1
|
Munar-Bestard M, Vargas-Alfredo N, Ramis JM, Monjo M. Mangostanin hyaluronic acid hydrogel as an effective biocompatible alternative to chlorhexidine. Int J Biol Macromol 2024; 279:135187. [PMID: 39216568 DOI: 10.1016/j.ijbiomac.2024.135187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Periodontal disease (PD) prevention and treatment products typically demonstrate excellent antibacterial activity, but recent studies have raised concerns about their toxicity on oral tissues. Therefore, finding a biocompatible alternative that retains antimicrobial properties is imperative. In this study, a chemically modified hyaluronic acid (HA) hydrogel containing mangostanin (MGTN) was developed. Native HA was chemically modified, incorporating amino and aldehyde groups in different batches of HA, allowing spontaneous crosslinking and gelation when combined at room temperature. MGTN at different concentrations was incorporated before gelation. The structure, swelling characteristics MGTN release, rheological parameters, and in vitro degradation performance of the loaded hydrogel were first evaluated in the study. Then, antimicrobial properties were tested on Porphyromonas gingivalis and its biocompatibility in 3D-engineered human gingiva. HA hydrogel was very stable and showed a sustained release for MGTN for at least 7 days. MGTN-loaded HA hydrogel showed equivalent antimicrobial activity compared to a commercial gel of HA containing 0.2 % chlorhexidine (CHX). In contrast, while MGTN HA hydrogel was biocompatible, CHX gel showed high cytotoxicity, causing cell death and tissue damage. Modified HA hydrogel allows controlled release of MGTN, resulting in a highly biocompatible hydrogel with antibacterial properties. This hydrogel is a suitable alternative therapy to prevent and treat PD.
Collapse
Affiliation(s)
- Marta Munar-Bestard
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain.
| | - Nelson Vargas-Alfredo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Joana Maria Ramis
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; Department of Fundamental Biology and Health Sciences Fundamental Biology, UIB, Spain.
| | - Marta Monjo
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands (UIB), Ctra. Valldemossa km 7.5, 07122 Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; Department of Fundamental Biology and Health Sciences Fundamental Biology, UIB, Spain.
| |
Collapse
|
2
|
Rodríguez-Mínguez E, Ríos MG, Sánchez C, Picon A. Mangosteen extracts: Effects on intestinal bacteria, and application to functional fermented milk products. Food Res Int 2024; 191:114720. [PMID: 39059916 DOI: 10.1016/j.foodres.2024.114720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Mangosteen (Garcinia mangostana L.) is a tasty, polyphenol-rich tropical fruit. The edible part is highly appreciated by its aroma, taste and texture. The non-edible part, rich in polyphenols, has been traditionally used in Thai medicine. In this work, flavonoids and phenolic acid/derivatives were identified in mangosteen extracts (ME) from edible and non-edible portions. We first studied the effects of MEs on the growth, metabolism, antioxidant capacity, biofilm formation and antimicrobial capacity of eight bifidobacteria and lactobacilli strains from intestinal origin and two commercial probiotic strains (BB536 and GG). ME concentrations higher than 10-20 % were inhibitory for all strains. However, ME concentrations of 5 % significantly (P < 0.01) increased all strains antioxidant capacity, reduced biofilm-formation, and enhanced inhibition against Gram-positive pathogens. To apply these knowledge, bifunctional fermented milk products were elaborated with 5 % ME and individual strains, which were selected taking into account their growth with ME, and the widest range of values on antioxidant capacity, biofilm formation and antimicrobial activity (bifidobacteria INIA P2 and INIA P467, lactobacilli INIA P459 and INIA P708, and reference strain GG). Most strains survived well manufacture, refrigerated storage and an in vitro simulation of major conditions encountered in the gastrointestinal tract. As expected, products supplemented with ME showed higher polyphenol content and antioxidant capacity levels than control. After sensory evaluation, products containing strains INIA P2, INIA P708 and GG outstood as best.
Collapse
Affiliation(s)
- Eva Rodríguez-Mínguez
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Maritza Graciela Ríos
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Carmen Sánchez
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Antonia Picon
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Jaithon T, Atichakaro T, Phonphoem W, T-Thienprasert J, Sreewongchai T, T-Thienprasert NP. Potential usage of biosynthesized zinc oxide nanoparticles from mangosteen peel ethanol extract to inhibit Xanthomonas oryzae and promote rice growth. Heliyon 2024; 10:e24076. [PMID: 38234900 PMCID: PMC10792570 DOI: 10.1016/j.heliyon.2024.e24076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
In recent decades, the biosynthesis of nanoparticles using biological agents, such as plant extracts, has grown in popularity due to their environmental and economic benefits. Therefore, this study investigated into utilizing ethanol crude extract sourced from mangosteen peel for the synthesis of zinc oxide nanoparticles (ZnO NPs) and assessing their efficacy against the rice blight pathogen (Xanthomonas oryzae pv. oryzae) through antibacterial evaluations. Additionally, the effects of the synthesized ZnO NPs on rice plant growth was investigated. The X-ray diffraction analysis revealed the production of wurtzite ZnO NPs under specific synthesis conditions, exhibiting a crystallite size of 38.71 nm (or 387.122 Å) without any contamination. Analysis of the ultraviolet-visible optical absorption spectrum indicated a characteristic absorption peak at 363 nm, suggesting a calculated band gap energy of 2.88 eV for the ZnO NPs. Furthermore, Fourier transform infrared spectroscopy analysis confirmed the presence of active compounds functional groups from mangosteen peel in the synthesized ZnO NPs. These biosynthesized ZnO NPs demonstrated significant inhibition of X. oryzae pv. oryzae growth, exhibiting an in vitro 50 % inhibitory concentration (IC50) value of 1.895 mg/mL and a minimum inhibitory concentration (MIC) value of 4 mg/mL. The ZnO NPs treatments at two-fold IC50 values significantly enhanced root length, dry biomass, and chlorophyll a content in rice plants. Consequently, the results demonstrated the potential application of biosynthesized ZnO NPs from mangosteen peel extract in green agriculture, as an alternative to excessive antibiotic use, for combating bacterial plant diseases, and for enhancing plant growth.
Collapse
Affiliation(s)
| | - Thamonwan Atichakaro
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wannarat Phonphoem
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jiraroj T-Thienprasert
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
| | - Tanee Sreewongchai
- Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | |
Collapse
|
4
|
Sang SH, Akowuah GA, Liew KB, Lee SK, Keng JW, Lee SK, Yon JAL, Tan CS, Chew YL. Natural alternatives from your garden for hair care: Revisiting the benefits of tropical herbs. Heliyon 2023; 9:e21876. [PMID: 38034771 PMCID: PMC10685248 DOI: 10.1016/j.heliyon.2023.e21876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Hair shampoos containing botanical ingredients without synthetic additives, such as parabens, petrochemicals, sulfates and silicones are more skin- and environmentally friendly. In recent years, there is a growing demand for shampoo products with botanical extracts. Shampoos with botanical extracts are well-known for their perceived health benefits. They are also generally milder, non-toxic, natural, and less likely to disrupt the hair and scalp's natural pH and oil balance. Many also believe that shampoos with botanical origins have higher standards of quality. Numerous botanical extracts had been used as natural active ingredients in cosmetic formulations to meet consumer demands. In this review, we have revisited six tropical plants commonly added as natural active ingredients in shampoo formulations: Acacia concinna, Camellia oleifera, Azadirachta indica, Emblica officinalis, Sapindus mukorossi, and Garcinia mangostana. These plants have been traditionally used for hair care, and scientific research has shown that they exhibit relevant physicochemical properties and biological activities that are beneficial for hair care and scalp maintenance.
Collapse
Affiliation(s)
- Sze-Huey Sang
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | | | - Kai Bin Liew
- Faculty of Pharmacy, University of Cyberjaya, Persiaran Bestari, Cyber 11, 63000, Cyberjaya, Selangor, Malaysia
| | - Siew-Keah Lee
- M. Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, 43000, Kajang, Selangor, Malaysia
| | - Jing-Wen Keng
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Sue-Kei Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Jessica-Ai-Lyn Yon
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai, 71800, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Tan SSY, Shanmugham M, Chin YL, An J, Chua CK, Ong ES, Leo CH. Pressurized Hot Water Extraction of Mangosteen Pericarp and Its Associated Molecular Signatures in Endothelial Cells. Antioxidants (Basel) 2023; 12:1932. [PMID: 38001785 PMCID: PMC10669822 DOI: 10.3390/antiox12111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The mangosteen (Garcinia mangostana L.) pericarp is known to be rich in potent bioactive phytochemical compounds such as xanthones, which possess pharmacologically important antioxidant activity and beneficial cardiometabolic properties. Mangosteen pericarp is typically classified as unavoidable food waste and discarded, despite being rich in bioactive phytochemical compounds that therefore present an exciting opportunity for valorization. Thus, this study aims to extract phytochemical compounds from mangosteen pericarp using pressurized hot water extraction (PHWE) and determine its biological effects in endothelial cells using RNA sequencing. Liquid chromatography with MS/MS (LC/MSMS) and UV detection (LC/UV) was subsequently used to identify three key phytochemical compounds extracted from the mangosteen pericarp: α-Mangostin, γ-Mangostin, and Gartanin. Within the tested range of extraction temperatures by PHWE, our results demonstrated that an extraction temperature of 120 °C yielded the highest concentrations of α-Mangostin, γ-Mangostin, and Gartanin with a concomitant improvement in antioxidant capacity compared to other extraction temperatures. Using global transcriptomic profiling and bioinformatic analysis, the treatment of endothelial cells with mangosteen pericarp extracts (120 °C PHWE) for 48 h caused 408 genes to be differentially expressed. Furthermore, our results demonstrated that key biological processes related to "steroid biosynthesis and metabolism", likely involving the activation of the AMPK signaling pathway, were upregulated by mangosteen pericarp extract treatment. In conclusion, our study suggests a green extraction method to valorize phytochemical compounds from mangosteen pericarp as a natural product with potential beneficial effects on cardiometabolic health.
Collapse
Affiliation(s)
- Sakeena Si Yu Tan
- Pillar of Engineering Product Development, Singapore University of Technology & Design, Singapore 487372, Singapore; (S.S.Y.T.); (C.K.C.)
