUSSION Hippocampal vascular dysfunction contributes to hypertension-induced memory decline through angiotensin II signaling, highlighting the therapeutic potential of HAs in protecting neurocognitive health later in life. HIGHLIGHTS Vascular dysfunction in the hippocampus contributes to vascular cognitive impairment. Memory declines with age during chronic hypertension. Angiotensin II causes endothelial dysfunction in the hippocampus in hypertension. Angiotensin II-mediated hippocampal arteriole dysfunction reduces blood flow. Vascular dysfunction in the hippocampus impairs perfusion and memory function.
Collapse
Affiliation(s)
- Olivia Gannon
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Sarah M. Tremble
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Conor McGinn
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Ruby Guth
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Nadia Scoppettone
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Ryan D. Hunt
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Kirtika Prakash
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| | - Abbie C. Johnson
- Department of Neurological SciencesUniversity of Vermont Larner College of MedicineBurlingtonVermontUSA
| |
Collapse
|
10
|
Ohara H, Takeuchi F, Kato N, Nabika T. Genotypes of Stim1 and the proximal region on chromosome 1 exert opposite effects on stroke susceptibility in stroke-prone spontaneously hypertensive rat. J Hypertens 2024; 42:118-128. [PMID: 37711097 DOI: 10.1097/hjh.0000000000003566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
BACKGROUND The stroke-prone spontaneously hypertensive rat (SHRSP) is a genetic model for cerebral stroke. Although a recent study on a congenic SHRSP suggested that a nonsense mutation in stromal interaction molecule 1 ( Stim1 ) encoding a major component of store-operated Ca 2+ entry was a causal variant for stroke in SHRSP, this was not conclusive because the congenic region including Stim1 in that rat was too wide. On the other hand, we demonstrated that the Wistar-Kyoto (WKY)-derived congenic fragment adjacent to Stim1 exacerbated stroke susceptibility in a congenic SHRSP called SPwch1.71. In the present study, we directly examined the effects of the Stim1 genotype on stroke susceptibility using SHRSP in which wild-type Stim1 was knocked in (called Stim1 -KI SHRSP). The combined effects of Stim1 and the congenic fragment of SPwch1.71 were also investigated. METHODS Stroke susceptibility was assessed by the stroke symptom-free and survival periods based on observations of behavioral symptoms and reductions in body weight. RESULTS Stim1 -KI SHRSP was more resistant to, while SPwch1.71 was more susceptible to stroke than the original SHRSP. Introgression of the wild-type Stim1 of Stim1 -KI SHRSP into SPwch1.71 by the generation of F1 rats ameliorated stroke susceptibility in SPwch1.71. Gene expression, whole-genome sequencing, and biochemical analyses identified Art2b , Folr1 , and Pde2a as possible candidate genes accelerating stroke in SPwch1.71. CONCLUSION The substitution of SHRSP-type Stim1 to wild-type Stim1 ameliorated stroke susceptibility in both SHRSP and SPwch1.71, indicating that the nonsense mutation in Stim1 is causally related to stroke susceptibility in SHRSP.
Collapse
Affiliation(s)
- Hiroki Ohara
- Department of Functional Pathology, Faculty of Medicine, Shimane University, Izumo
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Toru Nabika
- Department of Functional Pathology, Faculty of Medicine, Shimane University, Izumo
| |
Collapse
|
11
|
Li C, Tao T, Tang Y, Lu H, Zhang H, Li H, Liu X, Guan W, Niu Y. The association of psychological stress with metabolic syndrome and its components: cross-sectional and bidirectional two-sample Mendelian randomization analyses. Front Endocrinol (Lausanne) 2023; 14:1212647. [PMID: 38144566 PMCID: PMC10749192 DOI: 10.3389/fendo.2023.1212647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/07/2023] [Indexed: 12/26/2023] Open
Abstract
Background Metabolic syndrome (MetS) is a group of co-occurring conditions that increase the risk of cardiovascular disease, which include the conditions of hypertension, overweight or obesity, hyperglycemia, and dyslipidemia. Psychological stress is gradually being taken seriously, stemming from the imbalance between environmental demands and individual perceptions. However, the potential causal relationship between psychological stress and MetS remains unclear. Method We conducted cross-sectional and bidirectional Mendelian randomization (MR) analyses to clarify the potential causal relationship of psychological stress with MetS and its components. Multivariable logistic regression models were used to adjust for potential confounders in the cross-sectional study of the Chinese population, including 4,933 individuals (70.1% men; mean age, 46.13 ± 8.25). Stratified analyses of sexual characteristics were also performed. Bidirectional MR analyses were further carried out to verify causality based on summary-level genome-wide association studies in the European population, using the main analysis of the inverse variance-weighted method. Results We found that higher psychological stress levels were cross-sectionally associated with an increased risk of hypertension in men (odds ratio (OR), 1.341; 95% confidence interval (CI), 1.023-1.758; p = 0.034); moreover, higher levels of hypertension were cross-sectionally associated with an increased risk of psychological stress in men and the total population (men: OR, 1.545 (95% CI, 1.113-2.145); p = 0.009; total population: OR, 1.327 (95% CI, 1.025-1.718); p = 0.032). Genetically predicted hypertension was causally associated with a higher risk of psychological stress in the inverse-variance weighted MR model (OR, 2.386 (95% CI, 1.209-4.710); p = 0.012). However, there was no association between psychological stress and MetS or the other three risk factors (overweight or obesity, hyperglycemia, and dyslipidemia) in cross-sectional and MR analyses. Conclusion Although we did not observe an association between psychological stress and MetS, we found associations between psychological stress and hypertension both in cross-sectional and MR studies, which may have implications for targeting hypertension-related factors in interventions to improve mental and metabolic health. Further study is needed to confirm our findings.
Collapse
Affiliation(s)
- Cancan Li
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Tianqi Tao
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yanyan Tang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Huimin Lu
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Hongfeng Zhang
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Huixin Li
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Xiuhua Liu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Weiping Guan
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yixuan Niu
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Ishikawa H, Shindo A, Mizutani A, Tomimoto H, Lo EH, Arai K. A brief overview of a mouse model of cerebral hypoperfusion by bilateral carotid artery stenosis. J Cereb Blood Flow Metab 2023; 43:18-36. [PMID: 36883344 PMCID: PMC10638994 DOI: 10.1177/0271678x231154597] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 03/09/2023]
Abstract
Vascular cognitive impairment (VCI) refers to all forms of cognitive disorder related to cerebrovascular diseases, including vascular mild cognitive impairment, post-stroke dementia, multi-infarct dementia, subcortical ischemic vascular dementia (SIVD), and mixed dementia. Among the causes of VCI, more attention has been paid to SIVD because the causative cerebral small vessel pathologies are frequently observed in elderly people and because the gradual progression of cognitive decline often mimics Alzheimer's disease. In most cases, small vessel diseases are accompanied by cerebral hypoperfusion. In mice, prolonged cerebral hypoperfusion is induced by bilateral carotid artery stenosis (BCAS) with surgically implanted metal micro-coils. This cerebral hypoperfusion BCAS model was proposed as a SIVD mouse model in 2004, and the spreading use of this mouse SIVD model has provided novel data regarding cognitive dysfunction and histological/genetic changes by cerebral hypoperfusion. Oxidative stress, microvascular injury, excitotoxicity, blood-brain barrier dysfunction, and secondary inflammation may be the main mechanisms of brain damage due to prolonged cerebral hypoperfusion, and some potential therapeutic targets for SIVD have been proposed by using transgenic mice or clinically used drugs in BCAS studies. This review article overviews findings from the studies that used this hypoperfused-SIVD mouse model, which were published between 2004 and 2021.
Collapse
Affiliation(s)
- Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akane Mizutani
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
13
|
Okamura M, Inoue T, Takamatsu Y, Maejima H. Pharmacological inhibition of histone deacetylases ameliorates cognitive impairment after intracerebral hemorrhage with epigenetic alteration in the hippocampus. J Stroke Cerebrovasc Dis 2023; 32:107275. [PMID: 37523880 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVES Post-stroke cognitive impairment (PSCI) interferes with neurorehabilitation in patients with stroke. Epigenetic regulation of the hippocampus has been targeted to ameliorate cognitive function. In particular, the acetylation level of histones is modulated by exercise, a potent therapy for patients with stroke. MATERIALS AND METHODS We examined the effects of exercise and pharmacological inhibition of histone deacetylase (HDAC) using sodium butyrate (NaB) on cognitive function and epigenetic factors in the hippocampus after intracerebral hemorrhage (ICH) to seek beneficial neuronal conditioning against PSCI. Forty rats were randomly assigned to five groups: sham, control, NaB, exercise, and NaB plus exercise groups (n=8 in each group). Except for those in the sham group, all rats underwent stereotaxic ICH surgery with a microinjection of collagenase solution. Intraperitoneal administration of NaB (300 mg/kg) and treadmill exercise (11 m/min for 30 min) were conducted for approximately 4 weeks starting 3 days post-surgery. RESULTS ICH reduced cognitive function, as detected by the object location test, accompanied by enhanced activity of HDACs. Although exercise did not modulate HDAC activity or cognitive function, repetitive NaB administration increased HDAC activity and ameliorated cognitive impairment induced by ICH. CONCLUSIONS This study suggests that pharmacological treatment with an HDAC inhibitor could potentially present an enriched epigenetic platform in the hippocampus and ameliorate PSCI for neurorehabilitation following ICH.
