1
|
Nordberg K, Björk G, Abrahamsson K, Josefsson S, Lundin L. Historic distribution of Polycyclic Aromatic Compounds (PAC) in a Skagerrak fjord, Swedish west coast as reflected in a high-resolution sediment record and compared to the Environmental Quality Standards (EQS). MARINE POLLUTION BULLETIN 2024; 199:116014. [PMID: 38183834 DOI: 10.1016/j.marpolbul.2023.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
We present the historic distribution of Polycyclic Aromatic Compounds (PAC) in a Skagerrak fjord, a relatively unexploited area, on the Swedish west coast. PACs encompass various compounds, including PAHs, alkyl-PAHs, nitro-PAHs, and oxy-PAHs. These compounds, have environmental implications due to their harmful properties. Using a high-resolution sediment record, PAC variations including standard PAHs, nitro-PAHs and oxy-PAHs were investigated over the last approximately 170 years, comparing them with other European records. The sediment record reveals a significant increase in PAC levels during the 1940s-1950s, followed by peaks in the 1960s and 1970s, and a subsequent decrease in the 1980s. These trends align with industrial growth and evolving stronger environmental regulations in the region. The highest recorded concentration of PACs (1950-1970) reached levels comparable to present-day polluted urban environments. The study also compared PAH levels with EQS values. Results indicated that PAH levels exceeded EQS standards, potentially posing risks to sediment-dwelling organisms.
Collapse
Affiliation(s)
- Kjell Nordberg
- Dept. of Marine Sciences, University of Gothenburg, PO Box 461, SE 40530 Gothenburg, Sweden.
| | - Göran Björk
- Dept. of Marine Sciences, University of Gothenburg, PO Box 461, SE 40530 Gothenburg, Sweden
| | - Katarina Abrahamsson
- Dept. of Marine Sciences, University of Gothenburg, PO Box 461, SE 40530 Gothenburg, Sweden
| | - Sarah Josefsson
- Geological Survey of Sweden, PO Box 670, SE 75128 Uppsala, Sweden
| | - Lisa Lundin
- Dept. of Chemistry, Umeå Univ., Linneus väg 6, SE 90187 Umeå, Sweden
| |
Collapse
|
2
|
Çelik G, Stolte S, Müller S, Schattenberg F, Markiewicz M. Environmental persistence assessment of heterocyclic polyaromatic hydrocarbons - Ultimate and primary biodegradability using adapted and non-adapted microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132370. [PMID: 37666173 DOI: 10.1016/j.jhazmat.2023.132370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/01/2023] [Accepted: 08/20/2023] [Indexed: 09/06/2023]
Abstract
Heterocyclic polyaromatic hydrocarbons (heterocyclic PAHs) are of increasing concern and their environmental and human health impacts should be assessed due to their widespread presence and potential persistence in the environment. This study investigated the ultimate and primary biodegradability of ten heterocyclic PAHs, nine of which were found to be non-readily biodegradable. To generate a microbial community capable of degrading such compounds, a bacterial inoculum isolated from the effluent of a wastewater treatment plant (WWTP) was adapted to a mixture of heterocyclic PAHs for one year. Throughout the adaptation process, bacterial samples were collected at different stages to conduct primary biodegradation, ultimate biodegradation, and inoculum toxicity tests. Interestingly, after one year of adaptation, the community developed the ability to mineralize carbazole, but in the same time showed an increasing sensitivity to the toxic effects of benzo[c]carbazole. In two consecutive primary biodegradation experiments, degradation of four heterocycles was observed, while no biodegradation was detected for five compounds in any of the tests. Furthermore, the findings of this work were compared with predictions from in silico models regarding biodegradation timeframe and sorption, and it was found that the models were partially successful in describing these processes. The results of study provide valuable insights into the persistence of a representative group of heterocyclic PAHs in aquatic environments, which contributes to the hazard assessment of this particular class of substances.
