1
|
Fuad ASM, Arzmi MH, Bakar ME, Taib IS, Khuda F, Nasruddin NS. Acute oral toxicity evaluation of synbiotic mixture containing Streptococcus salivarius K12 and Musa acuminata aqueous peel extract in Sprague-Dawley rats. J Ayurveda Integr Med 2024; 16:101037. [PMID: 39681048 PMCID: PMC11714393 DOI: 10.1016/j.jaim.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/13/2023] [Accepted: 07/05/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND The combination of S. salivarius K12 and M. acuminata are being used as synbiotic, but its safety evaulation is required. OBJECTIVE This study aimed to determine the LD50 of synbiotic containing probiotic Streptococcus salivarius K12 and prebiotic Musa acuminata peel extract. MATERIALS AND METHODS The determination of LD50 is done according to the Acute Oral Toxicity test No. 425 (AOT425). For limit test, five female Sprague Dawley rats were given a limit dose of 2000 mg/kg of the synbiotic mixture once orally, and observed for 12 days. For subacute toxicity test, twenty female Sprague Dawley rats were randomised into 4 groups (n = 5). Control group received saline, others received synbiotic mixture at doses 175 mg/kg, 550 mg/kg, and 2000 mg/kg, respectively, and observed for 14 days. Animals were euthanised on day-15, blood was collected, and subjected to haematological and biochemical analyses. Kidney and liver were preserved for histopathological examination. RESULT No significant changes on the average body weight of the animals throughout the study. Haematological parameters and biochemical analysis do not depict any changes related to acute toxicity. Histopathology analysis depicted mild changes on kidney and liver. CONCLUSION Based on the data, the LD50 of the synbiotic formulation is higher than 2000 mg/kb, with no sign of acute toxicity observed on all parameters.
Collapse
Affiliation(s)
- Aalina Sakiinah Mohd Fuad
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia
| | - Mohd Hafiz Arzmi
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia; Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan Campus, Pahang, Malaysia; Melbourne Dental School, The University of Melbourne, Swanston Street, 3053, Victoria, Australia
| | - Muhammad Ekmal Bakar
- Centre of Diagnostics, Therapeutics and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Izatus Shima Taib
- Centre of Diagnostics, Therapeutics and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fazle Khuda
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; Department of Restorative Dentistry, Faculty of Dentistry, Lincoln University College Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Nurrul Shaqinah Nasruddin
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Toupal S, Coşansu S. Effects of Freeze-Dried Banana and Watermelon Peel Powders on Bile Salt Resistance, Growth Kinetics, and Survival of Probiotic Bacteria. Probiotics Antimicrob Proteins 2024; 16:1762-1772. [PMID: 37535210 DOI: 10.1007/s12602-023-10131-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Fruit peels have potential as prebiotic sources thanks to their dietary fiber contents. This study aimed to determine the effects of freeze-dried banana (BPP) and watermelon (WPP) peel powders on bile salt resistance, growth kinetics, and survival of Lactobacillus acidophilus and Lactiplantibacillus plantarum. In the presence of 0.5-1% bile salt, L. plantarum counts were 0.52-1.13 log CFU/mL higher in MRS broth added with 5% peel powder than without peel powder. Lactobacillus acidophilus population was 2.47-2.79 log CFU/mL higher in MRS broth added with 5% peel powder than without peel powder in the presence of 0.5% bile salt. Both peel powders did not affect the growth kinetics of L. acidophilus in milk. Conversely, the growth of L. plantarum was promoted in milk supplemented with peel powders and yielded a shorter generation time (P < 0.05). The maximum population density of L. plantarum in milk supplemented with BPP (8.68 log CFU/mL) was higher than in milk without peel powder (7.72 log CFU/mL; P < 0.05). Survival of L. acidophilus improved during storage at 4 °C in milk added with peel powders. The results suggest that BPP and WPP can be functional ingredients in probiotic foods and may be used to improve the growth and survival of probiotic cultures.