Collapse
Affiliation(s)
- Misato Okamura
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
14
|
Dai Y, Wang S, Yang M, Zhuo P, Ding Y, Li X, Cao Y, Guo X, Lin H, Tao J, Chen L, Liu W. Electroacupuncture protective effects after cerebral ischemia are mediated through miR-219a inhibition. Biol Res 2023; 56:36. [PMID: 37391839 DOI: 10.1186/s40659-023-00448-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Electroacupuncture (EA) is a complementary and alternative therapy which has shown protective effects on vascular cognitive impairment (VCI). However, the underlying mechanisms are not entirely understood. METHODS Rat models of VCI were established with cerebral ischemia using occlusion of the middle cerebral artery or bilateral common carotid artery. The brain structure and function imaging were measured through animal MRI. miRNA expression was detected by chip and qPCR. Synaptic functional plasticity was detected using electrophysiological techniques. RESULTS This study demonstrated the enhancement of Regional Homogeneity (ReHo) activity of blood oxygen level-dependent (BOLD) signal in the entorhinal cortical (EC) and hippocampus (HIP) in response to EA treatment. miR-219a was selected and confirmed to be elevated in HIP and EC in VCI but decreased after EA. N-methyl-D-aspartic acid receptor1 (NMDAR1) was identified as the target gene of miR-219a. miR-219a regulated NMDAR-mediated autaptic currents, spontaneous excitatory postsynaptic currents (sEPSC), and long-term potentiation (LTP) of the EC-HIP CA1 circuit influencing synaptic plasticity. EA was able to inhibit miR-219a, enhancing synaptic plasticity of the EC-HIP CA1 circuit and increasing expression of NMDAR1 while promoting the phosphorylation of downstream calcium/calmodulin-dependent protein kinase II (CaMKII), improving overall learning and memory in VCI rat models. CONCLUSION Inhibition of miR-219a ameliorates VCI by regulating NMDAR-mediated synaptic plasticity in animal models of cerebral ischemia.
Collapse
Affiliation(s)
- Yaling Dai
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Sinuo Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Minguang Yang
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Peiyuan Zhuo
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yanyi Ding
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xiaoling Li
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yajun Cao
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Xiaoqin Guo
- Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Huawei Lin
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jing Tao
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Lidian Chen
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
15
|
Cao Q, Chen J, Zhang Z, Shu S, Qian Y, Yang L, Xu L, Zhang Y, Bao X, Xia S, Yang H, Xu Y, Qiu S. Astrocytic CXCL5 hinders microglial phagocytosis of myelin debris and aggravates white matter injury in chronic cerebral ischemia. J Neuroinflammation 2023; 20:105. [PMID: 37138312 PMCID: PMC10155379 DOI: 10.1186/s12974-023-02780-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Chronic cerebral ischemia induces white matter injury (WMI) contributing to cognitive decline. Both astrocytes and microglia play vital roles in the demyelination and remyelination processes, but the underlying mechanism remains unclear. This study aimed to explore the influence of the chemokine CXCL5 on WMI and cognitive decline in chronic cerebral ischemia and the underlying mechanism. METHODS Bilateral carotid artery stenosis (BCAS) model was constructed to mimic chronic cerebral ischemia in 7-10 weeks old male mice. Astrocytic Cxcl5 conditional knockout (cKO) mice were constructed and mice with Cxcl5 overexpressing in astrocytes were generated by stereotactic injection of adeno-associated virus (AAV). WMI was evaluated by magnetic resonance imaging (MRI), electron microscopy, histological staining and western blotting. Cognitive function was examined by a series of neurobehavioral tests. The proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), phagocytosis of microglia were analyzed via immunofluorescence staining, western blotting or flow cytometry. RESULTS CXCL5 was significantly elevated in the corpus callosum (CC) and serum in BCAS model, mainly expressed in astrocytes, and Cxcl5 cKO mice displayed improved WMI and cognitive performance. Recombinant CXCL5 (rCXCL5) had no direct effect on the proliferation and differentiation of OPCs in vitro. Astrocytic specific Cxcl5 overexpression aggravated WMI and cognitive decline induced by chronic cerebral ischemia, while microglia depletion counteracted this effect. Recombinant CXCL5 remarkably hindered microglial phagocytosis of myelin debris, which was rescued by inhibition of CXCL5 receptor C-X-C motif chemokine receptor 2 (CXCR2). CONCLUSION Our study revealed that astrocyte-derived CXCL5 aggravated WMI and cognitive decline by inhibiting microglial phagocytosis of myelin debris, suggesting a novel astrocyte-microglia circuit mediated by CXCL5-CXCR2 signaling in chronic cerebral ischemia.
Collapse
Affiliation(s)
- Qian Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Zhi Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yi Qian
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Lixuan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Lushan Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yuxin Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
| | - Shuwei Qiu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
16
|
Activated AMPK Protects Against Chronic Cerebral Ischemia in Bilateral Carotid Artery Stenosis Mice. Cell Mol Neurobiol 2022:10.1007/s10571-022-01312-6. [DOI: 10.1007/s10571-022-01312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022]
|
17
|
Ohara H, Nabika T. Genetic Modifications to Alter Blood Pressure Level. Biomedicines 2022; 10:biomedicines10081855. [PMID: 36009402 PMCID: PMC9405136 DOI: 10.3390/biomedicines10081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic manipulation is one of the indispensable techniques to examine gene functions both in vitro and in vivo. In particular, cardiovascular phenotypes such as blood pressure cannot be evaluated in vitro system, necessitating the creation of transgenic or gene-targeted knock-out and knock-in experimental animals to understand the pathophysiological roles of specific genes on the disease conditions. Although genome-wide association studies (GWAS) in various human populations have identified multiple genetic variations associated with increased risk for hypertension and/or its complications, the causal links remain unresolved. Genome-editing technologies can be applied to many different types of cells and organisms for creation of knock-out/knock-in models. In the post-GWAS era, it may be more worthwhile to validate pathophysiological implications of the risk variants and/or candidate genes by creating genome-edited organisms.
Collapse
|
18
|
Maresin 1 improves cognitive decline and ameliorates inflammation and blood-brain barrier damage in rats with chronic cerebral hypoperfusion. Brain Res 2022; 1788:147936. [DOI: 10.1016/j.brainres.2022.147936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 11/20/2022]
|
19
|
Jenkins TA. Metabolic Syndrome and Vascular-Associated Cognitive Impairment: a Focus on Preclinical Investigations. Curr Diab Rep 2022; 22:333-340. [PMID: 35737273 PMCID: PMC9314301 DOI: 10.1007/s11892-022-01475-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Metabolic syndrome is associated with an increased risk of vascular cognitive impairment or, in the more extreme, vascular dementia. Animal models are used to investigate the relationship between pathology and behaviour. This review summarizes the latest understanding of the role of the hippocampus and prefrontal cortex in vascular cognitive impairment, the influence of inflammation in this association while also commenting on some of the latest interventions proposed. RECENT FINDINGS Models of vascular cognitive impairment and vascular dementia, whether they develop from an infarct or non-infarct base, demonstrate increased neuroinflammation, reduced neuronal function and deficits in prefrontal and hippocampal-associated cognitive domains. Promising new research shows agents and environmental interventions that inhibit central oxidative stress and inflammation can reverse both pathology and cognitive dysfunction. While preclinical studies suggest that reversal of deficits in vascular cognitive impairment models is possible, replication in patients still needs to be demonstrated.
Collapse
Affiliation(s)
- Trisha A Jenkins
- Human Biosciences, School of Health and Biomedical Sciences, STEM College, RMIT University, Plenty Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
20
|
Zhou Z, Ma Y, Xu T, Wu S, Yang GY, Ding J, Wang X. Deeper cerebral hypoperfusion leads to spatial cognitive impairment in mice. Stroke Vasc Neurol 2022; 7:527-533. [PMID: 35817499 PMCID: PMC9811541 DOI: 10.1136/svn-2022-001594] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Vascular cognitive impairment (VCI) is the second-leading cause of dementia worldwide, which is caused by cerebrovascular diseases or relevant risk factors. However, there are no appropriate animal models, which can be used to study changes of neuropathology in the human VCI. To better understand the development of VCI, we modified three mouse models of chronical vascular diseases, and further compared the advantage and disadvantage of these models. We hope to establish a more suitable mouse model mimicking VCI in human beings. METHODS Adult male C57/BL6 mice (n=98) were used and animals underwent transient bilateral common carotid arteries occlusion (tBCCAO), or bilateral common carotid artery stenosis (BCAS), or right unilateral common carotid artery occlusion, respectively. Haemodynamic changes of surface cerebral blood flow (CBF) were examined up to 4 weeks. Spatial cognitive impairment was evaluated to determine the consequence of chronic cerebral ischaemia. RESULTS These mouse models showed different extents of CBF reduction and spatial reference memory impairment from 1 week up to 4 weeks postoperation compared with the control group (p<0.05). We found that (1) bilaterally ligation of common carotid artery caused decrease of 90% CBF in C57/BL6 mice (p<0.05) and caused acute instead of prolonged impairment of spatial reference memory (p<0.05); (2) unilateral ligation of common carotid artery did not cause severe ipsilateral ischaemia as seen in the tBCCAO mice and caused minor but significant spatial reference memory disturbance (p<0.05); and (3) 20% decrease in the bilateral CBF did not cause spatial reference memory impairment 4 weeks postoperation (p>0.05), while 30% decrease in bilateral or unilateral CBF led to significant memory disturbance in mice (p<0.05). CONCLUSION We demonstrated that BCAS using 0.16/0.18 mm microcoils is an alternative VCI mouse model when studying the mechanism and developing therapy of VCI.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Tongtong Xu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengju Wu
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, China,Department of the State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Cao L, Dong Y, Sun K, Li D, Wang H, Li H, Yang B. Experimental Animal Models for Moyamoya Disease: A Species-Oriented Scoping Review. Front Surg 2022; 9:929871. [PMID: 35846951 PMCID: PMC9283787 DOI: 10.3389/fsurg.2022.929871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by progressive stenosis of large intracranial arteries and a hazy network of basal collaterals called moyamoya vessels. The etiology and pathogenesis of MMD are still obscure. The biggest obstacles in the basic research of MMD are difficulty in obtaining specimens and the lack of an animal model. It is necessary to use appropriate and rationally designed animal models for the correct evaluation. Several animal models and methods have been developed to produce an effective MMD model, such as zebrafish, mice and rats, rabbits, primates, felines, canines, and peripheral blood cells, each with advantages and disadvantages. There are three mechanisms for developing animal models, including genetic, immunological/inflammatory, and ischemic animal models. This review aims to analyze the characteristics of currently available models, providing an overview of the animal models framework and the convenience of selecting model types for MMD research. It will be a great benefit to identify strategies for future model generations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Yang
- Correspondence: Bo Yang Hongwei Li
| |
Collapse
|
22
|
Zheng L, Jia J, Chen Y, Liu R, Cao R, Duan M, Zhang M, Xu Y. Pentoxifylline alleviates ischemic white matter injury through up-regulating Mertk-mediated myelin clearance. J Neuroinflammation 2022; 19:128. [PMID: 35642056 PMCID: PMC9153105 DOI: 10.1186/s12974-022-02480-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/15/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vascular dementia (VAD) is the second most common type of dementia lacking effective treatments. Pentoxifylline (PTX), a nonselective phosphodiesterase inhibitor, displays protective effects in multiple cerebral diseases. In this study, we aimed to investigate the therapeutic effects and potential mechanisms of PTX in VAD. METHODS Bilateral common carotid artery stenosis (BCAS) mouse model was established to mimic VAD. Mouse behavior was tested by open field test, novel object recognition test, Y-maze and Morris water maze (MWM) tests. Histological staining, magnetic resonance imaging (MRI) and electron microscopy were used to define white matter integrity. The impact of PTX on microglia phagocytosis, peroxisome proliferator-activated receptors-γ (PPAR-γ) activation and Mer receptor tyrosine kinase (Mertk) expression was assessed by immunofluorescence, western blotting and flow cytometry with the application of microglia-specific Mertk knockout mice, Mertk inhibitor and PPAR-γ inhibitor. RESULTS Here, we found that PTX treatment alleviated cognitive impairment in novel object recognition test, Y-maze and Morris water maze tests. Furthermore, PTX alleviated white matter injury in corpus callosum (CC) and internal capsule (IC) areas as shown by histological staining and MRI analysis. PTX-treatment group presented thicker myelin sheath than vehicle group by electron microscopy. Mechanistically, PTX facilitated microglial phagocytosis of myelin debris by up-regulating the expression of Mertk in BCAS model and primary cultured microglia. Importantly, microglia-specific Mertk knockout blocked the therapeutic effects of PTX in BCAS model. Moreover, Mertk expression was regulated by the nuclear translocation of PPAR-γ. Through modulating PPAR-γ, PTX enhanced Mertk expression. CONCLUSIONS Collectively, our results demonstrated that PTX showed therapeutic potentials in VAD and alleviated ischemic white matter injury via modulating Mertk-mediated myelin clearance in microglia.