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
| | - Meyammai Shanmugham
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| | - Yu Ling Chin
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| | - Jia An
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
| | - Chee Kai Chua
- Pillar of Engineering Product Development, Singapore University of Technology & Design, Singapore 487372, Singapore; (S.S.Y.T.); (C.K.C.)
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
| | - Eng Shi Ong
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| | - Chen Huei Leo
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore 487372, Singapore; (J.A.); (E.S.O.)
- Science, Math & Technology, Singapore University of Technology & Design, Singapore 487372, Singapore; (M.S.); (Y.L.C.)
| |
Collapse
|
6
|
Leo CH, Ong ES. Recent advances in the combination of organic solvent-free extraction, chemical standardization, antioxidant assay, and cell culture metabolomics for functional food and its by-product. Crit Rev Food Sci Nutr 2023:1-15. [PMID: 37574586 DOI: 10.1080/10408398.2023.2245040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Functional foods and their by-products contain a wide range of bioactive components with an array of health benefits and were proposed to improve public health, well-being, and others. To achieve a circular economy, the processing and extraction of flavonoids, phenolic compounds, and others from functional food and agri-food wastes will require the use of environmentally friendly, sustainable, and a low-cost solution. Extraction methods that can eliminate the use of organic solvents, suitable for use in the laboratory and production of extracts will be covered. This will include subcritical water extraction (SBE), pressurized hot water extraction (PHWE), supercritical fluid extraction (SFE), and others. Based on the selected analytical methods, the determination of the marker or bioactive compounds and chemical fingerprints will provide the control measures to identify the batch-to-batch variation of the composition of the functional food products obtained. The combination of chemical standardization with antioxidant assay, such as DPPH and ABTS+ will provide further information on the quality of the extracts. Lastly, to ascertain the biological and physiological relevance of the antioxidant properties of the target sample, treatment of the antioxidant compounds or extracts was carried out using cellular models, and validated using other experimental endpoints, such as metabolomics.
Collapse
Affiliation(s)
- Chen Huei Leo
- Department of Science, Math & Technology, Singapore University of Technology & Design, Singapore, Singapore
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore, Singapore
| | - Eng Shi Ong
- Department of Science, Math & Technology, Singapore University of Technology & Design, Singapore, Singapore
| |
Collapse
|
7
|
Tang Z, Wang Y, Huang G, Huang H. Ultrasound-assisted extraction, analysis and antioxidant activity of polysaccharide from the rinds of Garcinia mangostana L. ULTRASONICS SONOCHEMISTRY 2023; 97:106474. [PMID: 37321072 DOI: 10.1016/j.ultsonch.2023.106474] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
According to response surface methodology (RSM), the extraction conditions of ultrasound-assisted extraction of polysaccharide from the rinds of Garcinia mangostana L. (GMRP) were optimized and determined. The optimal conditions obtained through optimization were: the liquid to material ratio was 40 mL/g, ultrasonic power was 288 W and extraction time was 65 min. The average extraction rate of GMRP was 14.73%. Ac - GMRP was obtained by acetylation of GMRP, and the antioxidant activities of the two polysaccharides were compared in vitro. The results indicated that the antioxidant capacity of polysaccharide obtained after acetylation was significantly improved compared with that of GMRP. In conclusion, chemical modification of polysaccharide is an effective measure to improve its properties to a certain extent. Meanwhile, it implies that GMRP has great research value and potential.
Collapse
Affiliation(s)
- Zhenjie Tang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yanrong Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
8
|
Yostawonkul J, Kamble MT, Sakuna K, Madyod S, Sukkarun P, Medhe SV, Rodkhum C, Pirarat N, Sewaka M. Effects of Mangosteen ( Garcinia mangostana) Peel Extract Loaded in Nanoemulsion on Growth Performance, Immune Response, and Disease Resistance of Nile Tilapia ( Oreochromis niloticus) against Aeromonas veronii Infection. Animals (Basel) 2023; 13:1798. [PMID: 37889734 PMCID: PMC10251871 DOI: 10.3390/ani13111798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 10/29/2023] Open
Abstract
Nanotechnology can enhance nutrient delivery and bioavailability; hence, it has recently been considered the most practical alternative technology for nutritional supplements and disease control in fish farming. The present study was designed to evaluate the effects of mangosteen peel extract loaded in nanoemulsion (MSNE) on the inhibition of A. veronii (in vitro) and in vivo growth performance, serum biochemical parameters, the immune response, and the disease resistance of Nile tilapia (Oreochromis niloticus) against A. veronii challenge. The particle size, polydispersity index, and particle surface charge of MSNE were 151.9 ± 1.4 nm, >0.3, and -30 mV, respectively. Furthermore, MSNE, mangosteen peel extract (MPE), and nanoemulsion (NE) improved the antimicrobial activity against A. veronii. Fish fed MSNE, MPE, and NE-supplemented diets had a significantly lower (p < 0.05) feed conversion ratio (FCR) and higher specific growth rate (SGR) than fish fed the control diet. Furthermore, the MSNE had significantly higher serum glucose and protein levels than the control group in Nile tilapia. Total immunoglobulin, serum lysozyme, alternative complement activity, and survival of Nile tilapia fed with MSNE were significantly higher (p < 0.05) than the control diet. Therefore, MSNE has the potential to be employed as a supplement in sustainable Nile tilapia farming.
Collapse
Affiliation(s)
- Jakarwan Yostawonkul
- International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (M.T.K.); (S.V.M.)
| | - Manoj Tukaram Kamble
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (M.T.K.); (S.V.M.)
| | - Kitikarn Sakuna
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 80240, Thailand; (K.S.); (S.M.); (P.S.)
| | - Sulaiman Madyod
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 80240, Thailand; (K.S.); (S.M.); (P.S.)
| | - Pimwarang Sukkarun
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 80240, Thailand; (K.S.); (S.M.); (P.S.)
| | - Seema Vijay Medhe
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (M.T.K.); (S.V.M.)
| | - Channarong Rodkhum
- Center of Excellence in Fish Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nopadon Pirarat
- Wildlife, Exotic and Aquatic Animal Pathology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (M.T.K.); (S.V.M.)
| | - Mariya Sewaka
- Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhon Si Thammarat 80240, Thailand; (K.S.); (S.M.); (P.S.)
| |
Collapse
|
9
|
Mosaddad SA, Hussain A, Tebyaniyan H. Green Alternatives as Antimicrobial Agents in Mitigating Periodontal Diseases: A Narrative Review. Microorganisms 2023; 11:1269. [PMCID: PMC10220622 DOI: 10.3390/microorganisms11051269] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Periodontal diseases and dental caries are the most common infectious oral diseases impacting oral health globally. Oral cavity health is crucial for enhancing life quality since it serves as the entranceway to general health. The oral microbiome and oral infectious diseases are strongly correlated. Gram-negative anaerobic bacteria have been associated with periodontal diseases. Due to the shortcomings of several antimicrobial medications frequently applied in dentistry, the lack of resources in developing countries, the prevalence of oral inflammatory conditions, and the rise in bacterial antibiotic resistance, there is a need for reliable, efficient, and affordable alternative solutions for the prevention and treatment of periodontal diseases. Several accessible chemical agents can alter the oral microbiota, although these substances also have unfavorable symptoms such as vomiting, diarrhea, and tooth discoloration. Natural phytochemicals generated from plants that have historically been used as medicines are categorized as prospective alternatives due to the ongoing quest for substitute products. This review concentrated on phytochemicals or herbal extracts that impact periodontal diseases by decreasing the formation of dental biofilms and plaques, preventing the proliferation of oral pathogens, and inhibiting bacterial adhesion to surfaces. Investigations examining the effectiveness and safety of plant-based medicines have also been presented, including those conducted over the past decade.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Hamid Tebyaniyan
- Science and Research Branch, Islimic Azade University, Tehran 14878-92855, Iran
| |
Collapse
|
10
|
Rohayzi NF, Katman HYB, Ibrahim MR, Norhisham S, Rahman NA. Potential Additives in Natural Rubber-Modified Bitumen: A Review. Polymers (Basel) 2023; 15:polym15081951. [PMID: 37112098 PMCID: PMC10142339 DOI: 10.3390/polym15081951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Conventional bitumen pavement is no longer suitable for handling increasing loads and weather variations, which cause road deterioration, Thus, the modification of bitumen has been suggested to counter this issue. This study provides a detailed assessment of various additives for modifying natural rubber-modified bitumen used in road construction. This work will focus on the use of additives with cup lump natural rubber (CLNR), which has recently started to gain attention among researchers, especially in rubber-producing countries such as Malaysia, Thailand and Indonesia. Furthermore, this paper aims to briefly review how the addition of additives or modifiers helps elevate the performance of bitumen by highlighting the significant properties of modified bitumen after the addition of modifiers. Moreover, the amount and method of application of each additive are discussed further to obtain the optimum value for future implementation. On the basis of past studies, this paper will review the utilisation of several types of additives, including polyphosphoric acid, Evotherm, mangosteen powder, trimethyl-quinoline and sulphur, and the application of xylene and toluene to ensure the homogeneity of the rubberised bitumen. Numerous studies were conducted to verify the performance of various types and compositions of additives, particularly in terms of physical and rheological properties. In general, additives enhance the properties of conventional bitumen. Future research should investigate CLNR because studies on its utilisation are limited.
