1
|
You XY, Ding Y, Bu QY, Wang QH, Zhao GP. Nutritional, Textural, and Sensory Attributes of Protein Bars Formulated with Mycoproteins. Foods 2024; 13:671. [PMID: 38472784 DOI: 10.3390/foods13050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Research accumulated over the past decades has shown that mycoprotein could serve as a healthy and safe alternative protein source, offering a viable substitute for animal- and plant-derived proteins. This study evaluated the impact of substituting whey protein with fungal-derived mycoprotein at different levels (10%, 20%, and 30%) on the quality of high-protein nutrition bars (HPNBs). It focused on nutritional content, textural changes over storage, and sensory properties. Initially, all bars displayed similar hardness, but storage time significantly affected textural properties. In the early storage period (0-5 days), hardness increased at a modest rate of 0.206 N/day to 0.403 N/day. This rate dramatically escalated from 1.13 N/day to 1.36 N/day after 5 days, indicating a substantial textural deterioration over time. Bars with lower mycoprotein levels (10%) exhibited slower hardening rates compared with those with higher substitution levels (20% and 30%), pointing to a correlation between mycoprotein content and increased bar hardness during storage. Protein digestibility was assessed through in vitro gastric and intestinal phases. Bars with no or low-to-medium levels of mycoprotein substitution (PB00, PB10, and PB20) showed significantly higher digestibility (40.3~43.8%) compared with those with the highest mycoprotein content (PB30, 32.9%). However, digestibility rates for all mycoprotein-enriched bars were lower than those observed for whey-protein-only bars (PB00, 84.5%), especially by the end of the intestinal digestion phase. The introduction of mycoprotein enriched the bars' dietary fiber content and improved their odor, attributing a fresh mushroom-like smell. These findings suggest that modest levels of mycoprotein can enhance nutritional value and maintain sensory quality, although higher substitution levels adversely affect texture and protein digestibility. This study underscores the potential of mycoprotein as a functional ingredient in HPNBs, balancing nutritional enhancement with sensory acceptability, while also highlighting the challenges of textural deterioration and reduced protein digestibility at higher substitution levels.
Collapse
Affiliation(s)
- Xiao-Yan You
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yue Ding
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Qing-Yun Bu
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Qin-Hong Wang
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guo-Ping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Mahajan M, Singla P, Sharma S. Sustainable postharvest processing methods for millets: A review on its value‐added products. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Monika Mahajan
- Punjab Agricultural University (PAU) Regional Research Station Bathinda Punjab India
| | - Prabhjot Singla
- Department of Biochemistry Punjab Agricultural University (PAU) Ludhiana Punjab India
| | - Sucheta Sharma
- Department of Biochemistry Punjab Agricultural University (PAU) Ludhiana Punjab India
| |
Collapse
|
3
|
Samtiya M, Chandratre GA, Dhewa T, Badgujar PC, Sirohi R, Kumar A, Kumar A. A comparative study on comprehensive nutritional profiling of indigenous non-bio-fortified and bio-fortified varieties and bio-fortified hybrids of pearl millets. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1065-1076. [PMID: 36908360 PMCID: PMC9998779 DOI: 10.1007/s13197-022-05452-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
Seven indigenous pearl millet varieties, including non-bio-fortified (HC-10 & HC-20) and bio-fortified (Dhanashakti) and bio-fortified hybrids, viz., AHB-1200, HHB-299, HHB-311, and RHB-233, were studied in the present work. There was not any significant difference observed in the crucial anti-nutrients content, i.e., phytate (24.88-32.56 mg/g), tannin (3.07-4.35 mg/g), and oxalate (0.33-0.43 mg/g). Phytochemical content and antioxidant activity showed significantly high (p < 0.05) TPC and FRAP, TFC, and DPPH radical scavenging activity in the HHB 299 and Dhanashakti, respectively. Quantitative analysis of polyphenols by HPLC (first report on these varieties) revealed that HHB-299 has the highest amount of gallic acid. Fatty acid profiling by GC-FID showed that Dhanashakti, AHB-1200, and HHB-299 have rich monounsaturated fatty acid (MUFA) and polyunsaturated fatty acids (PUFA). Mineral analysis by ICP-OES showed high iron (87.79 and 84.26 mg/kg) and zinc (55.05 and 52.43 mg/kg) content in the HHB-311 and Dhanashakti, respectively. Results of the present study would help facilitate the formulation of various processed functional food products (RTC/RTE) that are currently not reported/unavailable. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05452-x.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| | - Gauri A. Chandratre
- Department of Veterinary Pathology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125001 India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Ankur Kumar
- Central Instrumentation Laboratory, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131 028 India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, Haryana 123 031 India
| |
Collapse
|
4
|
Sharma N, Sahu JK, Bansal V, Esua OJ, Rana S, Bhardwaj A, Punia Bangar S, Adedeji AA. Trends in millet and pseudomillet proteins - Characterization, processing and food applications. Food Res Int 2023; 164:112310. [PMID: 36737904 DOI: 10.1016/j.foodres.2022.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
Millets are small-seeded crops which have been well adopted globally owing to their high concentration of macro and micronutrients such as protein, dietary fibre, essential fatty acids, minerals and vitamins. Considering their climate resilience and potential role in nutritional and health security, the year 2023 has been declared as 'International Year of Millets' by the United Nations. Cereals being the major nutrient vehicle for a majority population, and proteins being the second most abundant nutrient in millets, these grains can be a suitable alternative for plant-based proteins. Therefore, this review was written with an aim to succinctly provide an overview of the available literature take on the characterization, processing and applications of millet-based proteins. This information would play an important role in realizing the research gap restricting the utilization of complete potential of millet proteins. This can be further used by researchers and food industries for understanding the scope of millet proteins as an ingredient for novel food product development.