Collapse
Affiliation(s)
- Lili Zheng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
| | - Junqiu Jia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
| | - Yan Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Runjing Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
| | - Manlin Duan
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Meijuan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| |
Collapse
|
23
|
Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment. Neurobiol Dis 2022; 170:105750. [DOI: 10.1016/j.nbd.2022.105750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022] Open
|
24
|
Silva NCBS, Bracko O, Nelson AR, de Oliveira FF, Robison LS, Shaaban CE, Hainsworth AH, Price BR. Vascular cognitive impairment and dementia: An early career researcher perspective. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12310. [PMID: 35496373 PMCID: PMC9043906 DOI: 10.1002/dad2.12310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023]
Abstract
The field of vascular contributions to cognitive impairment and dementia (VCID) is evolving rapidly. Research in VCID encompasses topics aiming to understand, prevent, and treat the detrimental effects of vascular disease burden in the human brain. In this perspective piece, early career researchers (ECRs) in the field provide an overview of VCID, discuss past and present efforts, and highlight priorities for future research. We emphasize the following critical points as the field progresses: (a) consolidate existing neuroimaging and fluid biomarkers, and establish their utility for pharmacological and non-pharmacological interventions; (b) develop new biomarkers, and new non-clinical models that better recapitulate vascular pathologies; (c) amplify access to emerging biomarker and imaging techniques; (d) validate findings from previous investigations in diverse populations, including those at higher risk of cognitive impairment (e.g., Black, Hispanic, and Indigenous populations); and (e) conduct randomized controlled trials within diverse populations with well-characterized vascular pathologies emphasizing clinically meaningful outcomes.
Collapse
Affiliation(s)
- Nárlon C. Boa Sorte Silva
- Djavad Mowafaghian Centre for Brain HealthDepartment of Physical TherapyFaculty of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Oliver Bracko
- Department of BiologyThe University of MiamiCoral GablesFloridaUSA
| | - Amy R. Nelson
- Department of Physiology and Cell BiologyUniversity of South AlabamaMobileAlabamaUSA
| | | | - Lisa S. Robison
- Department of Psychology and NeuroscienceNova Southeastern UniversityFort LauderdaleFloridaUSA
| | | | - Atticus H. Hainsworth
- Molecular & Clinical Sciences Research InstituteSt George's University of London, UKDepartment of NeurologySt George's University Hospitals NHS Foundation Trust LondonLondonUK
| | - Brittani R. Price
- Department of NeuroscienceTufts University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
25
|
Liang HB, Lai ZH, Tu XQ, Ding KQ, He JR, Yang GY, Sheng H, Zeng LL. MicroRNA-140-5p exacerbates vascular cognitive impairment by inhibiting neurogenesis in the adult mouse hippocampus after global cerebral ischemia. Brain Res Bull 2022; 183:73-83. [DOI: 10.1016/j.brainresbull.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022]
|
26
|
Hao X, Ye F, Holste KG, Hua Y, Garton HJL, Keep RF, Xi G. Delayed Minocycline Treatment Ameliorates Hydrocephalus Development and Choroid Plexus Inflammation in Spontaneously Hypertensive Rats. Int J Mol Sci 2022; 23:2306. [PMID: 35216420 PMCID: PMC8874790 DOI: 10.3390/ijms23042306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrocephalus is a complicated disorder that affects both adult and pediatric populations. The mechanism of hydrocephalus development, especially when there is no mass lesion present causing an obstructive, is poorly understood. Prior studies have demonstrated that spontaneously hypertensive rats (SHRs) develop hydrocephalus by week 7, which was attenuated with minocycline. The aim of this study was to determine sex differences in hydrocephalus development and to examine the effect of minocycline administration after hydrocephalus onset. Male and female Wistar-Kyoto rats (WKYs) and SHRs underwent magnetic resonance imaging at weeks 7 and 9 to determine ventricular volume. Choroid plexus epiplexus cell activation, cognitive deficits, white matter atrophy, and hippocampal neuronal loss were examined at week 9. In the second phase of the experiment, male SHRs (7 weeks old) were treated with either saline or minocycline (20 mg/kg) for 14 days, and similar radiologic, histologic, and behavior tests were performed. Hydrocephalus was present at week 7 and increased at week 9 in both male and female SHRs, which was associated with greater epiplexus cell activation than WKYs. Male SHRs had greater ventricular volume and epiplexus cell activation compared to female SHRs. Minocycline administration improved cognitive function, white matter atrophy, and hippocampal neuronal cell loss. In conclusion, while both male and female SHRs developed hydrocephalus and epiplexus cell activation by week 9, it was more severe in males. Delayed minocycline treatment alleviated hydrocephalus, epiplexus macrophage activation, brain pathology, and cognitive impairment in male SHRs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA; (X.H.); (F.Y.); (K.G.H.); (Y.H.); (H.J.L.G.); (R.F.K.)
| |
Collapse
|
27
|
Ohtomo R, Ishikawa H, Kinoshita K, Chung KK, Hamanaka G, Ohtomo G, Takase H, Wrann CD, Katsuki H, Iwata A, Lok J, Lo EH, Arai K. Treadmill Exercise During Cerebral Hypoperfusion Has Only Limited Effects on Cognitive Function in Middle-Aged Subcortical Ischemic Vascular Dementia Mice. Front Aging Neurosci 2022; 13:756537. [PMID: 34992525 PMCID: PMC8724785 DOI: 10.3389/fnagi.2021.756537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Clinical and basic research suggests that exercise is a safe behavioral intervention and is effective for improving cognitive function in cerebrovascular diseases, including subcortical ischemic vascular dementia (SIVD). However, most of the basic research uses young animals to assess the effects of exercise, although SIVD is an age-related disease. In this study, therefore, we used middle-aged mice to examine how treadmill exercise changes the cognitive function of SIVD mice. As a mouse model of SIVD, prolonged cerebral hypoperfusion was induced in 8-month-old male C57BL/6J mice by bilateral common carotid artery stenosis. A week later, the mice were randomly divided into two groups: a group that received 6-week treadmill exercise and a sedentary group for observation. After subjecting the mice to multiple behavioral tests (Y-maze, novel object recognition, and Morris water maze tests), the treadmill exercise training was shown to only be effective in ameliorating cognitive decline in the Y-maze test. We previously demonstrated that the same regimen of treadmill exercise was effective in young hypoperfused-SIVD mice for all three cognitive tests. Therefore, our study may indicate that treadmill exercise during cerebral hypoperfusion has only limited effects on cognitive function in aging populations.
Collapse
Affiliation(s)
- Ryo Ohtomo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Keita Kinoshita
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kelly K Chung
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Gaku Ohtomo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Christiane D Wrann
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, United States
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atsushi Iwata
- Department of Neurology, Tokyo Metropolitan Geriatric Medical Center Hospital, Tokyo, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
28
|
Ginsenoside Rg1 Prevents Cognitive Impairment and Hippocampal Neuronal Apoptosis in Experimental Vascular Dementia Mice by Promoting GPR30 Expression. Neural Plast 2021; 2021:2412220. [PMID: 34899899 PMCID: PMC8664545 DOI: 10.1155/2021/2412220] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/19/2021] [Indexed: 01/02/2023] Open
Abstract
This study is aimed at investigating the potential roles of G protein-coupled estrogen receptor 1 (GPER, also known as GPR30) in the preventive effect of ginsenoside Rg1 against cognitive impairment and hippocampal cell apoptosis in experimental vascular dementia (VD) in mice. The effects of bilateral common carotid artery stenosis (BCAS) on GPR30 expression at mRNA level were evaluated. Thereafter, the BCAS mouse model was utilized to evaluate the protection of Rg1 (0.1, 1, 10 mg/kg, 14 days, ip). Spatial memory was evaluated by water Morris Maze 7 days post BCAS. After behavioral tests, neuronal apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and potential mechanisms were determined using western blotting and quantitative real-time PCR. Our results showed that GPR30 expression in the hippocampal region at mRNA level was promoted 30 min, 3 h, 6 h, and 24 h following BCAS. Ginsenoside Rg1 (1 or 10 mg/kg, 14 days, ip) promoted GPR30 expression in the hippocampus of model mice (after behavioral tests) but did not alter GPR30 expression in the hippocampus of control mice. Moreover, treatment of ginsenoside Rg1 (10 mg/kg) or G1 (5 μg/kg), a GPR30 agonist, prevented BCAS-induced memory impairment and hippocampal neuronal loss and apoptosis and promoted the ratio of Bcl-2 to Bax expression in the hippocampus (after behavioral tests). On the contrary, G15 (185 μg/kg), an antagonist of GPR30, aggravated BCAS-induced hippocampal neuronal loss and apoptosis. Finally, drug-target molecular docking pointed that Rg1 had a lower binding energy with GPR30 compared with Bax and Bcl-2. Together, our data implicate that ginsenoside Rg1 prevents cognitive impairment and hippocampal neuronal apoptosis in VD mice, likely through promoting GPR30 expression. These results would provide important implications for the application of Rg1 in the treatment of VD.