Collapse
Affiliation(s)
- Nurul Farhana Rohayzi
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Putrajaya Campus, Jalan Ikram-Uniten, Kajang 43000, Malaysia
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Putrajaya Campus, Jalan Ikram-Uniten, Kajang 43000, Malaysia
| | - Herda Yati Binti Katman
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Putrajaya Campus, Jalan Ikram-Uniten, Kajang 43000, Malaysia
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Putrajaya Campus, Jalan Ikram-Uniten, Kajang 43000, Malaysia
| | - Mohd Rasdan Ibrahim
- Centre for Transportation Research, Department of Civil Engineering, Engineering Faculty, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shuhairy Norhisham
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Putrajaya Campus, Jalan Ikram-Uniten, Kajang 43000, Malaysia
- Institute of Energy Infrastructure, Universiti Tenaga Nasional, Putrajaya Campus, Jalan Ikram-Uniten, Kajang 43000, Malaysia
| | - Noorhazlinda Abd Rahman
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, Penang 14300, Malaysia
| |
Collapse
|
11
|
Lu Y, Guan T, Wang S, Zhou C, Wang M, Wang X, Zhang K, Han X, Lin J, Tang Q, Wang C, Zhou W. Novel xanthone antibacterials: Semi-synthesis, biological evaluation, and the action mechanisms. Bioorg Med Chem 2023; 83:117232. [PMID: 36940608 DOI: 10.1016/j.bmc.2023.117232] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
α-Mangostin (α-MG) has demonstrated to display potent activities against Gram-positive bacterial. However, the contribution of phenolic hydroxyl groups of α-MG to the antibacterial activity remains obscure, severely hampering selection of structure modification to develop more potential α-MG-based anti-bacterial derivatives. Herein, twenty-one α-MG derivatives are designed, synthesized and evaluated for the antibacterial activities. The structure activity relationships (SARs) reveal that the contribution of the phenolic groups ranks as C3 > C6 > C1, and the phenolic hydroxyl group at C3 is essential to the antibacterial activity. Of note, compared to the parent compound α-MG, 10a with one acetyl at C1 exhibits the higher safety profiles due to its higher selectivity and no hemolysis, and the more potent antibacterial efficacy in an animal skin abscess model. Our evidences further present that, in comparison with α-MG, 10a has a stronger ability in depolarizing membrane potentials and leads to more leakage of bacterial proteins, consistent with the results observed by transmission electron microscopy (TEM). Transcriptomics analysis demonstrates those observations possibly relate to disturbed synthesis of proteins participating in the biological process of membrane permeability and integrity. Collectively, our findings provide a valuable insight for developing α-MG-based antibacterial agents with little hemolysis and new action mechanism via structural modifications at C1.
Collapse
Affiliation(s)
- Yan Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Ting Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China
| | - Shaobing Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Cui Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Meizhu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Jinchao Lin
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., 201315 Shanghai, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
12
|
Zeng Y, Zhou W, Yu J, Zhao L, Wang K, Hu Z, Liu X. By-Products of Fruit and Vegetables: Antioxidant Properties of Extractable and Non-Extractable Phenolic Compounds. Antioxidants (Basel) 2023; 12:antiox12020418. [PMID: 36829977 PMCID: PMC9951942 DOI: 10.3390/antiox12020418] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Non-extractable phenolic compounds (NEPs), or bound phenolic compounds, represent a crucial component of polyphenols. They are an essential fraction that remains in the residual matrix after the extraction of extractable phenolic compounds (EPs), making them a valuable resource for numerous applications. These compounds encompass a diverse range of phenolic compounds, ranging from low molecular weight phenolic to high polymeric polyphenols attached to other macro molecules, e.g., cell walls and proteins. Their status as natural, green antioxidants have been well established, with numerous studies showcasing their anti-inflammatory, anti-aging, anti-cancer, and hypoglycemic activities. These properties make them a highly desirable alternative to synthetic antioxidants. Fruit and vegetable (F&Veg) wastes, e.g., peels, pomace, and seeds, generated during the harvest, transport, and processing of F&Vegs, are abundant in NEPs and EPs. This review delves into the various types, contents, structures, and antioxidant activities of NEPs and EPs in F&Veg wastes. The relationship between the structure of these compounds and their antioxidant activity is explored in detail, highlighting the importance of structure-activity relationships in the field of natural antioxidants. Their potential applications ranging from functional food and beverage products to nutraceutical and cosmetic products. A glimpse into their bright future as a valuable resource for a greener, healthier, and more sustainable future, and calling for researchers, industrialists, and policymakers to explore their full potential, are elaborated.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310058, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Z.H.); or (X.L.); Tel.: +86-20-8528-0266 (Z.H. & X.L.)
| |
Collapse
|
13
|
Mangosteen vinegar from Garcinia mangostana: quality improvement and antioxidant properties. Heliyon 2022; 8:e11943. [PMID: 36590574 PMCID: PMC9800291 DOI: 10.1016/j.heliyon.2022.e11943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/16/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Mangosteen (Garcinia mangostana Linn.) fruit is rich in phenolic compounds which function as antioxidants and play a role in anti-inflammation, anti-hyperlipidemia, and anti-diabetic nephropathy. To investigate mangosteen vinegar (MV) by steaming under high pressure, explore the effects of fermentation, antioxidant activity, and sensory evaluation acceptable using the 9 -point Hedonic scale. Steamed mangosteen was processed to produce 3 types of mangosteen vinegar: mangosteen rind vinegar (MRV), mangosteen flesh vinegar (MFV), and mangosteen rind plus flesh vinegar (MRFV). All 3 kinds of mangosteen vinegar were obtaining >4% acetic acid and significantly higher total phenolic content (TPC), total flavonoid content (TFC), and free radical scavenging ABTS+ and DPPH- antioxidant activity than apple cider vinegar (ACV) (p < 0. 05). The phenolic compounds analysis of mangosteen vinegar using HPLC were found Gallic acid, Catechin, Epicatechin, Vanillic acid, Trans-ferulic acid, Rutin, Gamma-mongostin, and Alpha-mangostin which showed almost higher than that found in ACV. Therefore, MVs produced from streamed mangosteen have higher antioxidants and were more acceptable using the 9-point Hedonic scale, a significantly higher statistical analysis of sensory evaluation than ACV, especially MFV. Taken together, steamed MVs should be further studied to prove the health benefits as a dietary supplement.
Collapse
|
14
|
Harlisa P, Kariosentono H, Purwanto B, Dirgahayu P, Soetrisno S, Wasita B, Alif I, Putra A. The Mangosteen Peel Ethyl Acetate Extract-based Cream Inhibits Ultraviolet-B Radiation-induced Hyperpigmentation in Guinea Pig Skin. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND: Ultraviolet B (UVB) radiation is the main factor causing the aberrant melanin pigments leading to skin hyperpigmentation. Retinoic acid and hydroquinone are the primary preference for the skin whitening agents in preventing hyperpigmentation. However, these treatments could induce slight-to-severe irritation leading to skin cancer. Mangosteen peel possesses α-mangostin, the primary constituent of xanthones in mangosteen peel that has potency as an anti-tyrosinase for treating issues of skin hyperpigmentation.
AIM: This study aims to demonstrate the capacity of mangosteen peel ethyl acetate extract-based cream in inhibiting the UVB radiation-induced skin hyperpigmentation in guinea pig.
MATERIALS AND METHODS: A total of 25 female guinea pigs were used to produce UVB-irradiated skin hyperpigmentation model. Guinea pig skins were treated with 12% mangosteen ethyl acetate extract-based cream. Mushroom tyrosinase inhibitor activity was used to evaluate the capacity of mangosteen extract in inhibiting tyrosinase activity in vitro. The melanin index in guinea pig skin after treatments was analyzed using a mexameter. The percentage of epidermal melanin-contained keratinocytes of skin tissues were analyzed using masson fontana. Pmel17 expression in cell surface was determined using immunohistochemistry. The level of tyrosinase in tissue homogenates was analyzed using Enzyme-linked immunosorbent assays.
RESULTS: Mangosteen peel ethyl acetate extract showed potent inhibitory activity against the mushroom tyrosinase. Its-based cream decreased melanin index, epidermal melanin, Pmel17 expression, and tyrosinase level in hyperpigmentation skin tissues.
CONCLUSION: Overall, our study demonstrates the capacity of mangosteen peel ethyl acetate extract-based cream in inhibiting the UVB radiation-induced skin hyperpigmentation in guinea pig.
Collapse
|
15
|
Milan E, Bertolo MRV, Martins VCA, Sobrero CE, Plepis AMG, Fuhrmann-Lieker T, Horn MM. Effects of Mangosteen Peel Phenolic Compounds on Tilapia Skin Collagen-Based Mineralized Scaffold Properties. ACS OMEGA 2022; 7:34022-34033. [PMID: 36188292 PMCID: PMC9520718 DOI: 10.1021/acsomega.2c03266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
A proper valorization of biological waste sources for an effective conversion into composites for tissue engineering is discussed in this study. Hence, the collagen and the phenolic compound applied in this investigation were extracted from waste sources, respectively, fish industry rejects and the peels of the mangosteen fruit. Porous scaffolds were prepared by combining both components at different compositions and mineralized at different temperatures to evaluate the modifications in the biomimetic formation of apatite. The inclusion of mangosteen extract showed the advantage of increasing the collagen denaturation temperature, improving the stability of its triple helix. Moreover, the extract provided antioxidant activity due to its phenolic composition, as confirmed by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant assays. Mineralization was successfully achieved as indicated by thermogravimetry and scanning electron microscopy. A higher temperature and a lower extract concentration reduced the calcium phosphate deposits. The extract also affected the pore size, particularly at a lower concentration. The X-ray diffraction pattern identified a low degree of crystallization. A high mineralization temperature induced the formation of smaller crystallites ranging from 18.9 to 25.4 nm. Although the deposited hydroxyapatite showed low crystallinity, the scaffolds are suitable for bone tissue applications and may be effective in controlling the resorbability rate in tissue regeneration.
