1
|
Islam AKMM, Karim SMR, Kheya SA, Yeasmin S. Unlocking the potential of bioherbicides for sustainable and environment friendly weed management. Heliyon 2024; 10:e36088. [PMID: 39224292 PMCID: PMC11366919 DOI: 10.1016/j.heliyon.2024.e36088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Bioherbicides might be used to manage weeds as opposed to synthetic chemical herbicides, reducing environmental risks and advancing sustainable agriculture in the meantime. Bioherbicides employ different mechanisms of action to control weeds. Microbial bioherbicides may infect and damage weed plants, disrupt their growth, or produce compounds inhibiting weed development. Plant-derived bioherbicides often target specific biochemical processes crucial for weed survival. It can be applied through conventional spraying equipment, seed treatments, or soil incorporation. Bioherbicide development faces several challenges. One major hurdle is the complex diversity of weed species across different regions, requiring tailored bioherbicide solutions. The regulatory approvals for bioherbicides can be lengthy and costly, hindering widespread adoption. Scaling up production processes and ensuring product stability also pose challenges. By reducing reliance on chemical herbicides, bioherbicides can mitigate environmental pollution, protect non-target organisms, and promote sustainable agricultural practices. The development of locally adapted bioherbicides and strategic collaborations between researchers, industries, and policymakers could further enhance their prospects in a particular country. In addition, the knowledge gaps need to be addressed prior to adopting bioherbicides in agriculture. These review intended to explore the existing state of knowledge about the categories of bioherbicides, their formulation procedure, application approaches and mode of action to control weed. The bioherbicides that are currently on the market, their effects on weed physiology, and possible factors affecting their efficacy are all included in this review. Moreover, this review offers a perspective on existing challenges and future opportunities for adopting the bioherbicides in sustainable and eco-friendly agriculture.
Collapse
Affiliation(s)
| | | | - Sinthia Afsana Kheya
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sabina Yeasmin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
2
|
Ocán-Torres D, Martínez-Burgos WJ, Manzoki MC, Soccol VT, Neto CJD, Soccol CR. Microbial Bioherbicides Based on Cell-Free Phytotoxic Metabolites: Analysis and Perspectives on Their Application in Weed Control as an Innovative Sustainable Solution. PLANTS (BASEL, SWITZERLAND) 2024; 13:1996. [PMID: 39065523 PMCID: PMC11280510 DOI: 10.3390/plants13141996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Weeds cause significant agricultural losses worldwide, and herbicides have traditionally been the main solution to this problem. However, the extensive use of herbicides has led to multiple cases of weed resistance, which could generate an increase in the application concentration and consequently a higher persistence in the environment, hindering natural degradation processes. Consequently, more environmentally friendly alternatives, such as microbial bioherbicides, have been sought. Although these bioherbicides are promising, their efficacy remains a challenge, as evidenced by their limited commercial and industrial production. This article reviews the current status of microbial-based bioherbicides and highlights the potential of cell-free metabolites to improve their efficacy and commercial attractiveness. Stirred tank bioreactors are identified as the most widely used for production-scale submerged fermentation. In addition, the use of alternative carbon and nitrogen sources, such as industrial waste, supports the circular economy. Furthermore, this article discusses the optimization of downstream processes using bioprospecting and in silico technologies to identify target metabolites, which leads to more precise and efficient production strategies. Bacterial bioherbicides, particularly those derived from Pseudomonas and Xanthomonas, and fungal bioherbicides from genera such as Alternaria, Colletotrichum, Trichoderma and Phoma, show significant potential. Nevertheless, limitations such as their restricted range of action, their persistence in the environment, and regulatory issues restrict their commercial availability. The utilization of cell-free microbial metabolites is proposed as a promising solution due to their simpler handling and application. In addition, modern technologies, including encapsulation and integrated management with chemical herbicides, are investigated to enhance the efficacy and sustainability of bioherbicides.
Collapse
Affiliation(s)
| | - Walter José Martínez-Burgos
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.O.-T.); (M.C.M.); (V.T.S.); (C.J.D.N.)
| | | | | | | | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba 81531-990, Brazil; (D.O.-T.); (M.C.M.); (V.T.S.); (C.J.D.N.)