Collapse
|
29
|
Hannawi Y, Caceres E, Ewees MG, Powell KA, Bratasz A, Schwab JM, Rink CL, Zweier JL. Characterizing the Neuroimaging and Histopathological Correlates of Cerebral Small Vessel Disease in Spontaneously Hypertensive Stroke-Prone Rats. Front Neurol 2021; 12:740298. [PMID: 34917012 PMCID: PMC8669961 DOI: 10.3389/fneur.2021.740298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction: Spontaneously hypertensive stroke-prone rats (SHRSP) are used to model clinically relevant aspects of human cerebral small vessel disease (CSVD). To decipher and understand the underlying disease dynamics, assessment of the temporal progression of CSVD histopathological and neuroimaging correlates is essential. Materials and Methods: Eighty age-matched male SHRSP and control Wistar Kyoto rats (WKY) were randomly divided into four groups that were aged until 7, 16, 24 and 32 weeks. Sensorimotor testing was performed weekly. Brain MRI was acquired at each study time point followed by histological analyses of the brain. Results: Compared to WKY controls, the SHRSP showed significantly higher prevalence of small subcortical hyperintensities on T2w imaging that progressed in size and frequency with aging. Volumetric analysis revealed smaller intracranial and white matter volumes on brain MRI in SHRSP compared to age-matched WKY. Diffusion tensor imaging (DTI) showed significantly higher mean diffusivity in the corpus callosum and external capsule in WKY compared to SHRSP. The SHRSP displayed signs of motor restlessness compared to WKY represented by hyperactivity in sensorimotor testing at the beginning of the experiment which decreased with age. Distinct pathological hallmarks of CSVD, such as enlarged perivascular spaces, microbleeds/red blood cell extravasation, hemosiderin deposits, and lipohyalinosis/vascular wall thickening progressively accumulated with age in SHRSP. Conclusions: Four stages of CSVD severity in SHRSP are described at the study time points. In addition, we find that quantitative analyses of brain MRI enable identification of in vivo markers of CSVD that can serve as endpoints for interventional testing in therapeutic studies.
Collapse
Affiliation(s)
- Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - Eder Caceres
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - Mohamed G. Ewees
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Kimerly A. Powell
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
- Small Animal Imaging Core, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Anna Bratasz
- Small Animal Imaging Core, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Jan M. Schwab
- Belford Center for Spinal Cord Injury, The Ohio State University, Columbus, OH, United States
- Department of Neurology, The Ohio State University, Columbus, OH, United States
- Department of Physical Medicine and Rehabilitation, The Ohio State University, Columbus, OH, United States
- Department of Neurosciences, The Ohio State University, Columbus, OH, United States
| | - Cameron L. Rink
- Department of Neurosurgery, The Ohio State University, Columbus, OH, United States
| | - Jay L. Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
30
|
Xu W, Song Y, Chen S, Xue C, Hu G, Qi W, Ma W, Lin X, Chen J. An ALE Meta-Analysis of Specific Functional MRI Studies on Subcortical Vascular Cognitive Impairment. Front Neurol 2021; 12:649233. [PMID: 34630270 PMCID: PMC8492914 DOI: 10.3389/fneur.2021.649233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Subcortical vascular cognitive impairment (sVCI), caused by cerebral small vessel disease, accounts for the majority of vascular cognitive impairment, and is characterized by an insidious onset and impaired memory and executive function. If not recognized early, it inevitably develops into vascular dementia. Several quantitative studies have reported the consistent results of brain regions in sVCI patients that can be used to predict dementia conversion. The purpose of the study was to explore the exact abnormalities within the brain in sVCI patients by combining the coordinates reported in previous studies. Methods: The PubMed, Embase, and Web of Science databases were thoroughly searched to obtain neuroimaging articles on the amplitude of low-frequency fluctuation, regional homogeneity, and functional connectivity in sVCI patients. According to the activation likelihood estimation (ALE) algorithm, a meta-analysis based on coordinate and functional connectivity modeling was conducted. Results: The quantitative meta-analysis included 20 functional imaging studies on sVCI patients. Alterations in specific brain regions were mainly concentrated in the frontal lobes including the middle frontal gyrus, superior frontal gyrus, medial frontal gyrus, and precentral gyrus; parietal lobes including the precuneus, angular gyrus, postcentral gyrus, and inferior parietal lobule; occipital lobes including the lingual gyrus and cuneus; temporal lobes including the fusiform gyrus and middle temporal gyrus; and the limbic system including the cingulate gyrus. These specific brain regions belonged to important networks known as the default mode network, the executive control network, and the visual network. Conclusion: The present study determined specific abnormal brain regions in sVCI patients, and these brain regions with specific changes were found to belong to important brain functional networks. The findings objectively present the exact abnormalities within the brain, which help further understand the pathogenesis of sVCI and identify them as potential imaging biomarkers. The results may also provide a basis for new approaches to treatment.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenying Ma
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
31
|
Linton AE, Weekman EM, Wilcock DM. Pathologic sequelae of vascular cognitive impairment and dementia sheds light on potential targets for intervention. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100030. [PMID: 36324710 PMCID: PMC9616287 DOI: 10.1016/j.cccb.2021.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/11/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is one of the leading causes of dementia along with Alzheimer's disease (AD) and, importantly, VCID often manifests as a comorbidity of AD(Vemuri and Knopman 2016; Schneider and Bennett 2010)(Vemuri and Knopman 2016; Schneider and Bennett 2010). Despite its common clinical manifestation, the mechanisms underlying VCID disease progression remains elusive. In this review, existing knowledge is used to propose a novel hypothesis linking well-established risk factors of VCID with the distinct neurodegenerative cascades of neuroinflammation and chronic hypoperfusion. It is hypothesized that these two synergistic signaling cascades coalesce to initiate aberrant angiogenesis and induce blood brain barrier breakdown trough a mechanism mediated by vascular growth factors and matrix metalloproteinases respectively. Finally, this review concludes by highlighting several potential therapeutic interventions along this neurodegenerative sequalae providing diverse opportunities for future translational study.
Collapse
Affiliation(s)
- Alexandria E. Linton
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| | - Erica M. Weekman
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| | - Donna M. Wilcock
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| |
Collapse
|
32
|
Depichering the Effects of Astragaloside IV on AD-Like Phenotypes: A Systematic and Experimental Investigation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1020614. [PMID: 34616501 PMCID: PMC8487832 DOI: 10.1155/2021/1020614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/14/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]
Abstract
Astragaloside IV (AS-IV) is an active component in Astragalus membranaceus with the potential to treat neurodegenerative diseases, especially Alzheimer's diseases (ADs). However, its mechanisms are still not known. Herein, we aimed to explore the systematic pharmacological mechanism of AS-IV for treating AD. Drug prediction, network pharmacology, and functional bioinformatics analyses were conducted. Molecular docking was applied to validate reliability of the interactions and binding affinities between AS-IV and related targets. Finally, experimental verification was carried out in AβO infusion produced AD-like phenotypes to investigate the molecular mechanisms. We found that AS-IV works through a multitarget synergistic mechanism, including inflammation, nervous system, cell proliferation, apoptosis, pyroptosis, calcium ion, and steroid. AS-IV highly interacted with PPARγ, caspase-1, GSK3Β, PSEN1, and TRPV1 after docking simulations. Meanwhile, PPARγ interacts with caspase-1, GSK3Β, PSEN1, and TRPV1. In vivo experiments showed that AβO infusion produced AD-like phenotypes in mice, including impairment of fear memory, neuronal loss, tau hyperphosphorylation, neuroinflammation, and synaptic deficits in the hippocampus. Especially, the expression of PPARγ, as well as BDNF, was also reduced in the hippocampus of AD-like mice. Conversely, AS-IV improved AβO infusion-induced memory impairment, inhibited neuronal loss and the phosphorylation of tau, and prevented the synaptic deficits. AS-IV prevented AβO infusion-induced reduction of PPARγ and BDNF. Moreover, the inhibition of PPARγ attenuated the effects of AS-IV on BDNF, neuroflammation, and pyroptosis in AD-like mice. Taken together, AS-IV could prevent AD-like phenotypes and reduce tau hyperphosphorylation, synaptic deficits, neuroinflammation, and pyroptosis, possibly via regulating PPARγ.