Collapse
Affiliation(s)
- Göksu Çelik
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Susann Müller
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Florian Schattenberg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany.
| |
Collapse
|
3
|
Dinh MTN, Nguyen VT, Nguyen LTH. The potential application of carbazole-degrading bacteria for dioxin bioremediation. BIORESOUR BIOPROCESS 2023; 10:56. [PMID: 38647625 PMCID: PMC10992316 DOI: 10.1186/s40643-023-00680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 04/25/2024] Open
Abstract
Extensive research has been conducted over the years on the bacterial degradation of dioxins and their related compounds including carbazole, because these chemicals are highly toxic and has been widely distributed in the environment. There is a pressing need to explore and develop more bacterial strains with unique catabolic features to effectively remediate dioxin-polluted sites. Carbazole has a chemical structure similar to dioxins, and the degradation pathways of these two chemicals are highly homologous. Some carbazole-degrading bacterial strains have been demonstrated to have the ability to degrade dioxins, such as Pseudomonas sp. strain CA10 và Sphingomonas sp. KA1. The introduction of strain KA1 into dioxin-contaminated model soil resulted in the degradation of 96% and 70% of 2-chlorodibenzo-p-dioxin (2-CDD) and 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD), respectively, after 7-day incubation period. These degradation rates were similar to those achieved with strain CA10, which removed 96% of 2-CDD and 80% of 2,3-DCDD from the same model soil. Therefore, carbazole-degrading bacteria hold significant promise as potential candidates for dioxin bioremediation. This paper overviews the connection between the bacterial degradation of dioxins and carbazole, highlighting the potential for dioxin biodegradation by carbazole-degrading bacterial strains.
Collapse
Affiliation(s)
- Mai Thi Ngoc Dinh
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, A9 Building, Nguyen Van Trac Street, Ha Dong District, Hanoi, Vietnam.
- Bioresource Research Center, Phenikaa University, Hanoi, Vietnam.
| | - Van Thi Nguyen
- VNU Institute of Microbiology and Biotechnology, Vietnam National University, E2 Building, 144 Xuan Thuy Street, Cau Giay District, Hanoi, Vietnam
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju, Republic of Korea
| |
Collapse
|
4
|
Onyena AP, Nkwoji JA, Chukwu LO, Walker TR, Sam K. Risk assessment of sediment PAH, BTEX, and emerging contaminants in Chanomi Creek Niger Delta, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1080. [PMID: 37615789 DOI: 10.1007/s10661-023-11703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
This study assessed the levels of polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, and xylene (BTEX), and emerging contaminants in Chanomi Creek. Sediment samples were collected between March 2019 and July 2020 to evaluate the concentrations of PAH, BTEX, and emerging contaminants using GC-MS and GC-FID with Headspace extraction. Results indicated mean PAH concentrations were 22.691 ± 15.09 µg/kg. The highest individual PAH concentrations were fluorene (7.085 µg/kg), naphthalene (4.517 µg/kg), and phenanthrene (3.081 µg/kg). Carbazole (0.828 µg/kg) was discovered as a novel environmental toxin with dioxin-like toxicity and widespread prevalence in sediments. The most common congener (25%) was ethylbenzene, followed by toluene and ortho- and meta-xylene (21%) and benzene (13%). The analysis of diagnostic ratios revealed that the main factors responsible for the presence of PAHs in the study area are the residential use of firewood, emissions from industrial activities, bush burning, and petroleum slicks. The risk assessment indicated that most PAHs exceeded the permissible risk quotient values, suggesting a moderate to high ecological risk. However, cutaneous exposure to PAHs and BTEX was found to have minimal impact on human health, with no significant hazards identified in adults and children. Nevertheless, the study revealed low cancer risks associated with PAH and BTEX compounds for both age groups. The continued discharge of PAHs and BTEX compounds into Chanomi Creek could have significant long-term negative effects on human and aquatic health. Thus, contamination risk awareness programs and the development of stringent contextual thresholds for identified contaminants could enhance environmental and public health protection.
Collapse
Affiliation(s)
- Amarachi P Onyena
- Department of Marine Sciences, Faculty of Science, University of Lagos, Lagos State, Nigeria.
