1
|
Meng K, Meng F, Wu Y, Lin L. Multi-omics analysis identified extracellular vesicles as biomarkers for cardiovascular diseases. Talanta 2024; 280:126710. [PMID: 39213888 DOI: 10.1016/j.talanta.2024.126710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cell-derived extracellular vesicles (EVs) have emerged as a promising non-invasive liquid biopsy technique due to their accessibility and their ability to encapsulate and transport diverse biomolecules. EVs have garnered substantial research interest, notably in cardiovascular diseases (CVDs), where their roles in pathophysiology and as diagnostic and prognostic biomarkers are increasingly recognized. This review provides a comprehensive overview of EVs, starting with their origins, followed by the techniques used for their isolation and characterization. We explore the diverse cargo of EVs, including nucleic acids, proteins, lipids, and metabolites, highlighting their roles in intercellular communication and as potential biomarkers. We then delve into the application of genomics, transcriptomics, proteomics, and metabolomics in the analysis of EVs, particularly within the context of CVDs. Finally, we discuss how integrated multi-omics approaches are unveiling novel biomarkers, offering fresh insights into the diagnosis and prognosis of CVDs. This review underscores the growing importance of EVs in clinical diagnostics and the potential of multi-omics to propel future advancements in CVD biomarker discovery.
Collapse
Affiliation(s)
- Ke Meng
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Fanqi Meng
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361004, Fujian, China
| | - Yuan Wu
- Department of Cardiac Surgery, Yuebei People's Hospital, Shaoguan, Guangdong, China.
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Boeckmans J, Michel M, Gieswinkel A, Tüscher O, Konstantinides SV, König J, Münzel T, Lackner KJ, Kerahrodi JG, Schuster AK, Wild PS, Galle PR, Schattenberg JM. Inflammation in liver fibrosis and atrial fibrillation: A prospective population-based proteomic study. JHEP Rep 2024; 6:101171. [PMID: 39380717 PMCID: PMC11460462 DOI: 10.1016/j.jhepr.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/14/2024] [Accepted: 07/15/2024] [Indexed: 10/10/2024] Open
Abstract
Background & Aims Elevated liver stiffness has been associated with atrial fibrillation (AFib) in the general population. The mechanism underlying this association is unclear. Methods Participants were recruited from the general population and prospectively enrolled with follow-up for 5 years. The fibrosis-4 (FIB-4) index was used as a surrogate marker for liver fibrosis. Proteomics analysis was performed using the 92-target Olink inflammation panel. Validation was performed using the NAFLD fibrosis score (NFS), aspartate aminotransferase to platelet index (APRI), and repeat confirmation proteomics. Results A sample of 11,509 participants with a mean age of 54.0 ± 11.1 years, 51.3% women, and a median FIB-4 index of 0.85 (0.65/1.12), was used. The FIB-4 index was predictive for prevalent (FIB-4 index adjusted odds ratio (aOR) per SD: 1.100 with 95% CI 1.011-1.196; p = 0.026), but not incident AFib (log[FIB-4 index]) adjusted hazard ratio: 1.125 with 95% CI 0.943-1.342, p = 0.19). Elastic net regularized regression identified CCL20, DNER, and CXCL10 for prevalent AFib, and AXIN1, CXCL10, and Flt3L for the log(FIB-4 index) (per SD) as most important in common regulated proteins. The relationship between the FIB-4 index, the identified proteins, and AFib was relevant and reproduced at the 5-year follow-up for CXCL10 after adjusting for confounders (log[FIB-4 index] per SD - CXCL10 [per SD] adjusted β 0.160 with 95% CI 0.127-0.194, p <0.0001; CXCL10 [per SD] - AFib aOR 1.455 with 95% CI 1.217-1.741, p <0.0001), reproduced using the NFS and APRI, and corresponding to increased serum levels. Conclusions CXCL10 is linked to liver fibrosis, as determined by the FIB-4 index, and to prevalent AFib. Impact and implications How elevated liver stiffness relates to atrial fibrillation in the general population remains to be clarified. We hypothesized that systemic inflammation against a background of liver fibrosis produced from metabolic dysfunction-associated steatotic liver disease (MASLD), is involved in the pathophysiology of atrial fibrillation. Using large-scale targeted proteomics, we found that CXCL10 is related to both liver fibrosis, as defined by the fibrosis-4 index, and to atrial fibrillation. These results can aid evidence-based drug development for patients with atrial fibrillation and MASLD-related liver fibrosis.