Collapse
|
33
|
Ng YF, Ng E, Lim EW, Prakash KM, Tan LCS, Tan EK. Case-control study of hypertension and Parkinson's disease. NPJ Parkinsons Dis 2021; 7:63. [PMID: 34290246 PMCID: PMC8295270 DOI: 10.1038/s41531-021-00202-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/26/2021] [Indexed: 11/17/2022] Open
Abstract
We evaluate the association of hypertension with PD in an Asian population and performed a meta-analysis on similar studies to address the effect of hypertension on PD risk. A matched case-control study involving 1342 Chinese subjects (671 PD and 671 age and gender-matched controls (with a mean age of 63.9 ± 9.7 and 63.5 ± 9.8 years, and identical proportion of gender distribution) was conducted. Hypertension increases PD risk by 1.9 times [OR 1.86 (1.46–2.38)]. The literature search identified 618 studies initially; however, only three matched case-control studies (all in Caucasians) met the inclusion criteria for meta-analysis. Overall analysis showed that hypertension decreases PD risk by 0.2 times [OR 0.80 (0.66–0.96)]. Hypertension increases PD risk by 1.9 times in our Asian population. However, a meta-analysis comprising of Caucasian populations showed a protective effect of hypertension suggesting that ethnic differences or other genetic or environmental factors may contribute to the divergent observation. Early diagnosis and treatment of hypertension may potentially reduce the risk of PD, at least in our population.
Collapse
Affiliation(s)
- Yuen-Fann Ng
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Ebonne Ng
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Ee-Wei Lim
- Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Kumar M Prakash
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Louis C S Tan
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Eng-King Tan
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,Department of Neurology, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
| |
Collapse
|
34
|
Kim KJ, Diaz JR, Presa JL, Muller PR, Brands MW, Khan MB, Hess DC, Althammer F, Stern JE, Filosa JA. Decreased parenchymal arteriolar tone uncouples vessel-to-neuronal communication in a mouse model of vascular cognitive impairment. GeroScience 2021; 43:1405-1422. [PMID: 33410092 PMCID: PMC8190257 DOI: 10.1007/s11357-020-00305-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/22/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic hypoperfusion is a key contributor to cognitive decline and neurodegenerative conditions, but the cellular mechanisms remain ill-defined. Using a multidisciplinary approach, we sought to elucidate chronic hypoperfusion-evoked functional changes at the neurovascular unit. We used bilateral common carotid artery stenosis (BCAS), a well-established model of vascular cognitive impairment, combined with an ex vivo preparation that allows pressurization of parenchymal arterioles in a brain slice. Our results demonstrate that mild (~ 30%), chronic hypoperfusion significantly altered the functional integrity of the cortical neurovascular unit. Although pial cerebral perfusion recovered over time, parenchymal arterioles progressively lost tone, exhibiting significant reductions by day 28 post-surgery. We provide supportive evidence for reduced adenosine 1 receptor-mediated vasoconstriction as a potential mechanism in the adaptive response underlying the reduced baseline tone in parenchymal arterioles. In addition, we show that in response to the neuromodulator adenosine, the action potential frequency of cortical pyramidal neurons was significantly reduced in all groups. However, a significant decrease in adenosine-induced hyperpolarization was observed in BCAS 14 days. At the microvascular level, constriction-induced inhibition of pyramidal neurons was significantly compromised in BCAS mice. Collectively, these results suggest that BCAS uncouples vessel-to-neuron communication-vasculo-neuronal coupling-a potential early event in cognitive decline.
Collapse
Affiliation(s)
- Ki Jung Kim
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Juan Ramiro Diaz
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Jessica L Presa
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - P Robinson Muller
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Michael W Brands
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA
| | - Mohammad B Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - David C Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Javier E Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jessica A Filosa
- Department of Physiology, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
35
|
Cogo A, Mangin G, Maïer B, Callebert J, Mazighi M, Chabriat H, Launay JM, Huberfeld G, Kubis N. Increased serum QUIN/KYNA is a reliable biomarker of post-stroke cognitive decline. Mol Neurodegener 2021; 16:7. [PMID: 33588894 PMCID: PMC7885563 DOI: 10.1186/s13024-020-00421-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Strokes are becoming less severe due to increased numbers of intensive care units and improved treatments. As patients survive longer, post-stroke cognitive impairment (PSCI) has become a major health public issue. Diabetes has been identified as an independent predictive factor for PSCI. Here, we characterized a clinically relevant mouse model of PSCI, induced by permanent cerebral artery occlusion in diabetic mice, and investigated whether a reliable biomarker of PSCI may emerge from the kynurenine pathway which has been linked to inflammatory processes. METHODS Cortical infarct was induced by permanent middle cerebral artery occlusion in male diabetic mice (streptozotocin IP). Six weeks later, cognitive assessment was performed using the Barnes maze, hippocampi long-term potentiation using microelectrodes array recordings, and neuronal death, white matter rarefaction and microglia/macrophages density assessed in both hemispheres using imunohistochemistry. Brain and serum metabolites of the kynurenin pathway were measured using HPLC and mass fragmentography. At last, these same metabolites were measured in the patient's serum, at the acute phase of stroke, to determine if they could predict PSCI 3 months later. RESULTS We found long-term spatial memory was impaired in diabetic mice 6 weeks after stroke induction. Synaptic plasticity was completely suppressed in both hippocampi along with increased neuronal death, white matter rarefaction in both striatum, and increased microglial/macrophage density in the ipsilateral hemisphere. Brain and serum quinolinic acid concentrations and quinolinic acid over kynurenic acid ratios were significantly increased compared to control, diabetic and non-diabetic ischemic mice, where PSCI was absent. These putative serum biomarkers were strongly correlated with degradation of long-term memory, neuronal death, microglia/macrophage infiltration and white matter rarefaction. Moreover, we identified these same serum biomarkers as potential predictors of PSCI in a pilot study of stroke patients. CONCLUSIONS we have established and characterized a new model of PSCI, functionally and structurally, and we have shown that the QUIN/KYNA ratio could be used as a surrogate biomarker of PSCI, which may now be tested in large prospective studies of stroke patients.
Collapse
Affiliation(s)
- Adrien Cogo
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, F-75018 Paris, France
- Université de Paris, INSERM U965, CART, F-75010 Paris, France
| | - Gabrielle Mangin
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, F-75018 Paris, France
- Université de Paris, INSERM U965, CART, F-75010 Paris, France
| | - Benjamin Maïer
- Université de Paris, INSERM U965, CART, F-75010 Paris, France
| | - Jacques Callebert
- Université de Paris, Inserm UMR-S 942; Département de Biochimie et de Biologie Moléculaire, APHP, Hôpital Lariboisière, F-75010 Paris, France
| | - Mikael Mazighi
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, F-75018 Paris, France
- Service de Neurologie, APHP, Hôpital Lariboisière, F-75010 Paris, France
| | - Hughes Chabriat
- Service de Neurologie, APHP, Hôpital Lariboisière, F-75010 Paris, France
| | - Jean-Marie Launay
- Université de Paris, Inserm UMR-S 942; Département de Biochimie et de Biologie Moléculaire, APHP, Hôpital Lariboisière, F-75010 Paris, France
| | - Gilles Huberfeld
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, F-75005 Paris, France
- Clinical Neurophysiology department, APHP, Pitie-Salpetriere Hospital, Sorbonne Université, APHP, F-75013 Paris, France
| | - Nathalie Kubis
- Université de Paris, INSERM U1148, Laboratory for Vascular Translational Science, F-75018 Paris, France
- Université de Paris, INSERM U965, CART, F-75010 Paris, France
- Service de Physiologie Clinique-Explorations Fonctionnelles, DMU DREAM, APHP, Hôpital Lariboisière, F-75010 Paris, France
| |
Collapse
|
36
|
Zhang X, Liu X, Xia R, Li N, Liao X, Chen Z. Chinese herbal medicine for vascular cognitive impairment in cerebral small vessel disease: A protocol for systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2020; 99:e22455. [PMID: 33019432 PMCID: PMC7535689 DOI: 10.1097/md.0000000000022455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) is the most common etiology of vascular cognitive impairment (VCI). VCI in CSVD (CSVD-VCI) shows a progressive course with multiple stages and is also associated with dysfunctions such as gait, emotional and behavioral, and urinary disturbances, which seriously affect the life quality of elderly people. In mainland China, Chinese herbal medicine (CHM) is clinically used for CSVD-VCI and presenting positive efficacy, but the evidence revealed in relevant clinical trials has not been systematically evaluated. The purpose of this study is to assess the current evidence available for the clinical efficacy and safety of CHM for CSVD-VCI. METHODS A literature search of published RCTs up to April 30, 2020, has been conducted in the following 7 electronic databases: PubMed, Embase, the Cochrane Library, Chinese National Knowledge Infrastructure Database (CNKI), Chinese Science and Technology Journals Database (VIP), Wanfang Database, and Chinese Biomedical Literature Service System (SinoMed). For unpublished studies, 2 clinical trial online registration websites will be searched: ClinicalTrials.gov and Chinese Clinical Trial Registry (ChiCTR). Only randomized controlled trials (RCTs) using CHM in the treatment of patients with CSVD-VCI, which compares CHM with no treatment, placebo, or other conventional treatments, will be included in this systematic review. Primary outcomes will be set as acknowledged scales measuring cognitive function. Secondary outcomes will involve activities of daily living, behavioral, and psychological symptoms, global performance of dementia, neurological function, biological markers of endothelial dysfunction, the clinical effective rate, and adverse events. After screening studies and extracting data, the Cochrane Collaborations tool for assessing risk of bias will be applied to assess the methodological quality of included RCTs. Review Manager Version 5.3 software will be used for data synthesis and statistical analysis. Subgroup analyses, sensitivity analyses, and meta-regression will be conducted to detect potential sources of heterogeneity. The funnel plot and Eggers test will be developed to evaluate publication bias, if available. We will perform the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to appraise the quality of evidence. RESULTS Evidence exhibited in this systematic review will provide practical references in the field of CHM treating CSVD-VCI. Moreover, our detailed appraisals of methodological deficiencies of relevant RCTs will offer helpful advice for researchers who are designing trials of CHMs in the treatment of CSVD-VCI. CONCLUSION The conclusion about the clinical efficacy and safety of CHM for CSVD-VCI will be provided for clinical plans, decisions, and policy developments in the full version of this systematic review. SYSTEMATIC REVIEW REGISTRATION INPLASY202080120.