Collapse
Affiliation(s)
- Samin Toupal
- Department of Food Engineering, Engineering Faculty, Sakarya University, Sakarya, Turkey
| | - Serap Coşansu
- Department of Food Engineering, Engineering Faculty, Sakarya University, Sakarya, Turkey.
| |
Collapse
|
3
|
Farzana T, Abedin MJ, Abdullah ATM, Reaz AH, Bhuiyan MNI, Afrin S, Satter MA. Enhancing prebiotic, antioxidant, and nutritional qualities of noodles: A collaborative strategy with foxtail millet and green banana flour. PLoS One 2024; 19:e0307909. [PMID: 39159201 PMCID: PMC11332954 DOI: 10.1371/journal.pone.0307909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Foxtail millet (FM) and green banana (GB) are rich in health-promoting nutrients and bioactive substances, like antioxidants, dietary fibers, and various essential macro and micronutrients. Utilizing GB and FM flour as prebiotics is attributed to their ability to support gut health and offer multiple health benefits. The present study aimed to evaluate the impact of incorporating 10% GB flour (GBF) and different proportions (10-40%) of FM flour (FMF) on the prebiotic potential, antioxidant, nutrient, color, cooking quality, water activity and sensory attributes of noodles. The prebiotic potential, antioxidant, and nutrient of the produced noodles were significantly improved by increasing the levels of FMF. Sensorial evaluation revealed that noodles containing 30% FMF and 10% GBF attained comparable scores to the control sample. Furthermore, the formulated noodles exhibited significantly (p < 0.05) higher levels of protein, essential minerals (such as iron, magnesium, and manganese), dietary fiber (9.37 to 12.71 g/100 g), total phenolic compounds (17.81 to 36.35 mg GA eq./100 g), and total antioxidants (172.57 to 274.94 mg AA eq./100 g) compared to the control. The enriched noodles also demonstrated substantially (p < 0.05) increased antioxidant capacity, as evidenced by enhanced DPPH and FRAP activities, when compared to the control noodles. Overall, the incorporation of 30% FMF and 10% GBF led to a noteworthy improvement in the nutritional and antioxidant qualities of the noodles, as well as the prebiotic potential of the noodles with regard to L. plantarum, L. rhamnosus, and L. acidophilus. The implementation of this enrichment strategy has the potential to confer a multitude of health advantages.
Collapse
Affiliation(s)
- Tasnim Farzana
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Md. Jaynal Abedin
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Abu Tareq Mohammad Abdullah
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Akter Hossain Reaz
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Mohammad Nazrul Islam Bhuiyan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Sadia Afrin
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Mohammed Abdus Satter
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| |
Collapse
|
4
|
Chantanawilas P, Pahumunto N, Thananimit S, Teanpaisan R. Anticandidal Activity of Various Probiotic Lactobacillus Strains and Their Efficacy Enhanced by Prebiotic Supplementation. Curr Microbiol 2024; 81:271. [PMID: 39012492 DOI: 10.1007/s00284-024-03800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Probiotics and prebiotics have been considered as alternative approaches for promoting health. This study aimed to investigate the anticandidal potential of various probiotic Lactobacillus strains and their cell-free supernatants (CFSs). The study assessed the impact of inulin and some fruits as prebiotics on the growth of selected probiotic strains in relation to their anticandidal activity, production of short-chain fatty acids, total phenolic content, and antioxidant activity. Results revealed variations in anticandidal activity based on the specific strains and forms of probiotics used. Non-adjusted CFSs were the most effective against Candida strains, followed by probiotic cells and adjusted CFSs (pH 7). Lacticaseibacillus rhamnosus SD4, L. rhamnosus SD11 and L. rhamnosus GG displayed the strongest anticandidal activity. Non-adjusted CFSs from L. rhamnosus SD11, L. rhamnosus SD4 and L. paracasei SD1 exhibited notable anticandidal effects. The adjusted CFSs of L. rhamnosus SD11 showed the highest anticandidal activity against all non-albicans Candida (NAC) strains, whereas the others were ineffective. Supplementation of L. rhamnosus SD11 with prebiotics, particularly 2% (w/v) mangosteen, exhibited positive results in promoting probiotic growth, short-chain fatty acids production, total phenolic contents, and antioxidant activity, and the subsequent enhancing anticandidal activity against both C. albicans and NAC strains compared to conditions without prebiotics. In conclusion, both live cells and CFSs of tested strains, particularly L. rhamnosus SD11, exhibited the best anticandidal activity. Prebiotics supplementation, especially mangosteen, enhanced probiotic growth and beneficial metabolites against Candida growth. These finding suggested that probiotics and prebiotic supplementation may be an effective alternative treatment for Candida infections.