Collapse
Affiliation(s)
- Eduardo
P. Milan
- Interunits
Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil
- Physical
Chemistry of Nanomaterials, Institute of Chemistry and Center for
Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel 34132, Germany
| | - Mirella R. V. Bertolo
- São
Carlos Institute of Chemistry, University
of São Paulo (USP), São
Carlos 13566-590, Brazil
| | - Virginia C. A. Martins
- São
Carlos Institute of Chemistry, University
of São Paulo (USP), São
Carlos 13566-590, Brazil
| | | | - Ana M. G. Plepis
- Interunits
Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of São Paulo (USP), São Carlos 13566-590, Brazil
- São
Carlos Institute of Chemistry, University
of São Paulo (USP), São
Carlos 13566-590, Brazil
| | - Thomas Fuhrmann-Lieker
- Physical
Chemistry of Nanomaterials, Institute of Chemistry and Center for
Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel 34132, Germany
| | - Marilia M. Horn
- Physical
Chemistry of Nanomaterials, Institute of Chemistry and Center for
Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel 34132, Germany
| |
Collapse
|
16
|
Mannich bases of alizarin: synthesis and evaluation of antioxidant capacity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Sriwidodo S, Pratama R, Umar AK, Chaerunisa AY, Ambarwati AT, Wathoni N. Preparation of Mangosteen Peel Extract Microcapsules by Fluidized Bed Spray-Drying for Tableting: Improving the Solubility and Antioxidant Stability. Antioxidants (Basel) 2022; 11:1331. [PMID: 35883823 PMCID: PMC9311942 DOI: 10.3390/antiox11071331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Mangosteen fruit has been widely consumed and used as a source of antioxidants, either in the form of fresh fruit or processed products. However, mangosteen peel only becomes industrial waste due to its bitter taste, low content solubility, and poor stability. Therefore, this study aimed to design mangosteen peel extract microcapsules (MPEMs) and tablets to overcome the challenges. The fluidized bed spray-drying method was used to develop MPEM, with hydroxypropyl methylcellulose (HPMC) as the core mixture and polyvinyl alcohol (PVA) as the coating agent. The obtained MPEM was spherical with a hollow surface and had a size of 411.2 µm. The flow rate and compressibility of MPEM increased significantly after granulation. A formula containing 5% w/w polyvinyl pyrrolidone K30 (PVP K30) as a binder had the best tablet characteristics, with a hardness of 87.8 ± 1.398 N, friability of 0.94%, and disintegration time of 25.75 ± 0.676 min. Microencapsulation of mangosteen peel extract maintains the stability of its compound (total phenolic and α-mangosteen) and its antioxidant activity (IC50) during the manufacturing process and a month of storage at IVB zone conditions. According to the findings, the microencapsulation is an effective technique for improving the solubility and antioxidant stability of mangosteen peel extract during manufacture and storage.
Collapse
Affiliation(s)
- Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (A.K.U.); (A.Y.C.); (A.T.A.); (N.W.)
| | - Reza Pratama
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Bhakti Kencana, Bandung 40614, Indonesia;
| | - Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (A.K.U.); (A.Y.C.); (A.T.A.); (N.W.)
| | - Anis Yohana Chaerunisa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (A.K.U.); (A.Y.C.); (A.T.A.); (N.W.)
| | - Afifah Tri Ambarwati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (A.K.U.); (A.Y.C.); (A.T.A.); (N.W.)
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (A.K.U.); (A.Y.C.); (A.T.A.); (N.W.)
| |
Collapse
|
18
|
PATRICK MELONNEY, WAN MOHD ZOHDI WANNAJWA, ABD MUID SUHAILA, OMAR EFFAT. ALPHA-MANGOSTIN (Garcinia mangostana Linn.) AND ITS POTENTIAL APPLICATION IN MITIGATING CHRONIC WOUND HEALING. MALAYSIAN APPLIED BIOLOGY 2022; 51:1-8. [DOI: 10.55230/mabjournal.v51i2.2227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Wound healing is a complex and dynamic cellular process to restore tissue function. Current treatments for chronic wounds especially diabetic ulcers are expensive, with adverse effects. Recently, numerous researchers have focused on the potential effect of natural products on wound healing. One of them is mangosteen (Garcinia mangostana Linn). It is a well-known tropical fruit that is native to Southeast Asia. The active ingredient of mangosteen pericarp contains xanthones that exhibit a wide range of pharmacological activities, including anti-inflammatory and anti-bacterial properties which are the core elements needed in wound healing. Firstly, this review discusses the concepts of abnormal and normal wound healing mechanisms. Then an in depth observation of the pharmacological activities of mangosteen and its derivatives was presented to study their potentially beneficial applications in the treatment of chronic wound healing which is a contemporary medical issue.
Collapse
|
19
|
Song L, Hu X, Ren X, Liu J, Liu X. Antibacterial Modes of Herbal Flavonoids Combat Resistant Bacteria. Front Pharmacol 2022; 13:873374. [PMID: 35847042 PMCID: PMC9278433 DOI: 10.3389/fphar.2022.873374] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The increasing dissemination of multidrug resistant (MDR) bacterial infections endangers global public health. How to develop effective antibacterial agents against resistant bacteria is becoming one of the most urgent demands to solve the drug resistance crisis. Traditional Chinese medicine (TCM) with multi-target antibacterial actions are emerging as an effective way to combat the antibacterial resistance. Based on the innovative concept of organic wholeness and syndrome differentiation, TCM use in antibacterial therapies is encouraging. Herein, advances on flavonoid compounds of heat-clearing Chinese medicine exhibit their potential for the therapy of resistant bacteria. In this review, we focus on the antibacterial modes of herbal flavonoids. Additionally, we overview the targets of flavonoid compounds and divide them into direct-acting antibacterial compounds (DACs) and host-acting antibacterial compounds (HACs) based on their modes of action. We also discuss the associated functional groups of flavonoid compounds and highlight recent pharmacological activities against diverse resistant bacteria to provide the candidate drugs for the clinical infection.
Collapse
Affiliation(s)
- Lianyu Song
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Xin Hu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaomin Ren
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Jing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
- *Correspondence: Xiaoye Liu,
| |
Collapse
|
20
|
Effects of Waste-Derived ZnO Nanoparticles against Growth of Plant Pathogenic Bacteria and Epidermoid Carcinoma Cells. CRYSTALS 2022. [DOI: 10.3390/cryst12060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Green synthesis of zinc oxide nanoparticles (ZnO NPs) has recently gained considerable interest because it is simple, environmentally friendly, and cost-effective. This study therefore aimed to synthesize ZnO NPs by utilizing bioactive compounds derived from waste materials, mangosteen peels, and water hyacinth crude extracts and investigated their antibacterial and anticancer activities. As a result, X-ray diffraction analysis confirmed the presence of ZnO NPs without impurities. An ultraviolet–visible absorption spectrum showed a specific absorbance peak around 365 nm with an average electronic band gap of 2.79 eV and 2.88 eV for ZnO NPs from mangosteen peels and a water hyacinth extract, respectively. An SEM analysis displayed both spherical shapes of ZnO NPs from the mangosteen peel extract (dimension of 154.41 × 172.89 nm) and the water hyacinth extract (dimension of 142.16 × 160.30 nm). Fourier transform infrared spectroscopy further validated the occurrence of bioactive molecules on the produced ZnO NPs. By performing an antibacterial activity assay, these green synthesized ZnO NPs significantly inhibited the growth of Xanthomonas oryzae pv. oryzae, Xanthomonas axonopodis pv. citri, and Ralstonia solanacearum. Moreover, they demonstrated potent anti-skin cancer activity in vitro. Consequently, this study demonstrated the possibility of using green-synthesized ZnO NPs in the development of antibacterial or anticancer agents. Furthermore, this research raised the prospect of increasing the value of agricultural waste.
Collapse
|
21
|
Natural Rubber (NR) Latex Films with Antimicrobial Properties for Stethoscope Diaphragm Covers. MATERIALS 2022; 15:ma15103433. [PMID: 35629460 PMCID: PMC9146985 DOI: 10.3390/ma15103433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 01/04/2023]
Abstract
Systematic disinfection of the stethoscope diaphragm is required to ensure that it does not act as a vector for cross-transmission of health-related diseases. Thus, an antimicrobial latex film could be used as a cover to inhibit pathogenic bacteria from growing on its surface. The aim of this work is to determine the antimicrobial activity and mechanical properties of antimicrobial natural rubber (NR) latex films with different types of antimicrobial agents (mangosteen peel powder (MPP), zinc oxide nanoparticles (ZnO NP), and povidone-iodine (PVP-I)). The antimicrobial loading was varied from 0.5, to 1.0, and 2.0 phr to monitor the effective inhibition of Gram-negative bacteria and fungi growth. For MPP and PVP-I antimicrobial agents, a loading of 2.0 phr showed good antimicrobial efficacy with the largest zone of inhibition. Simultaneously, ZnO NP demonstrated excellent antimicrobial activity at low concentrations. The addition of antimicrobial agents shows a comparable effect on the mechanical properties of NR latex films. In comparison to control NR latex film (29.41 MPa, 48.49 N/mm), antimicrobial-filled films have significantly greater tensile and tear strengths (MPP (33.84 MPa, 65.21 N/mm), ZnO NP (31.79 MPa, 52.77 N/mm), and PVP-I (33.25 MPa, 50.75 N/mm). In conclusion, the addition of antimicrobial agents, particularly ZnO NP, can be a better choice for NR latex films because they will serve as both an activator and an antimicrobial. In a clinical context, with regard to frequently used medical equipment such as a stethoscope, such an approach offers significant promise to aid infection control.
Collapse
|
22
|
Hussain H, Mamadalieva NZ, Hussain A, Hassan U, Rabnawaz A, Ahmed I, Green IR. Fruit Peels: Food Waste as a Valuable Source of Bioactive Natural Products for Drug Discovery. Curr Issues Mol Biol 2022; 44:1960-1994. [PMID: 35678663 PMCID: PMC9164088 DOI: 10.3390/cimb44050134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
Fruits along with vegetables are crucial for a balanced diet. These not only have delicious flavors but are also reported to decrease the risk of contracting various chronic diseases. Fruit by-products are produced in huge quantity during industrial processing and constitute a serious issue because they may pose a harmful risk to the environment. The proposal of employing fruit by-products, particularly fruit peels, has gradually attained popularity because scientists found that in many instances peels displayed better biological and pharmacological applications than other sections of the fruit. The aim of this review is to highlight the importance of fruit peel extracts and natural products obtained in food industries along with their other potential biological applications.