- Department of Marine Environment and Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria.
| | - Joseph A Nkwoji
- Department of Marine Sciences, Faculty of Science, University of Lagos, Lagos State, Nigeria
| | - Lucian O Chukwu
- Department of Marine Sciences, Faculty of Science, University of Lagos, Lagos State, Nigeria
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Canada
| | - Kabari Sam
- Department of Marine Environment and Pollution Control, Faculty of Marine Environmental Management, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria
- School of Environment, Geography and Geoscience, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3QL, UK
| |
Collapse
|
5
|
Giri A, Pant D, Chandra Srivastava V, Kumar M, Kumar A, Goswami M. Plant -microbe assisted emerging contaminants (ECs) removal and carbon cycling. BIORESOURCE TECHNOLOGY 2023:129395. [PMID: 37380038 DOI: 10.1016/j.biortech.2023.129395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Continuous increase in the level of atmospheric CO2 and environmental contaminates has aggravated various threats resulting from environmental pollution and climate change. Research into plant -microbe interaction has been a central concern of ecology for over the year. However, despite the clear contribution of plant -microbe to the global carbon cycle, the role of plant -microbe interaction in carbon pools, fluxes and emerging contaminants (ECs) removal are still a poorly understood. The use of plant and microbes in ECs removal and carbon cycling is an attractive strategy because microbes operate as biocatalysts to remove contaminants and plant roots offer a rich niche for their growth and carbon cycling. However, bio-mitigation of CO2 and removal of ECs is still under research phase because of the CO2 capture and fixation efficiency is too low for industrial purposes and cutting-edge removal methods have not been created for such emerging contaminants.
Collapse
Affiliation(s)
- Anand Giri
- School of Civil and Environmental Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175005, India
| | - Deepak Pant
- Departments of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala 176215, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttrakhand 247667, India
| | - Manoj Kumar
- Indian Oil Corporation R&D Centre, Sector 13, Faridabad, India
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India
| | - Meera Goswami
- Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India
| |
Collapse
|
6
|
Vasileiadis S, Perruchon C, Scheer B, Adrian L, Steinbach N, Trevisan M, Plaza-Bolaños P, Agüera A, Chatzinotas A, Karpouzas DG. Nutritional inter-dependencies and a carbazole-dioxygenase are key elements of a bacterial consortium relying on a Sphingomonas for the degradation of the fungicide thiabendazole. Environ Microbiol 2022; 24:5105-5122. [PMID: 35799498 DOI: 10.1111/1462-2920.16116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
Thiabendazole (TBZ), is a persistent fungicide/anthelminthic and a serious environmental threat. We previously enriched a TBZ-degrading bacterial consortium and provided first evidence for a Sphingomonas involvement in TBZ transformation. Here, using a multi-omic approach combined with DNA-stable isotope probing (SIP) we verified the key degrading role of Sphingomonas and identify potential microbial interactions governing consortium functioning. SIP and amplicon sequencing analysis of the heavy and light DNA fraction of cultures grown on 13 C-labelled versus 12 C-TBZ showed that 66% of the 13 C-labelled TBZ was assimilated by Sphingomonas. Metagenomic analysis retrieved 18 metagenome-assembled genomes with the dominant belonging to Sphingomonas, Sinobacteriaceae, Bradyrhizobium, Filimonas and Hydrogenophaga. Meta-transcriptomics/-proteomics and non-target mass spectrometry suggested TBZ transformation by Sphingomonas via initial cleavage by a carbazole dioxygenase (car) to thiazole-4-carboxamidine (terminal compound) and catechol or a cleaved benzyl ring derivative, further transformed through an ortho-cleavage (cat) pathway. Microbial co-occurrence and gene expression networks suggested strong interactions between Sphingomonas and a Hydrogenophaga. The latter activated its cobalamin biosynthetic pathway and Sphingomonas its cobalamin salvage pathway to satisfy its B12 auxotrophy. Our findings indicate microbial interactions aligning with the 'black queen hypothesis' where Sphingomonas (detoxifier, B12 recipient) and Hydrogenophaga (B12 producer, enjoying detoxification) act as both helpers and beneficiaries.