Collapse
Affiliation(s)
| | | | - Ruyu Xia
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine
| | | | - Xing Liao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | | |
Collapse
|
37
|
Chronic stepwise cerebral hypoperfusion differentially induces synaptic proteome changes in the frontal cortex, occipital cortex, and hippocampus in rats. Sci Rep 2020; 10:15999. [PMID: 32994510 PMCID: PMC7524772 DOI: 10.1038/s41598-020-72868-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
During chronic cerebral hypoperfusion (CCH), the cerebral blood flow gradually decreases, leading to cognitive impairments and neurodegenerative disorders, such as vascular dementia. The reduced oxygenation, energy supply induced metabolic changes, and insufficient neuroplasticity could be reflected in the synaptic proteome. We performed stepwise bilateral common carotid occlusions on rats and studied the synaptic proteome changes of the hippocampus, occipital and frontal cortices. Samples were prepared and separated by 2-D DIGE and significantly altered protein spots were identified by HPLC–MS/MS. We revealed an outstanding amount of protein changes in the occipital cortex compared to the frontal cortex and the hippocampus with 94, 33, and 17 proteins, respectively. The high alterations in the occipital cortex are probably due to the hypoxia-induced retrograde degeneration of the primary visual cortex, which was demonstrated by electrophysiological experiments. Altered proteins have functions related to cytoskeletal organization and energy metabolism. As CCH could also be an important risk factor for Alzheimer’s disease (AD), we investigated whether our altered proteins overlap with AD protein databases. We revealed a significant amount of altered proteins associated with AD in the two neocortical areas, suggesting a prominent overlap with the AD pathomechanism.
Collapse
|
38
|
Ward NS, Carmichael ST. Blowing up Neural Repair for Stroke Recovery: Preclinical and Clinical Trial Considerations. Stroke 2020; 51:3169-3173. [PMID: 32951539 DOI: 10.1161/strokeaha.120.030486] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The repair and recovery of the brain after stroke is a field that is emerging in its preclinical science and clinical trials. However, recent large, multicenter clinical trials have been negative, and conflicting results emerge on biological targets in preclinical studies. The coalescence of negative clinical translation and confusion in preclinical studies raises the suggestion that perhaps the field of stroke recovery faces a fate similar to stroke neuroprotection, with interesting science ultimately proving difficult to translate to the clinic. This review highlights improvements in 4 areas of the stroke neural repair field that should reorient the field toward successful clinical translation: improvements in rodent genetic models of stroke recovery, consideration of the biological target in stroke recovery, stratification in clinical trials, and the use of appropriate clinical trial end points.
Collapse
Affiliation(s)
- Nick S Ward
- Department of Clinical and Motor Neuroscience, UCL Queen Square Institute of Neurology, London (N.S.W.)
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA (S.T.C.)
| |
Collapse
|
39
|
Stringer MS, Lee H, Huuskonen MT, MacIntosh BJ, Brown R, Montagne A, Atwi S, Ramirez J, Jansen MA, Marshall I, Black SE, Zlokovic BV, Benveniste H, Wardlaw JM. A Review of Translational Magnetic Resonance Imaging in Human and Rodent Experimental Models of Small Vessel Disease. Transl Stroke Res 2020; 12:15-30. [PMID: 32936435 PMCID: PMC7803876 DOI: 10.1007/s12975-020-00843-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Cerebral small vessel disease (SVD) is a major health burden, yet the pathophysiology remains poorly understood with no effective treatment. Since much of SVD develops silently and insidiously, non-invasive neuroimaging such as MRI is fundamental to detecting and understanding SVD in humans. Several relevant SVD rodent models are established for which MRI can monitor in vivo changes over time prior to histological examination. Here, we critically review the MRI methods pertaining to salient rodent models and evaluate synergies with human SVD MRI methods. We found few relevant publications, but argue there is considerable scope for greater use of MRI in rodent models, and opportunities for harmonisation of the rodent-human methods to increase the translational potential of models to understand SVD in humans. We summarise current MR techniques used in SVD research, provide recommendations and examples and highlight practicalities for use of MRI SVD imaging protocols in pre-selected, relevant rodent models.
Collapse
Affiliation(s)
- Michael S Stringer
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Hedok Lee
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Mikko T Huuskonen
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Rosalind Brown
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sarah Atwi
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joel Ramirez
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Maurits A Jansen
- Edinburgh Preclinical Imaging, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Ian Marshall
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Sandra E Black
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada.,Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Joanna M Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
40
|
Lee NK, Kim H, Chang JW, Jang H, Kim H, Yang J, Kim J, Son JP, Na DL. Exploring the Potential of Mesenchymal Stem Cell-Based Therapy in Mouse Models of Vascular Cognitive Impairment. Int J Mol Sci 2020; 21:ijms21155524. [PMID: 32752272 PMCID: PMC7432487 DOI: 10.3390/ijms21155524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Closely linked to Alzheimer’s disease (AD), the pathological spectrum of vascular cognitive impairment (VCI) is known to be wide and complex. Considering that multiple instead of a single targeting approach is considered a treatment option for such complicated diseases, the multifaceted aspects of mesenchymal stem cells (MSCs) make them a suitable candidate to tackle the heterogeneity of VCI. MSCs were delivered via the intracerebroventricular (ICV) route in mice that were subjected to VCI by carotid artery stenosis. VCI was induced in C57BL6/J mice wild type (C57VCI) mice by applying a combination of ameroid constrictors and microcoils, while ameroid constrictors alone were bilaterally applied to 5xFAD (transgenic AD mouse model) mice (5xVCI). Compared to the controls (minimal essential medium (MEM)-injected C57VCI mice), changes in spatial working memory were not noted in the MSC-injected C57VCI mice, and unexpectedly, the mortality rate was higher. In contrast, compared to the MEM-injected 5xVCI mice, mortality was not observed, and the spatial working memory was also improved in MSC-injected 5xVCI mice. Disease progression of the VCI-induced mice seems to be affected by the method of carotid artery stenosis and due to this heterogeneity, various factors must be considered to maximize the therapeutic benefits exerted by MSCs. Factors, such as the optimal MSC injection time point, cell concentration, sacrifice time point, and immunogenicity of the transplanted cells, must all be adequately addressed so that MSCs can be appropriately and effectively used as a treatment option for VCI.
Collapse
Affiliation(s)
- Na Kyung Lee
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.W.C.); (H.J.)
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Hyeongseop Kim
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.W.C.); (H.J.)
- Stem Cell Institute, ENCell Co. Ltd., Seoul 06072, Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.W.C.); (H.J.)
- Stem Cell Institute, ENCell Co. Ltd., Seoul 06072, Korea
| | - Hyemin Jang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.W.C.); (H.J.)
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| | - Hunnyun Kim
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.Y.); (J.K.)
| | - Jehoon Yang
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.Y.); (J.K.)
| | - Jeyun Kim
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.Y.); (J.K.)
| | - Jeong Pyo Son
- Laboratory Animal Center, Osong Medical Innovation Foundation, Cheongju 28160, Korea;
| | - Duk L. Na
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea;
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (H.K.); (J.W.C.); (H.J.)
- Samsung Alzheimer Research Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
- Correspondence: ; Tel.: +82-2-3410-3591; Fax: +82-2-3412-3423
| |
Collapse
|
41
|
Lyu F, Wu D, Wei C, Wu A. Vascular cognitive impairment and dementia in type 2 diabetes mellitus: An overview. Life Sci 2020; 254:117771. [DOI: 10.1016/j.lfs.2020.117771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
|
42
|
Yang Y, Zhao L, Li N, Dai C, Yin N, Chu Z, Duan X, Niu X, Yan P, Lv P. Estrogen Exerts Neuroprotective Effects in Vascular Dementia Rats by Suppressing Autophagy and Activating the Wnt/β-Catenin Signaling Pathway. Neurochem Res 2020; 45:2100-2112. [PMID: 32719979 DOI: 10.1007/s11064-020-03072-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023]
Abstract
Vascular dementia (VD) is a clinical syndrome of acquired cognitive dysfunction caused by various cerebrovascular factors. Estrogen is a steroid hormone involved in promoting neuronal survival and in regulating many signaling pathways. However, the mechanism by which it confers neuroprotective effects in VD remains unclear. Here, we aimed to investigate the effect of estrogen on neuronal injury and cognitive impairment in VD rats. Adult female rats were randomly divided into four groups (sham, model, estrogen early and estrogen later treatment) and received sham surgery or bilateral ovariectomy and permanent occlusion of bilateral common carotid arteries (BCCAO). The early treatment group received daily intraperitoneal injections of 17β-estradiol (100 µg/kg/day) for 8 weeks starting the day after BCCAO. The later treatment group was administered the same starting 1 week after BCCAO. Learning and memory functions were assessed using the Morris water maze. Morphological changes within the hippocampal CA1 region were observed by hematoxylin/eosin staining and electron microscopy. Expression of proteins associated with autophagy and signaling were detected by immunohistochemical staining and Western blot. We found that estrogen significantly alleviated cognitive damage and neuronal injury and reduced the expression of Beclin1 and LC3B, indicating a suppression of autophagy. Moreover, estrogen enhanced expression of β-catenin and Cyclin D1, while reducing glycogen synthase kinase 3β, suggesting activation of Wnt/β-catenin signaling. These results indicate that estrogen ameliorates learning and memory deficiencies in VD rats, and that this neuroprotective effect may be explained by the suppression of autophagy and activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Neurology, Hebei Medical University, Shijiazhuang, 050017, China.,Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Lei Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Na Li
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Congwei Dai
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Nan Yin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Zhaoping Chu
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Xiaoyan Duan
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Xiaoli Niu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Ping Yan
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China.
| |
Collapse
|
43
|
McFall A, Hietamies TM, Bernard A, Aimable M, Allan SM, Bath PM, Brezzo G, Carare RO, Carswell HV, Clarkson AN, Currie G, Farr TD, Fowler JH, Good M, Hainsworth AH, Hall C, Horsburgh K, Kalaria R, Kehoe P, Lawrence C, Macleod M, McColl BW, McNeilly A, Miller AA, Miners S, Mok V, O’Sullivan M, Platt B, Sena ES, Sharp M, Strangward P, Szymkowiak S, Touyz RM, Trueman RC, White C, McCabe C, Work LM, Quinn TJ. UK consensus on pre-clinical vascular cognitive impairment functional outcomes assessment: Questionnaire and workshop proceedings. J Cereb Blood Flow Metab 2020; 40:1402-1414. [PMID: 32151228 PMCID: PMC7307003 DOI: 10.1177/0271678x20910552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 11/15/2022]
Abstract
Assessment of outcome in preclinical studies of vascular cognitive impairment (VCI) is heterogenous. Through an ARUK Scottish Network supported questionnaire and workshop (mostly UK-based researchers), we aimed to determine underlying variability and what could be implemented to overcome identified challenges. Twelve UK VCI research centres were identified and invited to complete a questionnaire and attend a one-day workshop. Questionnaire responses demonstrated agreement that outcome assessments in VCI preclinical research vary by group and even those common across groups, may be performed differently. From the workshop, six themes were discussed: issues with preclinical models, reasons for choosing functional assessments, issues in interpretation of functional assessments, describing and reporting functional outcome assessments, sharing resources and expertise, and standardization of outcomes. Eight consensus points emerged demonstrating broadly that the chosen assessment should reflect the deficit being measured, and therefore that one assessment does not suit all models; guidance/standardisation on recording VCI outcome reporting is needed and that uniformity would be aided by a platform to share expertise, material, protocols and procedures thus reducing heterogeneity and so increasing potential for collaboration, comparison and replication. As a result of the workshop, UK wide consensus statements were agreed and future priorities for preclinical research identified.