Collapse
Affiliation(s)
- Joost Boeckmans
- Metabolic Liver Research Center, Department of Medicine, University Medical Center Mainz, Mainz, Germany
- I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
- In Vitro Liver Disease Modelling Team, Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Michel
- Metabolic Liver Research Center, Department of Medicine, University Medical Center Mainz, Mainz, Germany
- I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Alexander Gieswinkel
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Oliver Tüscher
- Clinic for Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Stavros V. Konstantinides
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Germany
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Jochem König
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jasmin Ghaemi Kerahrodi
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander K. Schuster
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Philipp S. Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Peter R. Galle
- I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
| | - Jörn M. Schattenberg
- Metabolic Liver Research Center, Department of Medicine, University Medical Center Mainz, Mainz, Germany
- I. Department of Medicine, University Medical Center Mainz, Mainz, Germany
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
3
|
Tsai PC, Ko AMS, Chen YL, Chiu CH, Yeh YH, Tsai FC. Exosomal miRNA Changes Associated with Restoration to Sinus Rhythm in Atrial Fibrillation Patients. Int J Mol Sci 2024; 25:3861. [PMID: 38612670 PMCID: PMC11011649 DOI: 10.3390/ijms25073861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
We aimed to identify serum exosomal microRNAs (miRNAs) associated with the transition from atrial fibrillation (AF) to sinus rhythm (SR) and investigate their potential as biomarkers for the early recurrence of AF within three months post-treatment. We collected blood samples from eight AF patients at Chang Gung Memorial Hospital in Taiwan both immediately before and within 14 days following rhythm control treatment. Exosomes were isolated from these samples, and small RNA sequencing was performed. Using DESeq2 analysis, we identified nine miRNAs (16-2-3p, 22-3p, 23a-3p, 23b-3p, 125a-5p, 328-3p, 423-5p, 504-5p, and 582-3p) associated with restoration to SR. Further analysis using the DIABLO model revealed a correlation between the decreased expression of miR-125a-5p and miR-328-3p and the early recurrence of AF. Furthermore, early recurrence is associated with a longer duration of AF, presumably indicating a more extensive state of underlying cardiac remodeling. In addition, the reads were mapped to mRNA sequences, leading to the identification of 14 mRNAs (AC005041.1, ARHGEF12, AMT, ANO8, BCL11A, DIO3OS, EIF4ENIF1, G2E3-AS1, HERC3, LARS, NT5E, PITX1, SLC16A12, and ZBTB21) associated with restoration to SR. Monitoring these serum exosomal miRNA and mRNA expression patterns may be beneficial for optimizing treatment outcomes in AF patients.
Collapse
Affiliation(s)
- Pei-Chien Tsai
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan; (P.-C.T.); (A.M.-S.K.); (Y.-L.C.)
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Albert Min-Shan Ko
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan; (P.-C.T.); (A.M.-S.K.); (Y.-L.C.)
- Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Yu-Lin Chen
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan; (P.-C.T.); (A.M.-S.K.); (Y.-L.C.)
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
- School of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Feng-Chun Tsai
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung City 80708, Taiwan
| |
Collapse
|
4
|
Caño-Carrillo S, Castillo-Casas JM, Franco D, Lozano-Velasco E. Unraveling the Signaling Dynamics of Small Extracellular Vesicles in Cardiac Diseases. Cells 2024; 13:265. [PMID: 38334657 PMCID: PMC10854837 DOI: 10.3390/cells13030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Effective intercellular communication is essential for cellular and tissue balance maintenance and response to challenges. Cellular communication methods involve direct cell contact or the release of biological molecules to cover short and long distances. However, a recent discovery in this communication network is the involvement of extracellular vesicles that host biological contents such as proteins, nucleic acids, and lipids, influencing neighboring cells. These extracellular vesicles are found in body fluids; thus, they are considered as potential disease biomarkers. Cardiovascular diseases are significant contributors to global morbidity and mortality, encompassing conditions such as ischemic heart disease, cardiomyopathies, electrical heart diseases, and heart failure. Recent studies reveal the release of extracellular vesicles by cardiovascular cells, influencing normal cardiac function and structure. However, under pathological conditions, extracellular vesicles composition changes, contributing to the development of cardiovascular diseases. Investigating the loading of molecular cargo in these extracellular vesicles is essential for understanding their role in disease development. This review consolidates the latest insights into the role of extracellular vesicles in diagnosis and prognosis of cardiovascular diseases, exploring the potential applications of extracellular vesicles in personalized therapies, shedding light on the evolving landscape of cardiovascular medicine.