Collapse
Affiliation(s)
- Sotirios Vasileiadis
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, Greece
| | - Chiara Perruchon
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, Greece
| | - Benjamin Scheer
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Nicole Steinbach
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Marco Trevisan
- Department of Sustainable Food Process, Universitá Cattolica del Sacro Cuore, Piacenza, Italy
| | - Patricia Plaza-Bolaños
- Solar Energy Research Centre (CIESOL), Joint Center University of Almería-CIEMAT, Almeria, Spain
| | - Ana Agüera
- Solar Energy Research Centre (CIESOL), Joint Center University of Almería-CIEMAT, Almeria, Spain
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Dimitrios G Karpouzas
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Viopolis, Greece
| |
Collapse
|
7
|
Machado ME, Nascimento MM, Bomfim Bahia PV, Martinez ST, Bittencourt de Andrade J. Analytical advances and challenges for the determination of heterocyclic aromatic compounds (NSO-HET) in sediment: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Rahnama Haratbar P, Ghaemi A, Nasiri M. Potential of hypercrosslinked microporous polymer based on carbazole networks for Pb(II) ions removal from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15040-15056. [PMID: 34622410 DOI: 10.1007/s11356-021-16603-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
In this research, porous adsorbents of hypercrosslinked microporous polymer based on carbazole networks (HCP-CN) were synthesized for Pb(II) elimination from wastewaters. The results demonstrated that the extreme HCP-CN adsorbents utilization in wastewater treatment could remove more than 99.88% of Pb (II) ions. Furthermore, the two consumed adsorbents similarly indicated rapid adsorption kinetics, and it merely took a while to achieve adsorption equilibrium. These characteristics showed that HCP-CN adsorbent was an outstanding candidate for Pb(II) elimination from wastewater. Besides, the thermodynamic characteristics involving Gibbs free energy change (∆G0), entropy change (∆S0), and enthalpy change (∆H0) of the adsorption procedure were evaluated, and the results affirmed that the adsorption process was exothermic and spontaneous. In addition, response surface methodology (RSM) as a statistical investigation was used to optimize adsorption factors to obtain maximum adsorption capacity and investigate the interactive effect of parameters using central composite design (CCD). Optimum conditions obtained by RSM for maximum adsorption capacity of 26.02 mg/g are 35 °C, 40 mg/L, 11, 60 min, and 99.88 for temperature, initial concentration, pH, time, and removal percent, respectively. In the kinetic modeling study, the second-order model was selected as the best model. The values R2 at temperatures 35 °C, 40 °C, and 55 °C are 0.997, 0.9997, and 0.998, respectively. In the isotherm modeling, Hill model with a value R2 of 0.9766 has a superior precision compared to the other isotherm models. Also, the values of ΔH and ΔS at Pb(II) concentration of 60 mg/L are 122.622 kJ/mol and 0.463 kJ/mole K, respectively.
Collapse
Affiliation(s)
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Masoud Nasiri
- Department of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
9
|
Ghosh P, Mukherji S. Environmental contamination by heterocyclic Polynuclear aromatic hydrocarbons and their microbial degradation. BIORESOURCE TECHNOLOGY 2021; 341:125860. [PMID: 34614557 DOI: 10.1016/j.biortech.2021.125860] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Heterocyclic polynuclear aromatic hydrocarbons (PAHs) have been detected in all environmental matrices at few ppb to several ppm concentrations and they are characterized by high polarity. Some heterocyclic PAHs are mutagenic and carcinogenic to humans and various organisms. Despite being potent environmental pollutants, these compounds have received less attention. This paper focuses on the sources and occurrence of these compounds and their microbial degradation using diverse species of bacteria, fungi, and algae. Complete removal of 1.8 to 2614 mg/L of nitrogen heterocyclic PAH (PANH), 0.27 to 184 mg/L of sulfur heterocyclic PAH (PASH), and 0.6 to 120 mg/L of oxygen heterocyclic PAH (PAOH) compounds by various microbial species was observed between 3 h and 18 days, 8 h to 6 days, and 4 h to 250 h, respectively under aerobic condition. Strategies for enhancing the removal of heterocyclic PAHs from aquatic systems are also discussed along with the challenges.