| |
Collapse
|
3
|
Bendejacq-Seychelles A, Gibot-Leclerc S, Guillemin JP, Mouille G, Steinberg C. Phytotoxic fungal secondary metabolites as herbicides. PEST MANAGEMENT SCIENCE 2024; 80:92-102. [PMID: 37794581 DOI: 10.1002/ps.7813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
Among the alternatives to synthetic plant protection products, biocontrol appears as a promising method. This review reports on the diversity of fungal secondary metabolites phytotoxic to weeds and on the approach generally used to extract, characterize, identify and exploit them for weed management. The 183 phytotoxic fungal secondary metabolites discussed in this review fall into five main classes of molecules: 61 polyketides, 53 terpenoids, 36 nitrogenous metabolites, 18 phenols and phenolic acids, and 15 miscellaneous. They are mainly produced by the genera Drechslera, Fusarium and Alternaria. The phytotoxic effects, more often described by the symptoms they produce on plants than by their mode of action, range from inhibition of germination to inhibition of root and vegetative growth, including tissue and organ alterations. The biochemical characterization of fungal secondary metabolites requires expertise and tools to carry out fungal cultivation and metabolite extraction, phytotoxicity tests, purification and fractionation of the extracts, and chemical identification procedures. Phytotoxicity tests are mainly carried out under controlled laboratory conditions (not always on whole plants), while effectiveness against targeted weeds and environmental impacts must be assessed in greenhouses and open fields. These steps are necessary for the formulation of effective, environment-friendly fungal secondary metabolites-derived bioherbicides using new technologies such as nanomaterials. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Bendejacq-Seychelles
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| | - Stéphanie Gibot-Leclerc
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| | - Jean-Philippe Guillemin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| | - Gregory Mouille
- Univ Paris Saclay, AgroParisTech, INRAE, Inst Jean Pierre Bourgin, Versailles, France
| | - Christian Steinberg
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
4
|
Manichart N, Laosinwattana C, Somala N, Teerarak M, Chotsaeng N. Physiological mechanism of action and partial separation of herbicide-active compounds from the Diaporthe sp. extract on Amaranthus tricolor L. Sci Rep 2023; 13:18693. [PMID: 37907593 PMCID: PMC10618292 DOI: 10.1038/s41598-023-46201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023] Open
Abstract
Thirteen fungi that produce compounds with herbicidal activities were isolated, identified, and extracted under the assumption that the mechanism of action occurs during seed exposure to the extract. The extracts from all the fungal strains considerably decreased the growth parameters of Amaranthus tricolor L. The EC010 strain extracts showed the greatest effect. Through ITS region gene sequencing methods, the isolated EC010 was identified as a genus of Diaporthe. The results showed a significant (p < 0.05) inhibitory effect of 91.25% on germination and a decrease in shoot and root length by 91.28% and 95.30%, respectively. The mycelium of Diaporthe sp. was extracted using sequential extraction techniques for the partial separation of the herbicidal fraction. According to the bioassay activities, the EtOAc fraction showed the highest inhibitory activity. The osmotic stress of the A. tricolor seeds was studied. Although the extract increased the accumulation of proline and soluble protein, the treated seeds showed lower imbibition. While the activity of α-amylase was dramatically decreased after treatment. A cytogenetic assay in the treated Allium cepa L. root revealed a decrease in the mitotic index, an altered mitotic phase index, and a promotion of mitotic abnormalities. Accordingly, the Diaporthe sp. may serve as a potential herbicidal compound resource.
Collapse
Affiliation(s)
- Nutcha Manichart
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chamroon Laosinwattana
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| | - Naphat Somala
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Montinee Teerarak
- Department of Plant Production Technology, School of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Nawasit Chotsaeng
- Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
- Advanced Pure and Applied Chemistry Research Unit (APAC), School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
5
|
Giehl A, dos Santos AA, Cadamuro RD, Tadioto V, Guterres IZ, Prá Zuchi ID, Minussi GDA, Fongaro G, Silva IT, Alves SL. Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes. PLANTS (BASEL, SWITZERLAND) 2023; 12:2688. [PMID: 37514302 PMCID: PMC10385130 DOI: 10.3390/plants12142688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The literature is full of studies reporting environmental and health issues related to using traditional pesticides in food production and storage. Fortunately, alternatives have arisen in the last few decades, showing that organic agriculture is possible and economically feasible. And in this scenario, fungi may be helpful. In the natural environment, when associated with plants, these microorganisms offer plant-growth-promoting molecules, facilitate plant nutrient uptake, and antagonize phytopathogens. It is true that fungi can also be phytopathogenic, but even they can benefit agriculture in some way-since pathogenicity is species-specific, these fungi are shown to be useful against weeds (as bioherbicides). Finally, plant-associated yeasts and molds are natural biofactories, and the metabolites they produce while dwelling in leaves, flowers, roots, or the rhizosphere have the potential to be employed in different industrial activities. By addressing all these subjects, this manuscript comprehensively reviews the biotechnological uses of plant-associated fungi and, in addition, aims to sensitize academics, researchers, and investors to new alternatives for healthier and more environmentally friendly production processes.