Collapse
Affiliation(s)
| | | | | | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (S.C.-C.); (J.M.C.-C.); (D.F.)
| |
Collapse
|
5
|
Qiu L, Sun Y, Ning H, Chen G, Zhao W, Gao Y. The scaffold protein AXIN1: gene ontology, signal network, and physiological function. Cell Commun Signal 2024; 22:77. [PMID: 38291457 PMCID: PMC10826278 DOI: 10.1186/s12964-024-01482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
AXIN1, has been initially identified as a prominent antagonist within the WNT/β-catenin signaling pathway, and subsequently unveiled its integral involvement across a diverse spectrum of signaling cascades. These encompass the WNT/β-catenin, Hippo, TGFβ, AMPK, mTOR, MAPK, and antioxidant signaling pathways. The versatile engagement of AXIN1 underscores its pivotal role in the modulation of developmental biological signaling, maintenance of metabolic homeostasis, and coordination of cellular stress responses. The multifaceted functionalities of AXIN1 render it as a compelling candidate for targeted intervention in the realms of degenerative pathologies, systemic metabolic disorders, cancer therapeutics, and anti-aging strategies. This review provides an intricate exploration of the mechanisms governing mammalian AXIN1 gene expression and protein turnover since its initial discovery, while also elucidating its significance in the regulation of signaling pathways, tissue development, and carcinogenesis. Furthermore, we have introduced the innovative concept of the AXIN1-Associated Phosphokinase Complex (AAPC), where the scaffold protein AXIN1 assumes a pivotal role in orchestrating site-specific phosphorylation modifications through interactions with various phosphokinases and their respective substrates.
Collapse
Affiliation(s)
- Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haoming Ning
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
7
|
Wen JL, Ruan ZB, Wang F, Hu Y. Progress of circRNA/lncRNA-miRNA-mRNA axis in atrial fibrillation. PeerJ 2023; 11:e16604. [PMID: 38144204 PMCID: PMC10740593 DOI: 10.7717/peerj.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent arrhythmia that requires effective biomarkers and therapeutic targets for clinical management. In recent years, non-coding RNAs (ncRNAs) have emerged as key players in the pathogenesis of AF, particularly through the ceRNA (competitive endogenous RNA) mechanism. By acting as ceRNAs, ncRNAs can competitively bind to miRNAs and modulate the expression of target mRNAs, thereby influencing the biological behavior of AF. The ceRNA axis has shown promise as a diagnostic and prognostic biomarker for AF. This review provides a comprehensive overview of the roles of ncRNAs in the development and progression of AF, highlighting the intricate crosstalk between different ncRNAs in AF pathophysiology. Furthermore, we discuss the potential implications of targeting the circRNA/lncRNA-miRNA-mRNA axis for the diagnosis, prognosis, and therapeutic intervention of AF.
Collapse
Affiliation(s)
- Jia-le Wen
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Dalian Medical University, Dalian, China
| | - Zhong-bao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Fei Wang
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Yuhua Hu
- Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Xue Z, Zhu J, Liu J, Wang L, Ding J. Research progress of non-coding RNA in atrial fibrillation. Front Cardiovasc Med 2023; 10:1210762. [PMID: 37522088 PMCID: PMC10379658 DOI: 10.3389/fcvm.2023.1210762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia in clinic, and its incidence is increasing year by year. In today's increasingly prevalent society, ageing poses a huge challenge to global healthcare systems. AF not only affects patients' quality of life, but also causes thrombosis, heart failure and other complications in severe cases. Although there are some measures for the diagnosis and treatment of AF, specific serum markers and targeted therapy are still lacking. In recent years, ncRNAs have become a hot topic in cardiovascular disease research. These ncRNAs are not only involved in the occurrence and development of AF, but also in pathophysiological processes such as myocardial infarction and atherosclerosis, and are potential biomarkers of cardiovascular diseases. We believe that the understanding of the pathophysiological mechanism of AF and the study of diagnosis and treatment targets can form a more systematic diagnosis and treatment framework of AF and provide convenience for individuals with AF and the society.