Collapse
Affiliation(s)
- Panita Chantanawilas
- Faculty of Dentistry, Department of Oral Diagnostic Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuntiya Pahumunto
- Faculty of Dentistry, Department of Oral Diagnostic Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Faculty of Dentistry, Research Center of Excellence for Oral Health, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suchera Thananimit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Faculty of Science, Center for Genomics and Bioinformatics Research, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rawee Teanpaisan
- Faculty of Dentistry, Department of Oral Diagnostic Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
- Medical Science Research and Innovation Institute, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
5
|
Khamsaw P, Sommano SR, Wongkaew M, Willats WGT, Bakshani CR, Sirilun S, Sunanta P. Banana Peel ( Musa ABB cv. Nam Wa Mali-Ong) as a Source of Value-Adding Components and the Functional Properties of Its Bioactive Ingredients. PLANTS (BASEL, SWITZERLAND) 2024; 13:593. [PMID: 38475439 DOI: 10.3390/plants13050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Banana peel (BP) is the primary by-product generated during banana processing which causes numerous environmental issues. This study examines the physical attributes, proximate analysis, glycoarray profiling, antioxidant abilities, and prebiotic activity of BP. The analysis demonstrated that carbohydrates constituted the primary components of BP and the glycoarray profiling indicated that BP contains multiple pectin and hemicellulose structures. BP also contained phenolic compounds, including (+)-catechin and gallic acid, flavonoid compounds, and antioxidant activities. BP demonstrated prebiotic effects by promoting the proliferation of advantageous gut bacteria while inhibiting the growth of harmful bacteria. The prebiotic index scores demonstrated that BP exhibited a greater capacity to promote the growth of beneficial bacteria in comparison to regular sugar. The study demonstrated the potential of the BP as a valuable source of dietary fibre, bioactive compounds, and prebiotics. These components have beneficial characteristics and can be utilised in the production of food, feed additives, and functional food.
Collapse
Affiliation(s)
- Pattarapol Khamsaw
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Malaiporn Wongkaew
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Program in Food Production and Innovation, College of Integrated Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50220, Thailand
| | - William G T Willats
- Department of Biology, School of Natural and Environmental Sciences, Newcastle University, Tyne NE1 7RU, UK
| | - Cassie R Bakshani
- Department of Biology, School of Natural and Environmental Sciences, Newcastle University, Tyne NE1 7RU, UK
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2SQ, UK
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Piyachat Sunanta
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Unit for Innovation in Responsible Food Production for Consumption of the Future (RIFF), Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins 2023; 15:239-263. [PMID: 36063353 DOI: 10.1007/s12602-022-09983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Non-dairy sources of prebiotics and probiotics impart various physiological functions in the prevention and management of chronic metabolic disorders, therefore nutraceuticals emerged as a potential industry. Extraction of prebiotics from non-dairy sources is economical and easily implemented. Waste products during food processing, including fruit peels and fruit skins, can be utilized as a promising source of prebiotics and considered "Generally Recognized As Safe" for human consumption. Prebiotics from non-dairy sources have a significant impact on gut microbiota and reduce the population of pathogenic bacteria. Similarly, next-generation probiotics could also be isolated from non-dairy sources. These sources have considerable potential and can give novel strains of probiotics, which can be the replacement for dairy sources. Such strains isolated from non-dairy sources have good probiotic properties and can be used as therapeutic. This review will elaborate on the potential non-dairy sources of prebiotics and probiotics, their characterization, and significant physiological potential.
Collapse
Affiliation(s)
- Fasiha Fayyaz Khan
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan.
| | - Asma Sohail
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Institute of Genomics and Agriculture Biotechnology (NIGAB), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Asif Ahmad
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Aayesha Riaz
- Faculty of Veterinary & Animal Sciences, Department of Parasitology & Microbiology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Muhammad Sohail Ibrahim
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
7
|
Optimization of Convective Tray-Drying Process Parameters for Green Banana Slices Using Response Surface Methodology and Its Characterization. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8208572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Green banana (Musa spp.) is a significant source of starch (resistant starch ∼50%), phenolics and flavonoid compounds, and minerals (K, Mg, Zn, and Fe). The utilization of green bananas in their fresh form is limited, whereas the drying of bananas provides the opportunity to use them for various purposes. Drying temperature and slice thickness are important to be optimized for drying of bananas as they affect the quality parameters. The present study was conducted using response surface methodology to optimize tray-drying temperatures (50–80°C) and slice thicknesses (2–8 mm) on the basis of phytochemical and physical parameters of dried green banana slices. The cubic model was found to be the best fit for most of the responses (R2 = 0.95–1), and the quadratic model was fit for water activity (
) (R2 = 0.92). The optimized drying conditions were found as drying temperature of 50°C and slice thickness of 4.5 mm. Experimental responses exhibited maximum L
(84.06), C
(13.73), and ho(83.53) and minimum losses of total phenolic content (89.22 mg GAE/100 g) and total flavonoid content (3.10 mg QE/100 g) along with lower
(0.25). The optimized green banana flour was rich in carbohydrates (77.25 ± 0.06%) and low in fat (1.79 ± 0.11%). The flour obtained had good flowability with a mean particle size of 60.75 ± 1.99 µm. Flour’s gelatinization and decomposition temperatures were 102.7 and 292°C, respectively. In addition, flour’s water absorption, oil absorption, and solubility were 5.19 ± 0.01, 1.58 ± 0.01, and 0.14 ± 0.02 g/g, respectively. Green bananas dried at optimized conditions resulted in a better product with less phytochemical loss than dried with other methods.