Collapse
Affiliation(s)
- Prasenjit Ghosh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Department of Civil Engineering, NIT Tiruchirappalli, Tiruchirappalli, Tamil Nadu 620015, India
| | - Suparna Mukherji
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
10
|
Ghosh P, Mukherji S. Elucidation of substrate interaction effects in multicomponent systems containing 3-ring homocyclic and heterocyclic polynuclear aromatic hydrocarbons. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1394-1404. [PMID: 34382630 DOI: 10.1039/d1em00140j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial growth and degradation experiments were conducted on carbazole (CBZ), fluorene (FLU) and dibenzothiophene (DBT) individually and in various mixture combinations using an efficient polynuclear aromatic hydrocarbon (PAH) degrading bacterial strain, Pseudomonas aeruginosa RS1. In single component systems, bacterial growth on CBZ (specific growth rate, μ = 0.99 day-1) was much higher compared to that on FLU (μ = 0.38 day-1) and DBT (μ = 0.33 day-1) and bacterial growth was inhibited in the presence of FLU and DBT in binary (μ = 0.64 day-1) and ternary (μ = 0.75 day-1) mixtures. Multisubstrate additive modelling indicated growth inhibition in all the systems. The degradation of the compounds was significantly inhibited in binary mixtures. While the degradation of the compounds in binary mixtures varied from 35 ± 4% to 73 ± 3%, their degradation varied from 61 ± 5% to 91 ± 4%, when applied as sole substrates and from 77 ± 3% to 96 ± 3%, when applied in a ternary mixture. Degradation experiments were also conducted in ternary mixtures using a 23 full factorial design and the results were examined using analysis of variance (ANOVA) and Tukey's honest significant difference (HSD) tests. At a low concentration of the heterocyclics, CBZ and DBT (5 mg L-1 each), the degradation of the PAH, FLU, was significantly enhanced (from 81 ± 1% to 93 ± 0.3%) when its concentration was increased from 5 to 30 mg L-1. The full factorial design can provide valuable insights into substrate interaction effects in mixtures.
Collapse
Affiliation(s)
- Prasenjit Ghosh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Department of Civil Engineering, National Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India.
| | - Suparna Mukherji
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
11
|
Ghosh P, Mukherji S. Growth kinetics of Pseudomonas aeruginosa RS1 on fluorene and dibenzothiophene, concomitant degradation kinetics and uptake mechanism. 3 Biotech 2021; 11:195. [PMID: 33927986 PMCID: PMC7997940 DOI: 10.1007/s13205-021-02742-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/12/2021] [Indexed: 11/30/2022] Open
Abstract
The current study illustrates the growth kinetics of an efficient PAH and heterocyclic PAH degrading bacterial strain, Pseudomonas aeruginosa RS1 on fluorene (FLU) and dibenzothiophene (DBT) over the concentration 25-500 mg L-1 and their concomitant degradation kinetics. The specific growth rate (µ) was found to lie within the range of 0.32-0.57 day-1 for FLU and 0.24-0.45 day-1 for DBT. The specific substrate utilization rate (q) of FLU and DBT over the log growth phase was between 0.01 and 0.14 mg FLU mg VSS-1 day-1 for FLU and between 0.01 and 0.18 mg DBT mg VSS-1 day-1 for DBT, respectively. The µ and q values varied within a narrow range for both FLU and DBT and they did not follow any specific trend. Dissolution together with direct interfacial uptake was the possible uptake mechanism for both FLU and DBT. The q values over the log growth phase depicts the specific substrate transformation rates. Kirby-Bauer disc diffusion studies performed using an E. coli strain indicated accumulation of some toxic intermediates of FLU and DBT during their degradation. Decrease in TOC and toxicity towards the end of the degradation experiments indicates further utilization of the intermediates. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02742-7.