Collapse
Affiliation(s)
- Nitya Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India
| | - Jatindra K Sahu
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110 016, India.
| | - Vasudha Bansal
- Department of Foods and Nutrition, Government Home Science College, Chandigarh 160 010, India
| | - Okon Johnson Esua
- Department of Agricultural and Food Engineering, University of Uyo, Uyo 520101, Nigeria; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Sudha Rana
- Department of Food Science and Technology, Punjab Agriculture University, Ludhiana, Punjab 141004, India
| | - Aastha Bhardwaj
- Department of Food Technology, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, 29631, USA
| | - Akinbode A Adedeji
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
5
|
Dekka S, Paul A, Vidyalakshmi R, Mahendran R. Potential processing technologies for utilization of millets: An updated comprehensive review. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Srenuja Dekka
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) Thanjavur Tamil Nadu India
| | | | - R. Vidyalakshmi
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) Thanjavur Tamil Nadu India
| | - R. Mahendran
- Centre of Excellence in Nonthermal Processing National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) Thanjavur Tamil Nadu India
| |
Collapse
|
6
|
Maleki G, Shadordizadeh T, Mozafari MR, Attar FR, Hesarinejad MA. Physicochemical and nutritional characteristics of nutrition bar fortified with cowpea protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Sahni P, Sharma S, Singh B, Bobade H. Cereal bar functionalised with non-conventional alfalfa and dhaincha protein isolates: quality characteristics, nutritional composition and antioxidant activity. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3827-3835. [PMID: 36193364 PMCID: PMC9525485 DOI: 10.1007/s13197-022-05404-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/10/2021] [Accepted: 02/10/2022] [Indexed: 06/16/2023]
Abstract
The utilization of conventional protein sources like gluten, soy, dairy proteins, and nuts in the development of protein-enriched cereal bars presents a challenge for their consumption by the population suffering from celiac and other food protein allergies. In the present investigation, protein-rich cereal bars were developed using non-conventional protein isolates (alfalfa and dhiancha (API & DPI) and were evaluated for their quality attributes, nutritional composition, and bioactive potential. The incorporation of protein isolates increased the weight, density, and non-enzymatic browning and decreased the water activity in the bars. The hardness of the bar increased with the addition of protein isolates; however, reduced hardness was observed at 7.5 and 10% levels of API. Supplementation with protein isolates enhanced the protein content (7.83-16.71%), total phenols (1642-4956 GAE μg/g), total flavonoids (268-984 QE μg/g), DPPH radical scavenging activity (96.38-114.82 TEAC μmol/100 g) and reducing power (1926-3586 AAE μg/g) of the bars. Cereal bars maintained good sensory score and overall acceptability at 10 and 5% level of incorporation of API and DPI respectively.
Collapse
Affiliation(s)
- Prashant Sahni
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Savita Sharma
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Baljit Singh
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Hanuman Bobade
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
8
|
Understanding the Antinutritional Factors and Bioactive Compounds of Kodo Millet (Paspalum scrobiculatum) and Little Millet (Panicum sumatrense). J FOOD QUALITY 2022. [DOI: 10.1155/2022/1578448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kodo and little millet (Kutki) have a variety of phytochemical constituents including derivatives of hydroxybenzoic acid and hydroxycinnamic acids, myricetin, catechin, luteolin, apigenin, daidzein, naringenin, kaempferol, and quercetin with vast health benefits and thus can be utilized as functional food ingredients. Millet-based foods and their food products have physiological and health-promoting impacts, notably antidiabetic, anti-obesity, and cardiovascular disease, and based on the actions of phytochemicals, it plays a major role in the body’s immune system. However, antinutrients (tannins, oxalate, trypsin inhibitor, and phytates) present in these millets restrict their utilization since these factors bind the essential nutrients and make them unavailable. Therefore, this review suggested overcoming the effects of antinutrients in these millets, thereby opening up important applications in food industries that may promote the development of novel functional foods. Various methods were discussed to eliminate the antinutrient factors in these millets, and hence, the review holds immense significance to the food industry for effectively utilizing these millets to develop value-added RTE/RTC products/functional food/beverages.