Collapse
|
9
|
Cetintas VB, Duzgun Z, Akalin T, Ozgiray E, Dogan E, Yildirim Z, Akinturk N, Biceroglu H, Ertan Y, Kosova B. Molecular dynamic simulation and functional analysis of pathogenic PTEN mutations in glioblastoma. J Biomol Struct Dyn 2023; 41:11471-11483. [PMID: 36591942 DOI: 10.1080/07391102.2022.2162582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023]
Abstract
PTEN, a dual-phosphatase and scaffold protein, is one of the most commonly mutated tumour suppressor gene across various cancer types in human. The aim of this study therefore was to investigate the stability, structural and functional effects, and pathogenicity of 12 missense PTEN mutations (R15S, E18G, G36R, N49I, Y68H, I101T, C105F, D109N, V133I, C136Y, R173C and N276S) found by next generation sequencing of the PTEN gene in tissue samples obtained from glioblastoma patients. Computational tools and molecular dynamic simulation programs were used to identify the deleterious effects of these mutations. Furthermore, PTEN mRNA and protein expression levels were evaluated by qRT-PCR, Western Blot, and immunohistochemistry staining methods. Various computational tools predicted strong deleterious effects for the G36R, C105F, C136Y and N276S mutations. Molecular dynamic simulation revealed a significant decrease in protein stability for the Y68H and N276S mutations when compared with the wild type protein; whereas, C105F, D109N, V133I and R173C showed partial stability reduction. Significant residual fluctuations were observed in the R15S, N49I and C136Y mutations and radius of gyration graphs revealed the most compact structure for D109N and least for C136Y. In summary, our study is the first one to show the presence of PTEN E18G, N49I, D109N and N276S mutations in glioblastoma patients; where, D109N is neutral and N276S is a damaging and disease-associated mutation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Zekeriya Duzgun
- Department of Medical Biology, Giresun University Faculty of Medicine, Giresun, Turkey
| | - Taner Akalin
- Department of Pathology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Erkin Ozgiray
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
| | - Eda Dogan
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Zafer Yildirim
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Nevhis Akinturk
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
| | - Huseyin Biceroglu
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
| | - Yesim Ertan
- Department of Pathology, Ege University Faculty of Medicine, Izmir, Turkey
| | - Buket Kosova
- Department of Medical Biology, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
10
|
Yedigaryan L, Sampaolesi M. Extracellular vesicles and Duchenne muscular dystrophy pathology: Modulators of disease progression. Front Physiol 2023; 14:1130063. [PMID: 36891137 PMCID: PMC9987248 DOI: 10.3389/fphys.2023.1130063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating disorder and is considered to be one of the worst forms of inherited muscular dystrophies. DMD occurs as a result of mutations in the dystrophin gene, leading to progressive muscle fiber degradation and weakness. Although DMD pathology has been studied for many years, there are aspects of disease pathogenesis and progression that have not been thoroughly explored yet. The underlying issue with this is that the development of further effective therapies becomes stalled. It is becoming more evident that extracellular vesicles (EVs) may contribute to DMD pathology. EVs are vesicles secreted by cells that exert a multitude of effects via their lipid, protein, and RNA cargo. EV cargo (especially microRNAs) is also said to be a good biomarker for identifying the status of specific pathological processes that occur in dystrophic muscle, such as fibrosis, degeneration, inflammation, adipogenic degeneration, and dilated cardiomyopathy. On the other hand, EVs are becoming more prominent vehicles for custom-engineered cargos. In this review, we will discuss the possible contribution of EVs to DMD pathology, their potential use as biomarkers, and the therapeutic efficacy of both, EV secretion inhibition and custom-engineered cargo delivery.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Upregulation of miR-222-3p alleviates the symptom of aortic dissection through targeting STAT3. Life Sci 2022; 310:121051. [DOI: 10.1016/j.lfs.2022.121051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
12
|