Collapse
Affiliation(s)
- Aisling McFall
- Institute of Cardiovascular & Medical Sciences, College of
Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow,
UK
| | - Tuuli M Hietamies
- Institute of Cardiovascular & Medical Sciences, College of
Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow,
UK
| | - Ashton Bernard
- Institute of Cardiovascular & Medical Sciences, College of
Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow,
UK
| | - Margaux Aimable
- Centre for Discovery Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Stuart M Allan
- Lydia Becker Institute of Immunology and Inflammation, Division
of Neuroscience and Experimental Psychology, School of Biological Sciences,
Faculty of Biology, Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester, UK
| | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience,
University of Nottingham, Nottingham, UK
| | - Gaia Brezzo
- Centre for Discovery Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Roxana O Carare
- Faculty of Medicine, University of Southampton, Southampton,
UK
| | - Hilary V Carswell
- University of Strathclyde, Strathclyde Institute of Pharmacy and
Biomedical Science, Glasgow, UK
| | - Andrew N Clarkson
- The Department of Anatomy, Brain Health Research Centre and
Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Gillian Currie
- Centre for Discovery Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Tracy D Farr
- School of Life Sciences, University of Nottingham, Nottingham ,
UK
| | - Jill H Fowler
- Centre for Discovery Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Mark Good
- School of Psychology, Cardiff University, Cardiff, UK
| | - Atticus H Hainsworth
- Molecular & Clinical Sciences Research Institute, St
George’s University of London, London, UK
| | - Catherine Hall
- School of Psychology, University of Sussex, Brighton, UK
| | - Karen Horsburgh
- Centre for Discovery Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Rajesh Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle Upon
Tyne, UK
| | - Patrick Kehoe
- Institute of Clinical Neurosciences, University of Bristol,
Bristol, UK
| | - Catherine Lawrence
- Lydia Becker Institute of Immunology and Inflammation, Division
of Neuroscience and Experimental Psychology, School of Biological Sciences,
Faculty of Biology, Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester, UK
| | - Malcolm Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Barry W McColl
- Centre for Discovery Brain Sciences, University of Edinburgh,
Edinburgh, UK
- UK Dementia Research Institute, Edinburgh Medical School,
University of Edinburgh, Edinburgh, UK
| | - Alison McNeilly
- School of Medicine, University of Dundee, Ninewells Hospital,
Dundee, Scotland
| | - Alyson A Miller
- Institute of Cardiovascular & Medical Sciences, College of
Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow,
UK
| | - Scott Miners
- Institute of Clinical Neurosciences, University of Bristol,
Bristol, UK
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Therese Pei Fong Chow Research
Centre for Prevention of Dementia, Division of Neurology, Department of Medicine
and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Michael O’Sullivan
- Faculty of Medicine, The University of Queensland, Queensland,
Australia
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen,
Aberdeen, Scotland
| | - Emily S Sena
- Centre for Clinical Brain Sciences, University of Edinburgh,
Edinburgh, UK
| | - Matthew Sharp
- Faculty of Medicine, University of Southampton, Southampton,
UK
| | - Patrick Strangward
- Lydia Becker Institute of Immunology and Inflammation, Division
of Neuroscience and Experimental Psychology, School of Biological Sciences,
Faculty of Biology, Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester, UK
| | - Stefan Szymkowiak
- Centre for Discovery Brain Sciences, University of Edinburgh,
Edinburgh, UK
- UK Dementia Research Institute, Edinburgh Medical School,
University of Edinburgh, Edinburgh, UK
| | - Rhian M Touyz
- Institute of Cardiovascular & Medical Sciences, College of
Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow,
UK
| | | | - Claire White
- Lydia Becker Institute of Immunology and Inflammation, Division
of Neuroscience and Experimental Psychology, School of Biological Sciences,
Faculty of Biology, Medicine and Health, The University of Manchester,
Manchester Academic Health Science Centre, Manchester, UK
| | - Chris McCabe
- Institute of Neuroscience & Psychology, College of Medical,
Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Lorraine M Work
- Institute of Cardiovascular & Medical Sciences, College of
Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow,
UK
| | - Terence J Quinn
- Institute of Cardiovascular & Medical Sciences, College of
Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow,
UK
| |
Collapse
|
44
|
Epimedium flavonoids improve cognitive impairment and white matter lesions induced by chronic cerebral hypoperfusion through inhibiting the Lingo-1/Fyn/ROCK pathway and activating the BDNF/NRG1/PI3K pathway in rats. Brain Res 2020; 1743:146902. [PMID: 32446949 DOI: 10.1016/j.brainres.2020.146902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 01/24/2023]
Abstract
Chronic cerebral hypoperfusion is a common cause of cerebral small vascular disease (CSVD). White matter (WM) lesions are the typical pathological manifestation of CSVD and contribute to cognitive decline. Epimedium flavonoids (EF) are the main component in Epimedium brevicornu Maxim., which is commonly used in traditional Chinese medicine. The purpose of this study was to investigate the effects of EF on cognitive impairment and the underlying mechanisms in a CSVD rat model induced with chronic cerebral hypoperfusion. The model was established by permanent bilateral common carotid artery occlusion (2VO) in rats. EF (50, 100, and 200 mg/kg) was intragastrically administered once a day for 12 weeks starting 2 weeks after 2VO surgery. The learning and memory capacity of the rats were measured using the Morris water maze and step-through tests. WM lesions were observed by MRI-diffusion tensor imaging, transmission electron microscopy, and LFB staining. Oligodendrocytes were detected by immunohistochemistry. Western blotting assay was used to determine the level of protein expression. The results showed that EF significantly improved learning and memory impairment, alleviated WM nerve fiber injuries and demyelination, and increased the number of mature oligodendrocytes in the corpus callosum, subcortical WM, and periventricular WM in 2VO rats. Mechanistically, EF reduced the expression of Lingo-1 and ROCK2 and increased the levels of phosphorylated (p-) Fyn, brain-derived neurotrophic factor (BDNF), TrkB, neuregulin-1 (NRG-1), p-ErbB4, PI3K p85 and p110α, p-Akt, and p-CREB in the corpus callosum of 2VO rats. These results suggest that EF may improve cognitive impairment and WM lesions induced by chronic cerebral hypoperfusion through inhibiting the Lingo-1/Fyn/ROCK pathway and activating the BDNF/TrkB, NRG-1/ErbB4, and the downstream PI3K/Akt/CREB pathways in WM. Thus, EF can be used as a potential neuroprotective agent in CSVD therapy.
Collapse
|
45
|
Johnson AC, Miller JE, Cipolla MJ. Memory impairment in spontaneously hypertensive rats is associated with hippocampal hypoperfusion and hippocampal vascular dysfunction. J Cereb Blood Flow Metab 2020; 40:845-859. [PMID: 31088235 PMCID: PMC7168795 DOI: 10.1177/0271678x19848510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We investigated the effect of chronic hypertension on hippocampal arterioles (HippAs) and hippocampal perfusion as underlying mechanisms of memory impairment, and how large artery stiffness relates to HippA remodeling. Using male spontaneously hypertensive rats (SHR) and normotensive Wistar rats (n = 12/group), long-term (LTM) and spatial memory were tested using object recognition and spontaneous alternation tasks. Hippocampal blood flow was measured via hydrogen clearance basally and during hypercapnia. Reactivity of isolated and pressurized HippAs to pressure and pharmacological activators and inhibitors was investigated. To determine large artery stiffness, distensibility and elastin content were measured in thoracic aorta. SHR had impaired LTM and spatial memory associated with decreased basal blood flow (68 ± 12 mL/100 g/min) vs. Wistar (111 ± 28 mL/100 g/min, p < 0.01) that increased during hypercapnia similarly between groups. Compared to Wistar, HippAs from SHR had increased tone at 60 mmHg (58 ± 9% vs. 37 ± 7%, p < 0.01), and decreased reactivity to small- and intermediate-conductance calcium-activated potassium (SK/IK) channel activation. HippAs in both groups were unaffected by NOS inhibition. Decreased elastin content correlated with increased stiffness in aorta of SHR that was associated with increased stiffness and hypertrophic remodeling of HippAs. Hippocampal vascular dysfunction during hypertension could potentiate memory deficits and may provide a therapeutic target to limit vascular cognitive impairment.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Justin E Miller
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA.,Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA.,Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
46
|
Bonifácio MJ, Sousa F, Aires C, Loureiro AI, Fernandes-Lopes C, Pires NM, Palma PN, Moser P, Soares-da-Silva P. Preclinical pharmacological evaluation of the fatty acid amide hydrolase inhibitor BIA 10-2474. Br J Pharmacol 2020; 177:2123-2142. [PMID: 31901141 PMCID: PMC7161550 DOI: 10.1111/bph.14973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/17/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose In 2016, one person died and four others had mild‐to‐severe neurological symptoms during a phase I trial of the fatty acid amide hydrolase (FAAH) inhibitor BIA 10‐2474. Experimental Approach Pharmacodynamic and pharmacokinetic studies were performed with BIA 10‐2474, PF‐04457845 and JNJ‐42165279 using mice, rats and human FAAH expressed in COS cells. Selectivity was evaluated by activity‐based protein profiling (APBB) in rats. BIA 10‐2474 effect in stroke‐prone spontaneously hypertensive rats (SHRSP) was investigated. Key Results BIA 10‐2474 was 10‐fold less potent than PF‐04457845 in inhibiting human FAAH in situ but inhibited mouse brain and liver FAAH with ED50 values of 13.5 and 6.2 μg·kg−1, respectively. Plasma and brain BIA 10‐2474 levels were consistent with in situ potency and neither BIA 10‐2474 nor its metabolites accumulated following repeat administration. FAAH and α/β‐hydrolase domain containing 6 were the primary targets of BIA 10‐2474 and, at higher exposure levels, ABHD11, PNPLA6, PLA2G15, PLA2G6 and androgen‐induced protein 1. At 100 mg·kg−1 for 28 days, the level of several lipid species containing arachidonic acid increased. Daily treatment of SHRSP with BIA 10‐2474 did not affect mortality rate or increased the incidence of haemorrhage or oedema in surviving animals. Conclusions and Implications BIA 10‐2474 potently inhibits FAAH in vivo, similarly to PF‐04457845 and interacts with a number of lipid processing enzymes, some previously identified in human cells as off‐targets particularly at high levels of exposure. These interactions occurred at doses used in toxicology studies, but the implication of these off‐targets in the clinical trial accident remains unclear.