Collapse
|
8
|
Characterization of probiotic properties and development of banana powder enriched with freeze-dried Lacticaseibacillus paracasei probiotics. Heliyon 2022; 8:e11063. [PMID: 36276732 PMCID: PMC9578979 DOI: 10.1016/j.heliyon.2022.e11063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Lacticaseibacillus paracasei is one of the probiotic bacteria widely identified from fermented foods. The application of L. paracasei is commonly used in dairy and non-dairy products. To investigate the probiotic properties of L. paracasei cells including their acid, pepsin, pancreatin, and bile salt tolerances; adhesion ability; antipathogen activity; and antibiotic susceptibility, L. paracasei cells were incorporated into skim milk and lyophilized by freeze drying. Freeze-dried probiotic cells were add to green banana powder and low moisture additive food matrices and a storage analysis of the product was performed. The result showed that L. paracasei cells possessed potentially beneficial probiotic properties to survive stress in the gastrointestinal tract (GIT) and functional abilities as an anti-enteropathogenic agent; they were also safe to use and displayed antibiotic properties. Furthermore, the probiotic freeze-drying technique preserved high probiotic cell survivability (1011 CFU/g). In term of prolonged storage (60 days), the powder product was stable and maintained probiotic survival (107 CFU/g) while excluding non-probiotic growth. In conclusion, L. paracasei displayed probiotic properties in the GIT and was judged to be a highly acceptable product as a probiotics–banana rehydrated beverage.
Collapse
|
9
|
Lin NS, Kitamura M, Saito M, Hirayama K, Ide Y, Umemura K. Distinguishing Antioxidant Molecules with Near-Infrared Photoluminescence of DNA-Wrapped Single-Walled Carbon Nanotubes. ACS OMEGA 2022; 7:28896-28903. [PMID: 36033714 PMCID: PMC9404167 DOI: 10.1021/acsomega.2c02038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
In this study, two biomolecule solutions were distinguished using the capacity difference in the near-infrared photoluminescence (PL) of single-walled carbon nanotubes (SWNTs). Biosensing techniques using sensitive responses of SWNTs have been intensively studied. When a small amount of an oxidant or reductant solution was injected into the SWNT suspensions, the PL intensity of the SWNTs is significantly changed. However, distinguishing between different molecules remains challenging. In this study, we comparably injected saponin and banana solutions, which are known antioxidant chemicals, into an SWNT suspension. The SWNTs were solubilized by wrapping them with DNA molecules. The results show that 69.1 and 155.2% increases of PL intensities of SWNTs were observed after injection of 20 and 59 μg/mL saponin solutions, respectively. Subsequently, the increase in PL was saturated. With the banana solution, 18.1 and 175.4% increases in PL intensities were observed with 20 and 59 μg/mL banana solutions, respectively. Based on these results, the two antioxidant molecules could be distinguished based on the different PL responses of the SWNTs. In addition, the much higher saturated PL intensities observed with the banana solution suggests that the banana solution increased the capacity of the PL increase for the same SWNT suspension. These results provide helpful information for establishing biosensing applications of SWNTs, particularly for distinguishing chemicals.
Collapse
|
10
|
Fruit Bioactive Compounds: Effect on Lactic Acid Bacteria and on Intestinal Microbiota. Food Res Int 2022; 161:111809. [DOI: 10.1016/j.foodres.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
|
11
|
Rismayuddin NAR, Mohd Badri PEA, Ismail AF, Othman N, Bandara HMHN, Arzmi MH. Synbiotic Musa acuminata skin extract and Streptococcus salivarius K12 inhibit candida species biofilm formation. BIOFOULING 2022; 38:614-627. [PMID: 35899682 DOI: 10.1080/08927014.2022.2105142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to determine the effect of synbiotic Musa acuminata skin extract (MASE) and Streptococcus salivarius K12 (K12) on Candida species biofilm formation. Liquid chromatography quadrupole time-of-flight (LC-Q-TOF-MS) was conducted to characterize MASE. To determine the effect of synbiotic on Candida biofilm, 200 µL of RPMI-1640 containing Candida, K12, and MASE were pipetted into the same well and incubated at 37 °C for 72 h. A similar protocol was repeated with K12 or MASE to determine the probiotic and prebiotic effects, respectively. Dimorphism, biofilm biomass, and Candida total cell count (TCC) were determined. A total of 60 compounds were detected in MASE. C. albicans (ALT5) and Candida lusitaniae exhibited the highest reduction in biofilm biomass when co-cultured with prebiotic (77.70 ± 7.67%) and synbiotic (97.73 ± 0.28%), respectively. All Candida spp. had decreased TCC and hyphae when co-cultured with synbiotic. In conclusion, MASE and K12 inhibit Candida biofilm formation.