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Nilufar Z. Mamadalieva
- Institute of the Chemistry of Plant Substances of the Academy Sciences of Uzbekistan, Tashkent 100170, Uzbekistan;
| | - Amjad Hussain
- Department of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Uzma Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Aisha Rabnawaz
- Department of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK;
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa;
| |
Collapse
|
23
|
Ahn EY, Shin SW, Kim K, Park Y. Facile Green Synthesis of Titanium Dioxide Nanoparticles by Upcycling Mangosteen (Garcinia mangostana) Pericarp Extract. NANOSCALE RESEARCH LETTERS 2022; 17:40. [PMID: 35357581 PMCID: PMC8971259 DOI: 10.1186/s11671-022-03678-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/16/2022] [Indexed: 05/06/2023]
Abstract
In the present report, green synthesis of titanium dioxide nanoparticles (TiO2 NPs) was performed by upcycling mangosteen (Garcinia mangostana) pericarp extract (methanol and ethyl acetate extracts). Field emission scanning electron microscopy images revealed an aggregated structure with a highly porous network of TiO2 NPs. TiO2 NPs synthesized with ethyl acetate extract (EtOAc-TiO2 NPs) exhibited more monodispersity and possessed smoother surfaces than the control TiO2 NPs (Con-TiO2 NPs) and TiO2 NPs synthesized with methanol extract (MeOH-TiO2 NPs). High-resolution X-ray diffraction patterns clearly confirmed that TiO2 NPs had a crystalline nature. A mixture of anatase and rutile was observed in Con-TiO2 NPs and MeOH-TiO2 NPs, while EtOAc-TiO2 NPs had only anatase with the smallest size (12.50 ± 1.81 nm). Ethyl acetate extract contained the highest amount of α-mangostin; thus, the surface of TiO2 NPs was functionalized with ethyl acetate extract. The functionalized TiO2 NPs synthesized with ethyl acetate extract (EtOAc-TiO2-αm) showed the highest 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) radical scavenging activity. In vitro cell viability on mouse fibroblast cells (NIH3T3) indicated that the newly synthesized TiO2 NPs did not show any significant cytotoxicity. Therefore, the TiO2 NPs in the present report have the potential to be used in cosmetic applications such as sunscreens.
Collapse
Affiliation(s)
- Eun-Young Ahn
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Sang-Woo Shin
- Department of Pharmaceutical Engineering, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Kyeongsoon Kim
- Department of Pharmaceutical Engineering, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Youmie Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
24
|
Winarni D, Husna FN, Syadzha MF, Susilo RJK, Hayaza S, Ansori ANM, Alamsjah MA, Amin MNG, Wulandari PAC, Pudjiastuti P, Awang K. Topical Administration Effect of Sargassum duplicatum and Garcinia mangostana Extracts Combination on Open Wound Healing Process in Diabetic Mice. SCIENTIFICA 2022; 2022:9700794. [PMID: 35186344 PMCID: PMC8850046 DOI: 10.1155/2022/9700794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/20/2021] [Accepted: 01/13/2022] [Indexed: 05/14/2023]
Abstract
This research aimed to determine the topical administration effect of the combination of Sargassum duplicatum and Garcinia mangostana extracts to ameliorate diabetic open wound healing. The study used 24 adult males of Mus musculus (BALB/c strain, 3-4 months, 30-40 g). They were divided into normal control groups (KN) and diabetic groups. The diabetic group was streptozotocin-induced and divided further into three treatment groups: the diabetic control group (KD), the S. duplicatum treatment group (PA), and the combination of S. duplicatum and G. mangostana treatment group (PAM). The dose of treatment was 50 mg/kg of body weight. Each group was divided into three treatment durations, which were 3 days, 7 days, and 14 days. The wound healing process was determined by wound width, the number of neutrophils, macrophages, fibroblasts, fibrocytes, and collagen density. Histological observation showed that the topical administration of combination extracts increased the re-epithelialization of the wounded area, fibroblasts, fibrocytes, and collagen synthesis. The topical administration of combination extracts also decreased the number of neutrophils and macrophages. This study concluded that the topical administration of the combination of S. duplicatum and G. mangostana extracts improved the open wound healing process in diabetic mice.
Collapse
Affiliation(s)
- Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Fitria Nikmatul Husna
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Muhammad Farraz Syadzha
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Suhailah Hayaza
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Arif Nur Muhammad Ansori
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
- Doctoral Program in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mochammad Amin Alamsjah
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Muhamad Nur Ghoyatul Amin
- Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Pratiwi Pudjiastuti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Khalijah Awang
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
25
|
So-In C, Sunthamala N. Treatment efficacy of Thunbergia laurifolia, Curcuma longa, Garcinia mangostana, and Andrographis paniculata extracts in Staphylococcus aureus-induced rabbit dermatitis model. Vet World 2022; 15:188-197. [PMID: 35369604 PMCID: PMC8924391 DOI: 10.14202/vetworld.2022.188-197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Dermatitis is a soft-tissue infection caused by Staphylococcus aureus. The recurrence of inflammatory skin is linked to clinical manifestations. Anti-inflammatory cytokines, which are essential for tissue damage, are released by bacteria through skin tissues. Oxidative stress causes inflammatory cells to necrotize and reduces their antioxidant profile, resulting in toxic damage to surrounding tissues. Although studies on the antibacterial effects of Thunbergia laurifolia Lindl., Curcuma longa L., Garcinia mangostana L., and Andrographis paniculata (Burm.). Bacterial infection of S. aureus have been conducted, most of these studies have been in vitro and were not related to the rabbit model. In addition, anti-inflammatory and antioxidant studies need to be evaluated. Thus, this study aims to compare the antibacterial, anti-inflammatory, and antioxidant properties of four local herbs with a standard antibiotic in S. aureus-induced rabbit dermatitis model. Materials and Methods: The skin of New Zealand white rabbits were artificially wounded using a sterile blade and then infected with S. aureus. The rabbits were divided into seven groups, each with three rabbits (Total 21 rabbits): The first group was the no infection group (no infection and no treatment with scarification), the second group was the no treatment group (S. aureus infection of the wound but no treatment), and the other five treated groups were T. laurifolia, C. longa, G. mangostana, A. paniculata, and bacitracin cream, all of which involved wound infection and treatments. The treatment lasted for 7 days. The antibacterial, anti-inflammatory, and antioxidant properties after treatment were measured. Results: The efficacy of T. laurifolia, C. longa, G. mangostana, and A. paniculata was similar to that of an antioxidant and free radical scavenging property. The bacterial infection process gradually reduced the activities of antioxidant systems (i.e., enzymatic levels and gene expressions) and total glutathione. However, the activities of the antioxidant system were steadily increased when treated with herbal extracts. During bacterial invasion of the skin, the concentration of thiobarbituric acid reactive molecules, the level of lipid peroxidation, and the expression of anti-inflammatory cytokine genes were increased. All these were decreased when herbal extracts were used to treat the lesion. Conclusion: It can be concluded that T. laurifolia, C. longa, G. mangostana, and A. paniculate extract have antibacterial, anti-inflammatory, and antioxidant properties and are effective antibacterial agents. G. mangostana is the most effective herbal extract for antidermatitis and has the potential to be used as an alternative topical treatment.
Collapse
Affiliation(s)
- Charinya So-In
- Department of Veterinary Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
| |
Collapse
|
26
|
HIEW CW, LEE LJ, JUNUS S, TAN YN, CHAI TT, EE KY. Optimization of microwave-assisted extraction and the effect of microencapsulation on mangosteen (Garcinia mangostana L.) rind extract. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.35521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - Yen-Nee TAN
- Universiti Tunku Abdul Rahman, Malaysia; Universiti Tunku Abdul Rahman, Malaysia
| | - Tsun-Thai CHAI
- Universiti Tunku Abdul Rahman, Malaysia; Universiti Tunku Abdul Rahman, Malaysia
| | - Kah-Yaw EE
- Universiti Tunku Abdul Rahman, Malaysia; Universiti Tunku Abdul Rahman, Malaysia
| |
Collapse
|
27
|
Muralidharan S, Vellaichamy A. Evaluation of anti-epithelial-mesenchymal transition property of Garcinia mangostana rind extract. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epithelial-mesenchymal transition (EMT) helps solid tumors to lose their intercellular adhesive property and drives metastasis. As mangosteen fruit is known for many beneficial effects including antimicrobial, antioxidant, and anti-tumorigenic properties and has been used widely in traditional medicine, we interrogated its possible anti-metastatic effect on MCF-7 breast cancer cells.
Results
We found that aqueous mangosteen rind extract (MRE) inhibited growth of MCF-7 and altered the transcript levels of ERα, ERβ, and EGFR genes. Additionally, the MRE changed the expression of important markers of EMT, E-Cadherin, N-Cadherin, Snail, and MMP-9. Moreover, MRE inhibited migration of MCF-7 cells.
Conclusion
The results suggest that MRE suppresses growth and inhibits epithelial-mesenchymal transition in MCF-7 cells.
Collapse
|
28
|
Chen SP, Lin SR, Chen TH, Ng HS, Yim HS, Leong MK, Weng CF. Mangosteen xanthone γ-mangostin exerts lowering blood glucose effect with potentiating insulin sensitivity through the mediation of AMPK/PPARγ. Biomed Pharmacother 2021; 144:112333. [PMID: 34678724 DOI: 10.1016/j.biopha.2021.112333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.
Collapse
Affiliation(s)
- Sih-Pei Chen
- Institute of Respiratory Disease, Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Shian-Ren Lin
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Ting-Hsu Chen
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan
| | - Hui-Suan Ng
- Faculty of Applied Science, UCSI University, UCSI Height, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hip-Seng Yim
- Faculty of Applied Science, UCSI University, UCSI Height, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Max K Leong
- Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan.
| | - Ching-Feng Weng
- Institute of Respiratory Disease, Department of Physiology, School of Basic Medical Science, Xiamen Medical College, Xiamen 361023, Fujian, China; Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 974301, Taiwan; Department of Chemistry, National Dong Hwa University, Hualien 974301, Taiwan.
| |
Collapse
|
29
|
Novel α-Mangostin Derivatives from Mangosteen (Garcinia mangostana L.) Peel Extract with Antioxidant and Anticancer Potential. J CHEM-NY 2021. [DOI: 10.1155/2021/9985604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mangosteen peels contain biologically active compounds, with antioxidant and anticancer properties. Among these isolated phytochemicals, α-mangostin is one of the most powerful natural antioxidants and anticancer compounds. This study focused on synthesizing novel α-mangostin (α-MG) derivatives at positions of C-3 and C-6 from extracted α-MG of mangosteen peels and investigating antioxidant and anticancer activities. The structures of the synthesized compounds were determined by using MS, 1H-NMR, 13C-NMR, and HPLC. The analysis of the interaction between structure and bioactivity showed that phenol groups on C-3 and C-6 positions play a crucial role in antiproliferative activity to boost both anticancer efficacy and drug-like properties. The antioxidant activity of α-MG and its derivatives were investigated by the DPPH method. Among α-MG derivatives, 1-hydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9-oxo-9H-xanthene-3,6-diyl bis(2-bromobenzoate) (compound 4) exhibited significant antioxidant property. The in vitro cytotoxicity against various cancer cell lines (HeLa, MCF-7, NCI–H460, and HepG2) was evaluated by the standard sulforhodamine B assay. The anticancer activities (HeLa, MCF-7, NCI–H460, and HepG2) of compound 4 are five to six times higher than those of α-MG and other derivatives. The acetylation at C-3 and C-6 of α-MG by halogen of benzoyl greatly improved cancer cell toxicity. Our results provide new opportunities for further explorations of α-MG derivatives for antioxidant property and promise as drugs in cancer therapy.