Lu Y, Zhao N, Du Y. Comprehensive bioinformatics analysis reveals common potential mechanisms, progression markers, and immune cells of coronary virus disease 2019 and atrial fibrillation. Front Cardiovasc Med 2022; 9:1027026. [PMID: 36352845 PMCID: PMC9637541 DOI: 10.3389/fcvm.2022.1027026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVES Atrial fibrillation (AF) is the most common arrhythmia in coronary virus disease 2019 (COVID-19) patients, especially in severe patients. A history of AF can exacerbate COVID-19 symptoms. COVID-19 Patients with new-onset AF have prolonged hospital stays and increased death risk. However, the mechanisms and targets of the interaction between COVID-19 and AF have not been elucidated. MATERIALS AND METHODS We used a series of bioinformatics analyses to understand biological pathways, protein-protein interaction (PPI) networks, gene regulatory networks (GRNs), and protein-chemical interactions between COVID-19 and AF and constructed an AF-related gene signature to assess COVID-19 severity and prognosis. RESULTS We found folate and one-carbon metabolism, calcium regulation, and TFG-β signaling pathway as potential mechanisms linking COVID-19 and AF, which may be involved in alterations in neutrophil metabolism, inflammation, and endothelial cell function. We identified hug genes and found that NF-κb, hsa-miR-1-3p, hsa-miR-124-3p, valproic acid, and quercetin may be key regulatory molecules. We constructed a 3-gene signature consisting of ARG1, GIMAP7, and RFX2 models for the assessment of COVID-19 severity and prognosis, and found that they are associated with neutrophils, T cells, and hematopoietic stem cells, respectively. CONCLUSION Our study reveals a dysregulation of metabolism, inflammation, and immunity between COVID-19 and AF, and identified several therapeutic targets and progression markers. We hope that the results will reveal important insights into the complex interactions between COVID-19 and AF that will drive novel drug development and help in severity assessment.
Collapse
Affiliation(s)
- Yang Lu
- Department of Cardiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Tongji Medical College, Union Hospital, Institute of Cardiology, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Zhao
- Department of Cardiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Tongji Medical College, Union Hospital, Institute of Cardiology, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yimei Du
- Department of Cardiology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Research Center of Ion Channelopathy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Tongji Medical College, Union Hospital, Institute of Cardiology, Huazhong University of Science and Technology, Wuhan, China
- Key Lab for Biological Targeted Therapy of Education Ministry and Hubei Province, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Marini V, Marino F, Aliberti F, Giarratana N, Pozzo E, Duelen R, Cortés Calabuig Á, La Rovere R, Vervliet T, Torella D, Bultynck G, Sampaolesi M, Chai YC. Long-term culture of patient-derived cardiac organoids recapitulated Duchenne muscular dystrophy cardiomyopathy and disease progression. Front Cell Dev Biol 2022; 10:878311. [PMID: 36035984 PMCID: PMC9403515 DOI: 10.3389/fcell.2022.878311] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is an X-linked neuromuscular disease which to date is incurable. The major cause of death is dilated cardiomyopathy however, its pathogenesis is unclear as existing cellular and animal models do not fully recapitulate the human disease phenotypes. In this study, we generated cardiac organoids from patient-derived induced pluripotent stem cells (DMD-COs) and isogenic-corrected controls (DMD-Iso-COs) and studied if DMD-related cardiomyopathy and disease progression occur in the organoids upon long-term culture (up to 93 days). Histological analysis showed that DMD-COs lack initial proliferative capacity, displayed a progressive loss of sarcoglycan localization and high stress in endoplasmic reticulum. Additionally, cardiomyocyte deterioration, fibrosis and aberrant adipogenesis were observed in DMD-COs over time. RNA sequencing analysis confirmed a distinct transcriptomic profile in DMD-COs which was associated with functional enrichment in hypertrophy/dilated cardiomyopathy, arrhythmia, adipogenesis and fibrosis pathways. Moreover, five miRNAs were identified to be crucial in this dysregulated gene network. In conclusion, we generated patient-derived cardiac organoid model that displayed DMD-related cardiomyopathy and disease progression phenotypes in long-term culture. We envision the feasibility to develop a more complex, realistic and reliable in vitro 3D human cardiac-mimics to study DMD-related cardiomyopathies.