Collapse
|
9
|
Zhou X, Zheng Y, Zhong Y, Wang D, Xu J, Liu R, Deng Y. A novel protein bar formulated with hempseed protein and
Tenebrio molitor
larvae protein: Nutritional, sensory characterization and hardening, volatile profile changes assessment. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xuefu Zhou
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology Shanghai Engineering Research Center of Dairy Biotechnology Dairy Research Institute Bright Dairy & Food Co., Ltd. Shanghai P.R. China
| | - Yu Zhong
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| | - Danfeng Wang
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| | - Jingyao Xu
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| | - Ren Liu
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| | - Yun Deng
- Department of Food Science and Technology Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
10
|
Yousaf L, Hou D, Liaqat H, Shen Q. Millet: A review of its nutritional and functional changes during processing. Food Res Int 2021; 142:110197. [PMID: 33773674 DOI: 10.1016/j.foodres.2021.110197] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 11/17/2022]
Abstract
Millets are a major source of human food, and their production has been steadily increasing in the last decades to meet the dietary requirements of the increasing world population. Millets are an excellent source of all essential nutrients like protein, carbohydrates, fat, minerals, vitamins, and bioactive compounds. However, the nutrients, bioactive compounds, and functions of cereal grains can be influenced by the food preparation techniques such as decortication/dehulling, soaking, germination/malting, milling, fermentation, etc. This study discusses the nutritional and functional changes in millet during different traditional/modern processing techniques, based on more than 100 articles between 2013 and 2020 from Web of Science, Google Scholar, FAO, and USDA databases. Our results concluded that processing techniques could be useful to combat undernourishment and other health issues. Moreover, this review provides detailed information about millet processing, which is advantageous for industry, consumers, and researchers in this area.
Collapse
Affiliation(s)
- Laraib Yousaf
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China
| | - Dianzhi Hou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China
| | - Humna Liaqat
- Department of Food Science and Technology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, South Korea
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Plant Protein and Grain Processing, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
11
|
Spim SRV, Castanho NRCM, Pistila AMH, Jozala AF, Oliveira Júnior JM, Grotto D. Lentinula edodes mushroom as an ingredient to enhance the nutritional and functional properties of cereal bars. Journal of Food Science and Technology 2020; 58:1349-1357. [PMID: 33746263 DOI: 10.1007/s13197-020-04646-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023]
Abstract
Lentinula edodes (shiitake) is the second most cultivated edible mushroom in the world; it has low lipid contents, high protein and it is source of vitamins and minerals. This study aimed to develop and to evaluate two sweet and two salty food bars containing shiitake. The binder elements were heated and then the dried elements were added. The bars were shaped, and the sensorial test was accomplished with hedonic scale of 9 points for analysis of texture, aroma, taste and appearance, and a 5-point scale for buying intention. The centesimal composition included percentages of moisture content, ashes, lipids, proteins and carbohydrate contents. Chemical elements of shiitake were quantified by Energy Dispersive X-ray Fluorescence. Glucans were determined using a commercial kit. Phenolic compounds were determined with the Folin-Ciocalteu reagent. The shelf life was evaluated by microbiological control, up to 180 days, at temperatures of 25 °C and 37 °C. The sweet bar 1 (SwB1) had better sensory analysis and buying intention. Shiitake showed high concentrations of calcium, iron, phosphorus, potassium, zinc, manganese, phenolic compounds and glucans. SwB1-bar maintained shiitake nutritional characteristics. SwB1-bars did not present microorganisms for up to 180 days of shelf life, neither at 25 °C nor at 37 °C, and they followed the standards determined by National Health Surveillance Agency. Sweet bars are an easy marketing alternative due to their stability, low-cost of production and good acceptance, as well as flexibility to add other functional ingredients beneficial to health, such as shiitake.
Collapse
Affiliation(s)
- Sara Rosicler Vieira Spim
- LAPETOX - Laboratory of Toxicological Research, University of Sorocaba, Rodovia Raposo Tavares, Km 92.5, Sorocaba, São Paulo 18023-000 Brazil
| | | | - Ana Maria Holtz Pistila
- LAPETOX - Laboratory of Toxicological Research, University of Sorocaba, Rodovia Raposo Tavares, Km 92.5, Sorocaba, São Paulo 18023-000 Brazil
| | - Angela Faustino Jozala
- LaMInFE - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, SP Brazil
| | | | - Denise Grotto
- LAPETOX - Laboratory of Toxicological Research, University of Sorocaba, Rodovia Raposo Tavares, Km 92.5, Sorocaba, São Paulo 18023-000 Brazil
| |
Collapse
|