Collapse
|
30
|
Zhou X, Dai Q, Huang X, Qin Z. Preparation and characterizations of antibacterial–antioxidant film from soy protein isolate incorporated with mangosteen peel extract. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
The mangosteen peel extract (MPE) was used to obtain soy protein isolate (SPI) films. The results show that MPE exhibited a high content of total phenolics and antioxidant activity. Moreover, the MPE can enhance the antibacterial–antioxidant properties, UV-visible light barrier properties, and water-resistant properties of the SPI films. The presence of MPE resulted in an increase in water vapor permeability and hydrophobicity. The extract addition also reduced the film’s crystallinity along with a decrease in the mechanical property and lowering of the maximum degradation temperature. Attenuated total reflectance Fourier transform infrared spectroscopy revealed that the polyphenols in MPE could interact with SPI through hydrogen bonds and hydrophobic interactions, and the addition of MPE changed the secondary structure of SPI with a decrease in β-sheets and an increase in β-turns and random coils. Scanning electron microscopy showed that all the films exhibited smooth and homogenous morphology on the surface and on some layers through cross-sectional images. Our results suggested that the MPE would be a promising ingredient to make SPI films used as an active packaging material.
Collapse
Affiliation(s)
- Xin Zhou
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Qingyin Dai
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Xi Huang
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| | - Zhiyong Qin
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi University , Nanning 530000 , China
| |
Collapse
|
31
|
de Mello RFA, de Souza Pinheiro WB, Benjamim JKF, de Siqueira FC, Chisté RC, Santos AS. A fast and efficient preparative method for separation and purification of main bioactive xanthones from the waste of Garcinia mangostana L. by high-speed countercurrent chromatography. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
32
|
Antioxidant and Antimicrobial Activities of the Extracts from Different Garcinia Species. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5542938. [PMID: 34249131 PMCID: PMC8238564 DOI: 10.1155/2021/5542938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022]
Abstract
Background Garcinia is a large genus which has promising bioactivities. However, the properties of many Garcinia species have not been investigated thoroughly. Aim To determine the antioxidant and antimicrobial capabilities of the extracts from different Garcinia species. Methodology. Six Garcinia species, including Garcinia fusca, Garcinia hopii, Garcinia planchonii, Garcinia nigrolineata, Garcinia gaudichaudii, and Garcinia tinctoria were extracted using n-hexane, ethyl acetate, and methanol, producing n-hexane extract (HE), ethyl acetate extract (EAE), and methanol extract (ME). After that, the total polyphenol content was evaluated using Folin–Ciocalteu assay. DPPH, hydroxyl radical scavenging, and total antioxidant capacity assays were performed to test the antioxidant activity. Subsequently, the antimicrobial activities against Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains were assessed using Kirby Bauer and the broth microdilution methods. Results Many Garcinia extracts contained high total polyphenol content consisting of ME of G. hopii ad G. tinctoria, and EAE of G. planchonii and G. tinctoria. The EAE of G. tinctoria showed effective antioxidant capacity (IC50 = 1.5 µg/mL). Additionally, the EAE of G. gaudichaudii was effective against Gram-positive bacteria with minimal inhibition concentration (MIC) of 15.625–25 µg/mL whereas ME of G. planchonii was effective against both Gram-positive bacteria (MIC = 160 µg/mL) and Gram-negative bacteria (MIC = 75 µg/mL). Conclusion Several extracts of Garcinia species demonstrated valuable antioxidant and antimicrobial properties.
Collapse
|
33
|
Domínguez-Rodríguez G, Plaza M, Marina ML. High-performance thin-layer chromatography and direct analysis in real time-high resolution mass spectrometry of non-extractable polyphenols from tropical fruit peels. Food Res Int 2021; 147:110455. [PMID: 34399456 DOI: 10.1016/j.foodres.2021.110455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/05/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Passiflora species, mangosteen, and cherimoya peels are a source of bioactive phenolic compounds. Nevertheless, a significant fraction of polyphenols, called non-extractable polyphenols (NEPs), are retained in the extraction residue after a conventional extraction. Thus, alkaline, acid, and enzymatic-assisted extractions to recover high contents of antioxidant NEPs from the extraction residue of fruit peels, were compared in this work. A high-performance thin-layer chromatography method with UV/Vis detection was developed in order to obtain the phenolic profile for the extracts. The most intense bands were further analyzed by direct analysis in real-time-high-resolution mass spectrometry to tentatively identified NEPs in fruit peel extracts. Total phenolic and proanthocyanidin contents and antioxidant capacity of the extracts were measured to carry out a multivariate statistical analysis. Alkaline hydrolysis was the most efficient treatment to recover NEPs from fruit peels as well as a promising treatment to obtain antioxidant extracts along with EAE. Cherimoya peel extracts were the richest in antioxidant NEPs. This work highlights that many NEPs remain on the extraction residue of fruit peels after conventional extraction and are not usually taken into account.
Collapse
Affiliation(s)
- Gloria Domínguez-Rodríguez
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Merichel Plaza
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain; Universidad de Alcalá, Instituto de Investigación Química Andrés M. del Río (IQAR), Ctra. Madrid-Barcelona. Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain.
| |
Collapse
|
34
|
Wound Healing and Antioxidant Evaluations of Alginate from Sargassum ilicifolium and Mangosteen Rind Combination Extracts on Diabetic Mice Model. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A diabetic foot ulcer is an open wound that can become sore and frequently occurs in diabetic patients. Alginate has the ability to form a hydrophilic gel when in contact with a wound surface in diabetic patients. Xanthones are the main compounds of mangosteen rind and have antibacterial and anti-inflammatory properties. The purpose of this research was to evaluate the wound healing and antioxidants assay with a combination of alginate from S. ilicifolium and mangosteen rind combination extracts on a diabetic mice model. The characterization of alginate was carried out by size exclusion chromatography with multiple angle laser light scattering (SEC-MALLS) and thermogravimetric analysis (TGA). The M/G ratio of alginate was calculated by using proton nuclear magnetic resonance (1H NMR). The antioxidant activity of mangosteen rind and the combination extracts was determined using the DPPH method. The observed parameters were wound width, number of neutrophils, macrophages, fibrocytes, fibroblasts, and collagen densities. The 36 male mice were divided into 12 groups including non-diabetic control (NC), diabetes alginate (DA), alginate–mangosteen (DAM), and diabetes control (DC) groups in three different groups by a histopathology test on skin tissue. The treatment was carried out for 14 days and mice were evaluated on Days 3, 7, and 14. The SEC-MALLS results showed that the molecular weight and dispersity index (Ð) of alginate were 2.77 × 104 Dalton and 1.73, respectively. The M/G ratio of alginate was 0.77 and described as single-stage decomposition based on TGA. Alginate, mangosteen rind extract, and their combination were divided into weak, medium, and strong antioxidant, respectively. The treatment of the DA and DAM groups showed a decrease in wound width and an increase in the number of fibrocytes, fibroblasts, and macrophages. The number of neutrophils decreased while the percentage of collagen densities increased for all the considered groups.
Collapse
|
35
|
Chaiwarit T, Kantrong N, Sommano SR, Rachtanapun P, Junmahasathien T, Kumpugdee-Vollrath M, Jantrawut P. Extraction of Tropical Fruit Peels and Development of HPMC Film Containing the Extracts as an Active Antibacterial Packaging Material. Molecules 2021; 26:molecules26082265. [PMID: 33919710 PMCID: PMC8070744 DOI: 10.3390/molecules26082265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022] Open
Abstract
In recent years, instead of the use of chemical substances, alternative substances, especially plant extracts, have been characterized for an active packaging of antibacterial elements. In this study, the peels of mangosteen (Garcinia mangostana), rambutan (Nephelium lappaceum), and mango (Mangifera indica) were extracted to obtain bioactive compound by microwave-assisted extraction (MAE) and maceration with water, ethanol 95% and water–ethanol (40:60%). All extracts contained phenolics and flavonoids. However, mangosteen peel extracted by MAE and maceration with water/ethanol (MT-MAE-W/E and MT-Ma-W/E, respectively) contained higher phenolic and flavonoid contents, and exhibited greater antibacterial activity against Staphylococcus aureus and Escherichia coli. Thus, both extracts were analyzed by liquid chromatograph-mass spectrometer (LC-MS) analysis, α-mangostin conferring antibacterial property was found in both extracts. The MT-MAE-W/E and MT-Ma-W/E films exhibited 30.22 ± 2.14 and 30.60 ± 2.83 mm of growth inhibition zones against S. aureus and 26.50 ± 1.60 and 26.93 ± 3.92 mm of growth inhibition zones against E. coli. These clear zones were wider than its crude extract approximately 3 times, possibly because the film formulation enhanced antibacterial activity with sustained release of active compound. Thus, the mangosteen extracts have potential to be used as an antibacterial compound in active packaging.