Collapse
Affiliation(s)
- Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Fabiola Marino
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Flaminia Aliberti
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Fondazione IRCCS Policlinico San Matteo, Center for Inherited Cardiovascular Diseases, Transplant Research Area, Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Nefele Giarratana
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Enrico Pozzo
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Rita La Rovere
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Institute, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Institute, KU Leuven, Leuven, Belgium
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Institute, KU Leuven, Leuven, Belgium
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- *Correspondence: Maurilio Sampaolesi, ; Yoke Chin Chai,
| | - Yoke Chin Chai
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- *Correspondence: Maurilio Sampaolesi, ; Yoke Chin Chai,
| |
Collapse
|
14
|
Procyk G, Bilicki D, Balsam P, Lodziński P, Grabowski M, Gąsecka A. Extracellular Vesicles in Atrial Fibrillation—State of the Art. Int J Mol Sci 2022; 23:ijms23147591. [PMID: 35886937 PMCID: PMC9325220 DOI: 10.3390/ijms23147591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Extracellular vesicles are particles released from cells and delimited by a lipid bilayer. They have been widely studied, including extensive investigation in cardiovascular diseases. Many scientists have explored their role in atrial fibrillation. Patients suffering from atrial fibrillation have been evidenced to present altered levels of these particles as well as changed amounts of their contents such as micro-ribonucleic acids (miRs). Although many observations have been made so far, a large randomized clinical trial is needed to assess the previous findings. This review aims to thoroughly summarize current research regarding extracellular vesicles in atrial fibrillation.
Collapse
Affiliation(s)
- Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (P.B.); (P.L.); (M.G.); (A.G.)
- Correspondence: ; Tel.: +48-723-488-305
| | - Dominik Bilicki
- Faculty of Medicine, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Paweł Balsam
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (P.B.); (P.L.); (M.G.); (A.G.)
| | - Piotr Lodziński
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (P.B.); (P.L.); (M.G.); (A.G.)
| | - Marcin Grabowski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (P.B.); (P.L.); (M.G.); (A.G.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland; (P.B.); (P.L.); (M.G.); (A.G.)
| |
Collapse
|
15
|
Zhou X, Hong Y, Shang Z, Abuzeid AMI, Lin J, Li G. The Potential Role of MicroRNA‐124‐3p in Growth, Development, and Reproduction of Schistosoma japonicum. Front Cell Infect Microbiol 2022; 12:862496. [PMID: 35493736 PMCID: PMC9043613 DOI: 10.3389/fcimb.2022.862496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
The microRNA‐124‐3p plays an important role in regulating development and neurogenesis. Previous microRNA sequencing analyses of Schistosoma japonicum revealed sja-miR-124-3p differential expression patterns in schistosomes from different hosts and at different developmental stages. This study explores the regulatory role of sja-miR-124-3p in S. japonicum development and reproduction. Quantitative reverse-transcription PCR (qRT-PCR) showed that the expression level of sja-miR-124-3p in S. japonicum from resistant hosts, such as Microtus fortis, and unsuitable hosts, such as rats and water buffalo, was significantly higher than that in mice and yellow cattle at the same developmental stage. Overexpressing sja-miR-124-3p in infected mice led to a hepatic egg reduction rate of 36.97%, smaller egg granulomas in the livers, increased liver weight, subsided hepatocyte necrosis, and diminished inflammatory cell infiltration. The width of female worms increased but decreased in males. The vitelline cells were irregular, swollen, or fused. The teguments and ventral sucker of males and females were swollen and broken, but the morphological changes were particularly notable in males. qRT-PCR and dual-luciferase reporter assay system were used to confirm the in-silico-predicted target genes, S. japonicum DEAD-box ATP-dependent RNA helicase 1 (sjDDX1) and DNA polymerase II subunit 2 (sjPOLE2). Our results showed that RNA interference (RNAi)-mediated sjDDX1 silencing in mice provided a 24.55% worm reduction rate and an 18.36% egg reduction rate, but the difference was not significant (p > 0.05). Thus, our findings suggest that sja-miR-124-3p has an important role in growth, development, and reproduction in S. japonicum. All these results will greatly contribute toward providing important clues for searching vaccine candidates and new drug targets against schistosomiasis.
Collapse
Affiliation(s)
- Xue Zhou
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yang Hong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yang Hong, ; Jiaojiao Lin, ; Guoqing Li,
| | - Zheng Shang
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Asmaa M. I. Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Parasitology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jiaojiao Lin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yang Hong, ; Jiaojiao Lin, ; Guoqing Li,
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Yang Hong, ; Jiaojiao Lin, ; Guoqing Li,
| |
Collapse
|