Collapse
Affiliation(s)
- Maria-João Bonifácio
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Filipa Sousa
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Cátia Aires
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Ana I Loureiro
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Carlos Fernandes-Lopes
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Nuno M Pires
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Pedro Nuno Palma
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Paul Moser
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal
| | - Patrício Soares-da-Silva
- Department of Research, Bial-Portela & Cª., S.A., Coronado (S Mamede & S Romão), Portugal.,Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| |
Collapse
|
47
|
Xia M, Ruan Z, Chen B, Wang Y, Zhou Z, Ren S, Wu L, Tang N. Wuzang Wenyang Huayu decoction regulates differentially expressed transcripts in the rats' hippocampus after cerebral hypoperfusion. J Cell Mol Med 2020; 24:294-303. [PMID: 31705584 PMCID: PMC6933406 DOI: 10.1111/jcmm.14723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 11/30/2022] Open
Abstract
The modified Wenyang Huayu decoction has been widely used to treat vascular dementia in China for thousands of years. We have previously proved that a modified version, Wuzang Wenyang Huayu decoction has the potential to be a more effective clinical treatment that can attenuate cerebral ischaemic injury. However, the global transcript profile and signalling conduction pathways regulated by this recipe remains unclear. This study established a two-vessel occlusion rat model by bilateral common carotid artery occlusion. Two groups of rats were intragastrically treated Wuzang Wenyang Huayu 2.5 g/kg vs or Piracetam 0.15 g/kg for 2 weeks. Learning and memory abilities were measured with Morris water maze. Neuronal plasticity was observed by HE staining. Differentially expressed transcripts of rat hippocampus were analysed by transcriptomics with Illumina HiSeq2500 platform. Results showed that Wuzang Wenyang Huayu decoction significantly alleviated learning, memory deficits, coordination dysfunction and prevented hippocampus cellular injury; Results further revealed the increased gene expression in KEGG metabolic pathways (MT-ND2. MT-ND3, MT-ND4, MT-ND4L, MT-ND5 and MT-ATP8) and genes involved in signal transduction, carcinogenesis, immune system, endocrine system, nervous system etc (Results further revealed differential expression of genes involved in various systems, including MT-ND2) Our discovery is likely to provide new insights to molecular mechanisms of Wuzang Wenyang Huayu regarding hippocampal transcripts in a murine vascular dementia model.
Collapse
Affiliation(s)
- Meng Xia
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory for Foundational Research of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Ziyun Ruan
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Ben Chen
- Guangxi Key Laboratory for Foundational Research of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yunqiao Wang
- School of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory for Foundational Research of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Zengzi Zhou
- The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Shiding Ren
- Guangxi Key Laboratory for Foundational Research of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- The First Affiliated Hospital to Guangxi University of Chinese Medicine, Nanning, China
| | - Lin Wu
- Guangxi Key Laboratory for Foundational Research of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- The First Affiliated Hospital to Guangxi University of Chinese Medicine, Nanning, China
| | - Nong Tang
- Guangxi Key Laboratory for Foundational Research of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- The First Affiliated Hospital to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
48
|
Washida K, Hattori Y, Ihara M. Animal Models of Chronic Cerebral Hypoperfusion: From Mouse to Primate. Int J Mol Sci 2019; 20:ijms20246176. [PMID: 31817864 PMCID: PMC6941004 DOI: 10.3390/ijms20246176] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/17/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Vascular cognitive impairment (VCI) or vascular dementia occurs as a result of brain ischemia and represents the second most common type of dementia after Alzheimer’s disease. To explore the underlying mechanisms of VCI, several animal models of chronic cerebral hypoperfusion have been developed in rats, mice, and primates. We established a mouse model of chronic cerebral hypoperfusion by narrowing the bilateral common carotid arteries with microcoils, eventually resulting in hippocampal atrophy. In addition, a mouse model of white matter infarct-related damage with cognitive and motor dysfunction has also been established by asymmetric common carotid artery surgery. Although most experiments studying chronic cerebral hypoperfusion have been performed in rodents because of the ease of handling and greater ethical acceptability, non-human primates appear to represent the best model for the study of VCI, due to their similarities in much larger white matter volume and amyloid β depositions like humans. Therefore, we also recently developed a baboon model of VCI through three-vessel occlusion (both the internal carotid arteries and the left vertebral artery). In this review, several animal models of chronic cerebral hypoperfusion, from mouse to primate, are extensively discussed to aid in better understanding of pathophysiology of VCI.
Collapse
Affiliation(s)
- Kazuo Washida
- Correspondence: ; Tel.: +81-6-6170-1070; Fax: +81-6-6170-1782
| | | | | |
Collapse
|
49
|
Treadmill Exercise Suppresses Cognitive Decline and Increases White Matter Oligodendrocyte Precursor Cells in a Mouse Model of Prolonged Cerebral Hypoperfusion. Transl Stroke Res 2019; 11:496-502. [PMID: 31606888 DOI: 10.1007/s12975-019-00734-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
Clinical evidence suggests that patients with subcortical ischemic vascular dementia (SIVD) perform better at cognitive tests after exercise. However, the underlying mechanism for this effect is largely unknown. Here, we examined how treadmill exercise changes the cognitive function and white matter cellular pathology in a mouse model of SIVD. Prolonged cerebral hypoperfusion was induced in 2-month-old male C57BL/6J mice by bilateral common carotid artery stenosis. A week later, the mice were randomly divided into a group that received 6-week treadmill exercise and a sedentary group for observation. In multiple behavioral tests (Y-maze, novel object recognition, and Morris water maze tests), the treadmill exercise training was shown to ameliorate cognitive decline in the hypoperfused SIVD mice. In addition, immunohistological analyses confirmed that there was a larger population of oligodendrocyte precursor cells in the subventricular zone of exercised versus sedentary mice. Although further investigations are needed to confirm a causal link between these findings, our study establishes a model and cellular foundation for investigating the mechanisms through which exercise preserves cognitive function in SIVD.
Collapse
|
50
|
Barry Erhardt E, Pesko JC, Prestopnik J, Thompson J, Caprihan A, Rosenberg GA. Biomarkers identify the Binswanger type of vascular cognitive impairment. J Cereb Blood Flow Metab 2019; 39:1602-1612. [PMID: 29513153 PMCID: PMC6681525 DOI: 10.1177/0271678x18762655] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 02/05/2018] [Indexed: 11/16/2022]
Abstract
Binswanger's disease is a form of subcortical ischemic vascular disease (SIVD-BD) with extensive white matter changes. To test the hypothesis that biomarkers could improve classification of SIVD-BD, we recruited 62 vascular cognitive impairment and dementia (VCID) patients. Multimodal biomarkers were collected at entry into the study based on clinical and neuropsychological testing, multimodal magnetic resonance imaging (MRI), and cerebrospinal fluid (CSF) analysis. The patients' diagnoses were confirmed by long-term follow-up, and they formed a "training set" to test classification methods, including (1) subcortical ischemic vascular disease score (SIVDS), (2) exploratory factor analysis (EFA), (3) logistic regression (LR), and (4) random forest (RF). A subsequently recruited cohort of 43 VCID patients with provisional diagnoses were used as a "test" set to calculate the probability of SIVD-BD based on biomarkers obtained at entry. We found that N-acetylaspartate (NAA) on proton magnetic resonance spectroscopy (1H-MRS) was the best variable for classification, followed by matrix metalloproteinase-2 in CSF and blood-brain barrier permeability on MRI. Both LR and RF performed better in diagnosing SIVD-BD than either EFA or SIVDS. Two-year follow-up of provisional diagnosis patients confirmed the accuracy of statistically derived classifications. We propose that biomarker-based classification methods could diagnose SIVD-BD patients earlier, facilitating clinical trials.
Collapse
Affiliation(s)
- Erik Barry Erhardt
- Departments of Mathematics and
Statistics,
University
of New Mexico, Albuquerque, NM, USA
- MIND
Research Network, Albuquerque, NM, USA
| | - John C Pesko
- Departments of Mathematics and
Statistics,
University
of New Mexico, Albuquerque, NM, USA
| | - Jillian Prestopnik
- Department of Neurology,
University
of New Mexico Health Sciences Center,
Albuquerque, NM, USA
| | - Jeffrey Thompson
- Department of Neurology,
University
of New Mexico Health Sciences Center,
Albuquerque, NM, USA
| | | | - Gary A Rosenberg
- Department of Neurology,
University
of New Mexico Health Sciences Center,
Albuquerque, NM, USA
| |
Collapse
|