Collapse
Affiliation(s)
- Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (T.J.)
| | - Nutthapong Kantrong
- Department of Restorative Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory (BAC), Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Taepin Junmahasathien
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (T.J.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mont Kumpugdee-Vollrath
- Department of Pharmaceutical Engineering, Beuth University of Applied Sciences Berlin, 13353 Berlin, Germany;
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (T.C.); (T.J.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: or ; Tel.: +66-891184007
| |
Collapse
|
36
|
Labban RSM, Alfawaz HA, Almnaizel AT, Al-Muammar MN, Bhat RS, El-Ansary A. Garcinia mangostana extract and curcumin ameliorate oxidative stress, dyslipidemia, and hyperglycemia in high fat diet-induced obese Wistar albino rats. Sci Rep 2021; 11:7278. [PMID: 33790313 PMCID: PMC8012579 DOI: 10.1038/s41598-021-86545-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to explore the effects of Garcinia mangostana (mangosteen) and Curcuma longa independently and synergistically in modulating oxidative stress, dyslipidemia, and hyperglycemia commonly observed in high-fat diet-induced obesity in rodent models. Male albino Wistar rats were divided into eight experimental groups, fed on a normal diet or high-fat diet (HFD), then given mangosteen extract (400 mg /kg /day) and/or curcumin (80 mg/kg /day) for 6 weeks. Oxidative stress markers, glucose, and lipid fractions were measured in the sera. Mangosteen pericarp extract (MPE) induced a remarkable decrease in BMI (from 0.86 to 0.81 gm/cm2), while curcuma either alone or in combination was more effective, as treated rats recorded BMIs of 0.78 and 0.79 gm/cm2, respectively. Regarding the antioxidant effects, MPE induced a significant increase of GSH in obese rats (123.86 ± 15.53 μg/ml vs 288.72 ± 121.37 μg/ml). As anti-atherogenic agents MPE demonstrate significant effect recorded higher level of HDL-C in treated animals, but ineefective as anti-dyslipidemic agent. Curcumin was more effective in reducing LDL-C levels in obese rats. Both extracts effectively reduced blood glucose. The present study demonstrated that MPE and curcumin were independently and synergistically effective in treating obesity-induced atherogenesis.
Collapse
Affiliation(s)
- Ranyah Shaker M Labban
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Ministry of Health, General Administration of Nutrition, Riyadh, Saudi Arabia
| | - Hanan A Alfawaz
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed T Almnaizel
- Prince Naif for Health Research Center, King Saud University, Riyadh, Saudi Arabia
| | - May N Al-Muammar
- Department of Community Health, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
37
|
Yusefi M, Shameli K, Su Yee O, Teow SY, Hedayatnasab Z, Jahangirian H, Webster TJ, Kuča K. Green Synthesis of Fe 3O 4 Nanoparticles Stabilized by a Garcinia mangostana Fruit Peel Extract for Hyperthermia and Anticancer Activities. Int J Nanomedicine 2021; 16:2515-2532. [PMID: 33824589 PMCID: PMC8018451 DOI: 10.2147/ijn.s284134] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Fe3O4 nanoparticles (Fe3O4 NPs) with multiple functionalities are intriguing candidates for various biomedical applications. MATERIALS AND METHODS This study introduced a simple and green synthesis of Fe3O4 NPs using a low-cost stabilizer of plant waste extract rich in polyphenols content with a well-known antioxidant property as well as anticancer ability to eliminate colon cancer cells. Herein, Fe3O4 NPs were fabricated via a facile co-precipitation method using the crude extract of Garcinia mangostana fruit peel as a green stabilizer at different weight percentages (1, 2, 5, and 10 wt.%). The samples were analyzed for magnetic hyperthermia and then in vitro cytotoxicity assay was performed. RESULTS The XRD planes of the samples were corresponding to the standard magnetite Fe3O4 with high crystallinity. From TEM analysis, the green synthesized NPs were spherical with an average size of 13.42±1.58 nm and displayed diffraction rings of the Fe3O4 phase, which was in good agreement with the obtained XRD results. FESEM images showed that the extract covered the surface of the Fe3O4 NPs well. The magnetization values for the magnetite samples were ranging from 49.80 emu/g to 69.42 emu/g. FTIR analysis verified the functional groups of the extract compounds and their interactions with the NPs. Based on DLS results, the hydrodynamic sizes of the Fe3O4 nanofluids were below 177 nm. Furthermore, the nanofluids indicated the zeta potential values up to -34.92±1.26 mV and remained stable during four weeks of storage, showing that the extract favorably improved the colloidal stability of the Fe3O4 NPs. In the hyperthermia experiment, the magnetic nanofluids showed the acceptable specific absorption rate (SAR) values and thermosensitive performances under exposure of various alternating magnetic fields. From results of in vitro cytotoxicity assay, the killing effects of the synthesized samples against HCT116 colon cancer cells were mostly higher compared to those against CCD112 colon normal cells. Remarkably, the Fe3O4 NPs containing 10 wt.% of the extract showed a lower IC50 value (99.80 µg/mL) in HCT116 colon cancer cell line than in CCD112 colon normal cell line (140.80 µg/mL). DISCUSSION This research, therefore, introduced a new stabilizer of Garcinia mangostana fruit peel extract for the biosynthesis of Fe3O4 NPs with desirable physiochemical properties for potential magnetic hyperthermia and colon cancer treatment.
Collapse
Affiliation(s)
- Mostafa Yusefi
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia
| | - Kamyar Shameli
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia
| | - Ong Su Yee
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor Darul Ehsan, 47500, Malaysia
| | - Ziba Hedayatnasab
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, 11155-9465, Iran
| | - Hossein Jahangirian
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Kamil Kuča
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
38
|
Effects of algae subtype and extraction condition on extracted fucoxanthin antioxidant property: A 20-year meta-analysis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Isolation of a High Antioxidant Non-Toxic Polar Fraction from Garcinia mangostana Fruit Pericarp by Reverse Phase Column Chromatography. JURNAL KIMIA SAINS DAN APLIKASI 2021. [DOI: 10.14710/jksa.24.1.15-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The crude polar extract of mangosteen fruit pericarp not only has a moderate antioxidant activity of (55±4 μg/mL) but also has high cytotoxicity (16±0.5 μg/mL). The high cytotoxicity presumably is caused by the presence of complex cytotoxic compounds from the mangosteen pericarp. To obtain a non-toxic extract preparation with high antioxidant activity, polar crude 50% ethanol extracts of mangosteen pericarp were partially purified using reverse-phase column chromatography with Silica C18 as the stationary phase and acetonitrile-water gradient elution. Six of the ten fractions collected had high antioxidant activities, with IC50 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging antioxidant levels <50 μg/mL. Three fractions (fractions 3, 5, and 7) with the highest antioxidant activities of (16.4 ± 0.6 µg/mL), (17.8 ± 2 µg/mL) and (17.4 ± 1.8 µg/mL) respectively, were chosen for further cytotoxicity, phenolic content and High-Performance Liquid Chromatography (HPLC) analysis. The cytotoxic tests were conducted with the Brine Shrimp Lethality Assay. Fraction 3 had low cytotoxicity (LC50 485 ± 96 µg/mL) and fraction 5 was non-toxic (LC50 ≥ 1000 µg/mL), while fraction 7 still had high cytotoxicity (LC50 2.8 ± 0.8 µg/mL). The chromatogram profiles of HPLC showed that fractions 3 and 5 contained more polar compounds than the compounds present in fraction 7. It can be concluded that the reverse phase method succeeded in the isolation of a non-toxic polar fraction, that is, fraction 5, with a significantly higher (p<0.05) antioxidant activity than in the original crude polar extracts. This fraction had a high total phenolic content of 43.3 ± 0.3 g GAE per 100 g extract.
Collapse
|
40
|
Green synthesis of Fe3O4 nanoparticles for hyperthermia, magnetic resonance imaging and 5-fluorouracil carrier in potential colorectal cancer treatment. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04388-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Sodeifian G, Sajadian SA. Antioxidant capacity, physicochemical properties, thermal behavior, and oxidative stability of nectarine (
Prunus persica var. nucipersica
) kernel oil. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Gholamhossein Sodeifian
- Department of Chemical Engineering Faculty of Engineering University of Kashan Kashan Iran
- Laboratory of Supercritical Fluids and Nanotechnology University of Kashan Kashan Iran
| | - Seyed Ali Sajadian
- Department of Chemical Engineering Faculty of Engineering University of Kashan Kashan Iran
- Laboratory of Supercritical Fluids and Nanotechnology University of Kashan Kashan Iran
- South Zagros Oil and Gas Production National Iranian Oil Company Shiraz Iran
| |
Collapse
|
42
|
Physicochemical analysis, proteolysis activity and exopolysaccharides production of herbal yogurt fortified with plant extracts. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2020-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Yogurt production with starter culture at 41 °C in the presence of plant water extracts (Momordica grosvenori, Psidium guajava, Lycium barbarum or Garcinia mangostana) were studied to examine the effects on acidification, physicochemical properties, microbial growth, proteolytic activity, and exopolysaccharide (EPS) content. All plant-based yogurt reached a pH of 4.5 faster (300–330 min) than plain-yogurt (360 min). All plant water extracts stimulated Lactobacillus spp. (∼7.4 log10 CFU/mL) and Streptococcus thermophilus (8.20–8.50 log10 CFU/mL) growth except for G. mangostana which marginally inhibited Lactobacillus spp. growth (7.21 log10 CFU/mL). M. grosvenori, L. barbarum, and G. mangonstana were significantly affected proteolysis of milk proteins (46.2 ± 0.8, 39.9 ± 0.5, & 35.8 ± 0.1 µg/mL; respectively) compared to plain-yogurt (26.3 ± 0.4 µg/mL). The presence of G. mangostana and L. barbarum resulted in an increase (p < 0.05) of total solids content (∼15.0%) and water holding capacity in yogurt (28.1 ± 1.2 & 26.5 ± 0.3%; respectively; p < 0.05). In addition, M. grosvenori water extract enhanced (p < 0.05) syneresis of yogurt (1.78 ± 0.30%). L. barbarum yogurt showed the highest EPS concentration (220.9 ± 12.4 µg/L) among yogurt samples. In conclusion, the presence of plant water extracts positively altered yogurt fermentation, enhanced proteolysis of milk protein, and induced EPS production.