Collapse
Affiliation(s)
- Anderson Giehl
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Angela Alves dos Santos
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
| | - Rafael Dorighello Cadamuro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Viviani Tadioto
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Iara Zanella Guterres
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Isabella Dai Prá Zuchi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Gabriel do Amaral Minussi
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo 97900-000, RS, Brazil
| | - Gislaine Fongaro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Izabella Thais Silva
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Sergio Luiz Alves
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo 97900-000, RS, Brazil
| |
Collapse
|
6
|
Brun T, Rabuske JE, Luft L, Confortin TC, Todero I, Aita BC, Zabot GL, Mazutti MA. Powder containing biomolecules from Diaporthe schini for weed control. ENVIRONMENTAL TECHNOLOGY 2022; 43:2135-2144. [PMID: 33346723 DOI: 10.1080/09593330.2020.1867651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
This study describes the use of spray drying technology to obtain a powder containing biomolecules with herbicidal activity produced by submerged fermentation using Diaporthe schini. The efficiency of the bioherbicide was tested for the post-emergence control of Bidens pilosa L., Amaranthus viridis L., Echinochloa crusgalli (L.) Beauv., and Lolium multiflorum Lam. In the first step, different additives were used and lactose was the most suitable one because it resulted in high herbicidal activity and weed suppression. In the second step, process variables were investigated, including inlet air temperature, drying air flow rate, and feed flow rate. The highest herbicidal activity was obtained with an inlet air temperature of 100°C, and air and feed flow rates of 1.4 m3/min and 0.22 L/h, respectively. Maximum herbicidal activities were 38, 45, 21 and 18%, while weed heights reduction were 69.0, 74.3, 20.4 and 24.8% for B. pilosa, A. viridis, E. crusgalli and L. multiflorum, respectively. The bioherbicide was effective to suppress weed growth and spray drying is a promising technology for the production of solid formulations of bioherbicides.
Collapse
Affiliation(s)
- Thiarles Brun
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jéssica E Rabuske
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luciana Luft
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tássia C Confortin
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Izelmar Todero
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bruno C Aita
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Cachoeira do Sul, Brazil
| | - Marcio A Mazutti
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
7
|
Portela VO, Moro A, Santana NA, Baldoni DB, de Castro IA, Antoniolli ZI, Dalcol II, Seminoti Jacques RJ. First report on the production of phytotoxic metabolites by Mycoleptodiscus indicus under optimized conditions of submerged fermentation. ENVIRONMENTAL TECHNOLOGY 2022; 43:1458-1470. [PMID: 33044125 DOI: 10.1080/09593330.2020.1836030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
An alternative to controlling weeds resistant to conventional herbicides is the isolation of new active principles. Fungi can produce phytotoxic metabolites that may be used in the development of new herbicides. The objectives of this study were: (1) isolate, select, and identify a fungus producer of phytotoxic metabolites and (2) optimize the culture conditions of this fungus in a low-cost culture medium, with the aim of increasing the phytotoxic effects of their metabolites in weeds and commercial plants. Fungi were isolated from the leaves of Conyza sp. with disease symptoms and selected according to the production of phytotoxic metabolites in solid and submerged fermentation in a low-cost culture medium. A Plackett-Burman Design and Central Composite Rotational Design were used to optimize the conditions of temperature, agitation, pH, and concentrations of glucose and yeast extract in submerged fermentation. The phytotoxic metabolites produced under optimal conditions were tested on 10 commercial plants and weeds that are difficult to control. Of the nine fungi isolated, Mycoleptodiscus indicus UFSM54 produced higher leaf lesions. The production of phytotoxic metabolites was optimized when the fungus was cultivated at 35°C, 50 rpm, and 1.5 g L-1 of glucose in submerged fermentation. The metabolites of M. indicus caused severe phytotoxic effects on germination and seedling growth, and enhanced lesion development on detached plant leaves. The present study is the first to report on the production of phytotoxic metabolites by M. indicus, a potential producer of bioherbicides.
Collapse
Affiliation(s)
| | - Anderson Moro
- Department of Soils, Federal University of Santa Maria, Santa Maria, Brazil
| | - Natielo Almeida Santana
- Department of Sanitary and Environmental Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | - Ionara Irion Dalcol
- Department of Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
8
|
Brun T, Rabuske JE, Confortin TC, Luft L, Todero I, Fischer M, Zabot GL, Mazutti MA. Weed control by metabolites produced from Diaporthe schini. ENVIRONMENTAL TECHNOLOGY 2022; 43:139-148. [PMID: 32510281 DOI: 10.1080/09593330.2020.1780477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Weed control is a critical factor to ensure productivity and quality for food production. Chemical control is the main method used worldwide, but the demand for healthier food and the farmers' health and environment concerns have led to an increase in the search for alternative control methods. In this way, the use of biomolecules produced by microorganisms that present phytotoxic activity against weeds, such as exopolysaccharides, is attracting attention. For this purpose, this work compared two techniques (solid-state and submerged fermentation) for bioherbicide production by Diaporthe schini. Physicochemical characterization of both fermented broth and evaluation of bioherbicidal effect in post-emergence of Amaranthus viridis, Bidens pilosa, Echinocloa crusgalli, and Lollium multiflorum were performed. Fungal broth obtained by submerged fermentation presented better physicochemical characteristics in terms of viscosity, density, and surface tension. Overall, it was more effective than the broth obtained by solid-state fermentation for weed control because it presented an average inhibition of 40% of weed growth and 45% lower surface tension if compared to the control test. Also, reductions of 1.4-4.2 times of root dry mass, 2.9-5.8 times of shoot dry mass and 1.2-3.9 times of weeds heights, if compared to the control test, were achieved.