Collapse
Affiliation(s)
- Prasenjit Ghosh
- IIT Bombay, Mumbai, India
- Present Address: Department of Civil Engineering, National Institute of Technology Goa, Goa, India
| | | |
Collapse
|
12
|
Kirkok SK, Kibet JK, Kinyanjui TK, Okanga FI. A review of persistent organic pollutants: dioxins, furans, and their associated nitrogenated analogues. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03551-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
13
|
Singh DP, Prabha R, Gupta VK, Verma MK. Metatranscriptome Analysis Deciphers Multifunctional Genes and Enzymes Linked With the Degradation of Aromatic Compounds and Pesticides in the Wheat Rhizosphere. Front Microbiol 2018; 9:1331. [PMID: 30034370 PMCID: PMC6043799 DOI: 10.3389/fmicb.2018.01331] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022] Open
Abstract
Agricultural soils are becoming contaminated with synthetic chemicals like polyaromatic compounds, petroleum hydrocarbons, polychlorinated biphenyls (PCBs), phenols, herbicides, insecticides and fungicides due to excessive dependency of crop production systems on the chemical inputs. Microbial degradation of organic pollutants in the agricultural soils is a continuous process due to the metabolic multifunctionalities and enzymatic capabilities of the soil associated communities. The plant rhizosphere with its complex microbial inhabitants and their multiple functions, is amongst the most live and dynamic component of agricultural soils. We analyzed the metatranscriptome data of 20 wheat rhizosphere samples to decipher the taxonomic microbial communities and their multifunctionalities linked with the degradation of organic soil contaminants. The analysis revealed a total of 21 different metabolic pathways for the degradation of aromatic compounds and 06 for the xenobiotics degradation. Taxonomic annotation of wheat rhizosphere revealed bacteria, especially the Proteobacteria, actinobacteria, firmicutes, bacteroidetes, and cyanobacteria, which are shown to be linked with the degradation of aromatic compounds as the dominant communities. Abundance of the transcripts related to the degradation of aromatic amin compounds, carbazoles, benzoates, naphthalene, ketoadipate pathway, phenols, biphenyls and xenobiotics indicated abundant degradation capabilities in the soils. The results highlighted a potentially dominant role of crop rhizosphere associated microbial communities in the remediation of contaminant aromatic compounds.
Collapse
Affiliation(s)
- Dhananjaya P. Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Ratna Prabha
- Department of Bio-Medical Engineering and Bio-Informatics, Chhattisgarh Swami Vivekanand Technical University, Bhilai, India
| | - Vijai K. Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Mukesh K. Verma
- Department of Bio-Medical Engineering and Bio-Informatics, Chhattisgarh Swami Vivekanand Technical University, Bhilai, India
| |
Collapse
|
14
|
Anyanwu IN, Ikpikpini OC, Semple KT. Impact of nitrogen-polycyclic aromatic hydrocarbons on phenanthrene and benzo[a]pyrene mineralisation in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:594-601. [PMID: 28923724 DOI: 10.1016/j.ecoenv.2017.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/30/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
When aromatic hydrocarbons are present in contaminated soils, they often occur in mixtures. The impact of four different (3-ring) nitrogen-containing polycyclic aromatic hydrocarbons (N-PAHs) on 12/14C-phenanthrene and 12/14C-benzo[a]pyrene (B[a]P) mineralisation in soil was investigated over a 90 d incubation period. The results revealed that both 12/14C-phenanthrene and 12/14C-benzo[a]pyrene showed no significant mineralisation in soils amended with 10mgkg -1 and 100mgkg -1 N-PAHs (p>0.05). However, increases in lag-phases and decreases in the rates and extents of mineralisation were observed, over time. Among the N-PAHs, benzo[h]quinoline impacted 14C-phenanthrene mineralisation with extended and diauxic lag phases. Furthermore,12/14C-B[a]P and 14C-benzo[a]pyrene-nitrogen-containing polycyclic aromatic hydrocarbons (14C-B[a]P-N-PAHs) amended soils showed extensive lag phases (> 21 d); with some 14C-B[a]P-N-PAH mineralisation recording <1% in both concentrations (10mgkg -1 and 100mgkg -1), over time. This study suggests that the presence of N-PAHs in contaminated soil may impact the microbial degradation of polycyclic aromatic hydrocarbons (PAHs) and the impact was most likely the result of limited success in achieving absolute biodegradation of some PAHs in soil.
Collapse
Affiliation(s)
- Ihuoma N Anyanwu
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom; Department of Biological Sciences, Federal University Ndufu-Alike Ikwo, P.M.B 1010 Abakaliki, Ebonyi State, Nigeria.
| | - Ojerime C Ikpikpini
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|