Collapse
|
43
|
Sungpud C, Panpipat W, Sae Yoon A, Chaijan M. Ultrasonic-assisted virgin coconut oil based extraction for maximizing polyphenol recovery and bioactivities of mangosteen peels. Journal of Food Science and Technology 2020; 57:4032-4043. [PMID: 33071325 DOI: 10.1007/s13197-020-04436-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/26/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022]
Abstract
Virgin coconut oil (VCO) and propylene glycol (PG) have received more attention as bio-based solvents for natural bioactive recovery in green extraction process. Here, maceration extraction and ultrasound-assisted extraction (UAE) of bioactive phenolics from mangosteen peel (MP) by VCO, PG and VCO-PG mixture were compared. The goal was to maximize the phenolic extraction and improve bioactivities. Based on a single-factor experiment for UAE with VCO, the optimal condition was sample to solvent ratio of 1:6.6 g/mL, amplitude of 55 µm, and extraction time of 7 min, which yielded total phenolic content of 365 mg GAE/100 g. Regarding the extraction methods and bio-based solvents, UAE with mixed VCO-PG was not only provided greater polyphenol yield in a shorter time, but it also enhanced the bioactivities (radical scavenging, antibacterial, and antidiabetic activities) of the extract. Therefore, UAE can be potentially used in combination with bio-based solvents, especially mixed VCO-PG, for maximizing bioactive phenolic isolation from MP. This study provided an alternative method for production of bio-based oil solution from MP which can be directly used as a functional ingredient in emulsion based food, neutraceutical and cosmetic products.
Collapse
Affiliation(s)
- Chatchai Sungpud
- Food Technology and Innovation Research Center of Excellence, Department of Agro-Industry, School of Agricultural Technology, Walailak University, Nakhon Si Thammarat, 80161 Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Department of Agro-Industry, School of Agricultural Technology, Walailak University, Nakhon Si Thammarat, 80161 Thailand
| | - Attawadee Sae Yoon
- Drug and Cosmetics Excellence Center, School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80161 Thailand
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Department of Agro-Industry, School of Agricultural Technology, Walailak University, Nakhon Si Thammarat, 80161 Thailand
| |
Collapse
|
44
|
Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108140] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Watanabe M, Risi R, Masi D, Caputi A, Balena A, Rossini G, Tuccinardi D, Mariani S, Basciani S, Manfrini S, Gnessi L, Lubrano C. Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 2020; 12:E2873. [PMID: 32962190 PMCID: PMC7551574 DOI: 10.3390/nu12092873] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The use of food supplements for weight loss purposes has rapidly gained popularity as the prevalence of obesity increases. Navigating through the vast, often low quality, literature available is challenging, as is providing informed advice to those asking for it. Herein, we provide a comprehensive literature revision focusing on most currently marketed dietary supplements claimed to favor weight loss, classifying them by their purported mechanism of action. We conclude by proposing a combination of supplements most supported by current evidence, that leverages all mechanisms of action possibly leading to a synergistic effect and greater weight loss in the foreseen absence of adverse events. Further studies will be needed to confirm the weight loss and metabolic improvement that may be obtained through the use of the proposed combination.
Collapse
Affiliation(s)
- Mikiko Watanabe
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Renata Risi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Alessandra Caputi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Angela Balena
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Giovanni Rossini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Stefania Mariani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Sabrina Basciani
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Silvia Manfrini
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, 00128 Rome, Italy; (G.R.); (D.T.); (S.M.)
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy; (M.W.); (D.M.); (A.C.); (A.B.); (S.M.); (S.B.); (L.G.); (C.L.)
| |
Collapse
|
46
|
Umair M, Jabbar S, Sultana T, Ayub Z, Abdelgader SA, Xiaoyu Z, Chong Z, Fengxia L, Xiaomei B, Zhaoxin L. Chirality of the biomolecules enhanced its stereospecific action of dihydromyricetin enantiomers. Food Sci Nutr 2020; 8:4843-4856. [PMID: 32994946 PMCID: PMC7500803 DOI: 10.1002/fsn3.1766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 02/03/2023] Open
Abstract
The present study explores the effect of chirality of the biological macromolecules, its functional aspects, and its interaction with other food components. Dihydromyricetin (DHM) is a natural novel flavonol isolated from the vine tea (Ampelopsis grossedentata) leaves. However, limited progress in enantiopure separation methods of such compounds hinder in the development of enantiopure functional studies. This study is an attempt to develop a simple, accurate, and sensitive extraction method for the separation of the enantiopure DHM from vine tea leaves. In addition, the identification and purity of the extracted enantiopure (-)-DHM were further determined by the proton nuclear magnetic resonance (1H-NMR) and the carbon nuclear magnetic resonance (13C-NMR). The study further evaluates the antimicrobial activity of isolated (-)-DHM in comparison with racemate (+)-DHM, against selected foodborne pathogens, whereas the action mode of enantiopure (-)-DHM to increase the integrity and permeability of the bacterial cell membrane was visualized by confocal laser scanning microscopy using green fluorescence nucleic acid dye (SYTO-9) and propidium iodide (PI). Moreover, the morphological changes in the bacterial cell structure were observed through field emission scanning electron microscope. During analyzing the cell morphology of B. cereus (AS11846), it was confirmed that enantiopure (-)-DHM could increase the cell permeability that leads to the released of internal cell constituents and, thus, causes cell death. Therefore, the present study provides an insight into the advancement of enantiopure isolation along with its antimicrobial effect which could be served as an effective approach of biosafety.
Collapse
Affiliation(s)
- Muhammad Umair
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Saqib Jabbar
- Food Science Research Institute (FSRI)National Agricultural Research Centre (NARC)IslamabadPakistan
| | - Tayyaba Sultana
- College of Public AdministrationNanjing Agriculture UniversityNanjingChina
| | - Zubaria Ayub
- Institute of Home SciencesUniversity of AgricultureFaisalabadPakistan
| | | | - Zhu Xiaoyu
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Zhang Chong
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Lu Fengxia
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Bie Xiaomei
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| | - Lu Zhaoxin
- College of Food Science and TechnologyNanjing Agriculture UniversityNanjingChina
| |
Collapse
|
47
|
Ng HS, Kee PE, Tan GYT, Yim HS, Lan JCW. Surfactant as an Additive for the Recovery of Potent Antioxidants from Garcinia mangostana Pericarps Using a Polymer/Salt Aqueous Biphasic System. Appl Biochem Biotechnol 2020; 191:273-283. [DOI: 10.1007/s12010-020-03284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/13/2020] [Indexed: 11/29/2022]
|
48
|
An active heteropolysaccharide from the rinds of Garcinia mangostana Linn.: Structural characterization and immunomodulation activity evaluation. Carbohydr Polym 2020; 235:115929. [DOI: 10.1016/j.carbpol.2020.115929] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
|
49
|
Puteri FH, Widjaja J, Cahyani F, Mooduto L, Wahjuningrum DA. The Comparative Toxicity of Xanthones and Tannins in Mangosteen ( Garcinia mangostana Linn.) Pericarp Extract against BHK-21 Fibroblast Cell Culture. Contemp Clin Dent 2020; 10:319-323. [PMID: 32308297 PMCID: PMC7145252 DOI: 10.4103/ccd.ccd_579_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: The objective of this study is to compare the toxicity level of xanthones and tannins derived from mangosteen pericarp extract at specific concentrations against BHK-21 fibroblast cell cultures. Methods: Mangosteen was extracted using a maceration method with ethanol 96%. Xanthones were isolated from the chloroform extract, whereas tannins were isolated using acetone alcohol and serial diluted to 100% concentration. Toxicity levels were monitored after 24 h using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay technique by ELISA reader at 620 nm. Results: Viable cells of BHK-21 against xanthone concentration began to decrease (40.24%) at 3.98% xanthones, whereas viable cells of BHK-21 against tannin concentration began to decrease (68.06%) at 2.2% tannins. Conclusion: It is suggested that tannins were more toxic than the xanthones derived from mangosteen pericarp.
Collapse
Affiliation(s)
- Fikarini H Puteri
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Jennifer Widjaja
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Febriastuti Cahyani
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Latief Mooduto
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dian Agustin Wahjuningrum
- Department of Conservative Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
50
|
Widyarman AS, Lay SH, Wendhita IP, Tjakra EE, Murdono FI, Binartha CTO. Indonesian Mangosteen Fruit ( Garcinia mangostana L.) Peel Extract Inhibits Streptococcus mutans and Porphyromonas gingivalis in Biofilms In vitro. Contemp Clin Dent 2020; 10:123-128. [PMID: 32015654 PMCID: PMC6975002 DOI: 10.4103/ccd.ccd_758_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Background: Streptococcus mutans and Porphyromonas gingivalis are caries and periodontal disease-related bacteria. The mangosteen fruit (Garcinia mangostana L.) peel contains flavonoids, tannins, saponins, and xanthones that have antibacterial properties. Aims: The aim of this study is to analyze mangosteen peel extracts’ ability to inhibit S. mutans and P. gingivalis has biofilms growth in vitro. Materials and Methods: Mangosteen peel extract effects on the S. mutans ATCC-3198 and P. gingivalis ATCC-3327 in biofilms growth were evaluated by a crystal violet biofilm assay. Each bacterium was inoculated into a brain–heart infusion broth for 24 h at 37°C anaerobic conditions. A volume of 200 μL (107 colony-forming unit/mL) of bacterial suspension were distributed in microplate wells and incubated for 24 h. Mangosteen peel extracts with different concentrations were added into biofilm wells. Biofilm without treatment was used as negative control. Biofilm mass was calculated by 0.5% crystal violet staining, and optical density was measured at 600 nm using microplate reader. All obtained data were statistically analyzed using one-way analysis of variance test with P < 0.05 set as the level of significance. Results: The results showed that mangosteen peel extract could inhibit the growth of S. mutans and P. gingivalis in biofilms significantly compared to the negative control (P < 0.05). The most effective concentration and incubation time for inhibiting biofilm growth was 100% in 6 h for S. mutans and 100% in 24 h for P. gingivalis. Conclusion: Mangosteen peel extract is effective at inhibiting S. mutans and P. gingivalis biofilms, and this antibiofilm agent can be an alternative therapy in preventing caries and periodontal disease. Future studies are needed to explore this effect.
Collapse
Affiliation(s)
- Armelia Sari Widyarman
- Department of Microbiology, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | - Sammy H Lay
- Undergraduate Student, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | | | - Eugene E Tjakra
- Undergraduate Student, Faculty of Dentistry, Trisakti University, Jakarta, Indonesia
| | | | | |
Collapse
|