Collapse
Affiliation(s)
- Nurul Alia Risma Rismayuddin
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Puteri Elysa Alia Mohd Badri
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Ahmad Faisal Ismail
- Department of Paediatric Dentistry and Dental Public Health, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Noratikah Othman
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - H M H N Bandara
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Mohd Hafiz Arzmi
- Cluster of Cancer Research Initiative IIUM (COCRII), International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
12
|
Mostafa HS. Banana plant as a source of valuable antimicrobial compounds and its current applications in the food sector. J Food Sci 2021; 86:3778-3797. [PMID: 34337757 DOI: 10.1111/1750-3841.15854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
Bananas (Musaceae) are one of the world's most common fruit crops and the oldest medicinal plants that are used to treat a variety of infections. There has been recent interest in elucidating the efficiency of the naturally active ingredients, particularly the antimicrobials, in this plant. This review begins with a short background of the banana plant and its cultivars as well as a brief description of its parts. Different experimental tests of the antimicrobial effects and the responsible bioactive compounds of the banana part extracts are then elaborated. A variety of recent and evolving applications of banana parts in the development of functional bakery, dairy, beverage, and meat products as a wheat substitute, fiber/prebiotic source, fat/sucrose substitute, and natural antioxidant are also discussed. Finally, the recent challenges and opportunities presented by different banana parts in creating bio-packaging materials and bactericidal nanoparticles are addressed. This plant contains a variety of antimicrobial substances, including dopamine, gentisic acid, ferulic acid, lupeol, and 3-carene. However, few studies have been conducted on its use as a bio-preservative in food products; it should also be seen as a natural source of both antimicrobial and antioxidant agents. It offers a potentially simple eco-friendly alternative to antibacterial and fungicidal agents rather than chemicals. Low cost, reliable methods for purifying these compounds from banana waste could be useful for food storage and creating more value-added bio-packaging products for perishable food goods.
Collapse
Affiliation(s)
- Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
13
|
Jaiturong P, Laosirisathian N, Sirithunyalug B, Eitssayeam S, Sirilun S, Chaiyana W, Sirithunyalug J. Physicochemical and prebiotic properties of resistant starch from Musa sapientum Linn., ABB group, cv. Kluai Namwa Luang. Heliyon 2020; 6:e05789. [PMID: 33376829 PMCID: PMC7758519 DOI: 10.1016/j.heliyon.2020.e05789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/26/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022] Open
Abstract
Resistant starch (RS), a current health trend, can be obtained from various natural sources. Musa sapientum Linn., ABB group, cv. Kluai Namwa Luang is a good source of RS. This is the first study to investigate the physicochemical properties, RS contents, and prebiotic properties of unpeeled raw banana powder (URB), peeled raw banana powder (PRB), and banana starch (BS) from Kluai Namwa Luang. Their physicochemical properties were characterized by scanning electron microscope, differential scanning calorimeter, and X-ray diffractometer. The RS contents were determined using the Megazyme Resistant Starch Assay Kit. The prebiotic properties are reported as a prebiotic index (PI). The particle morphology of URB, PRB, and BS granules showed a smooth surface with irregular size and shape. Their gelatinization temperatures were 74-78 °C. All samples exhibited typical B-type diffraction patterns. URB contained the highest dietary fiber (9.7 ± 0.2 g per 100 g of dried sample), whereas BS contained the highest RS content (74.1 ± 0.1 g per 100 g of dried sample). Both URB and BS possessed excellent probiotic growth promotion, prebiotic properties with PI values comparable to the commercial inulin, and were highly resistant to digestive enzymes. Therefore, BS from Kluai Namwa Luang is suggested as functional nutrient in health promotion products.
Collapse
Affiliation(s)
- Patthanakorn Jaiturong
- Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nachtharinee Laosirisathian
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Busaban Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sukum Eitssayeam
- Department of Physics and Materials, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasithorn Sirilun
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceutical, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jakkapan Sirithunyalug
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|