Collapse
Affiliation(s)
- Thiarles Brun
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jéssica E Rabuske
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tássia C Confortin
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luciana Luft
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Izelmar Todero
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Matheus Fischer
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), Center DC, Brazil
| | - Marcio A Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
9
|
Chaves Neto JR, Nascimento dos Santos MS, Mazutti MA, Zabot GL, Tres MV. Phoma dimorpha phytotoxic activity potentialization for bioherbicide production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Rai M, Zimowska B, Shinde S, Tres MV. Bioherbicidal potential of different species of Phoma: opportunities and challenges. Appl Microbiol Biotechnol 2021; 105:3009-3018. [PMID: 33770245 DOI: 10.1007/s00253-021-11234-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/14/2021] [Indexed: 11/26/2022]
Abstract
Modern agriculture has been facing new challenges and fostering innovations to establish sustainable plant production. An integral part of these strategies is implementing new eco-friendly technologies in plant protection for better human health and a safer environment by minimizing the use of hazardous chemicals and also encouraging innovations such as the use of bio-based strategies for weed control. This specific strategy addresses the need to reduce the use and risk of pesticides, replacing conventional chemical herbicides with new bio-based solutions. In response to these issues, biocontrol strategies are gaining increased attention from stakeholders such as farmers, seed companies, agronomists, breeders, and consumers. Among these, bioherbicides have huge potential for the management of harmful weeds without affecting the natural quality of the environment and human health. In this context, this review is devoted to present an overview of the mycoherbicidal potential of Phoma sensu lato group of fungi, examining the advances in this field, including technological and scientific challenges and outcomes achieved in recent years. The mycoherbicides are eco-friendly and economically viable. KEY POINTS: • Some Phoma species have demonstrated herbicide activity. • These species secrete secondary metabolites responsible for the control of weeds. • They can be used as non-chemical, cost-effective, and eco-friendly bioherbicides.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati, Maharashtra, 444 602, India.
| | - Beata Zimowska
- Department of Plant Protection, University of Life Sciences in Lublin, 7 K. St. Leszczyńskiego Street, 20-069, Lublin, Poland
| | - Surbhi Shinde
- Department of Experimental Medicine, Section of Virology and Microbiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering, LAPE, Federal University of Santa Maria, 1040, Sete de Setembro av., Cachoeira do Sul, RS, 96508-010, Brazil
| |
Collapse
|
11
|
Orange peels and shrimp shell used in a fermentation process to produce an aqueous extract with bioherbicide potential to weed control. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Bordin ER, Frumi Camargo A, Stefanski FS, Scapini T, Bonatto C, Zanivan J, Preczeski K, Modkovski TA, Reichert Júnior F, Mossi AJ, Fongaro G, Ramsdorf WA, Treichel H. Current production of bioherbicides: mechanisms of action and technical and scientific challenges to improve food and environmental security. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1833864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Eduarda Roberta Bordin
- Laboratory of Ecotoxicology, Federal Technological University of Paraná, Curitiba, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Chapeco, Brazil
| | - Fábio Sptiza Stefanski
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Chapeco, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Chapeco, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Chapeco, Brazil
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jessica Zanivan
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Chapeco, Brazil
| | - Karina Preczeski
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Chapeco, Brazil
| | | | | | - Altemir José Mossi
- Laboratory of Agroecology, Federal University of Fronteira Sul, Chapeco, Brazil
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Chapeco, Brazil
| |
Collapse
|
13
|
Daniel JJ, Zabot GL, Tres MV, Harakava R, Kuhn RC, Mazutti MA. Fusarium fujikuroi : A novel source of metabolites with herbicidal activity. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Meepagala KM, Briscoe WE, Techen N, Johnson RD, Clausen BM, Duke SO. Isolation of a phytotoxic isocoumarin from Diaporthe eres-infected Hedera helix (English ivy) and synthesis of its phytotoxic analogs. PEST MANAGEMENT SCIENCE 2018; 74:37-45. [PMID: 28834621 DOI: 10.1002/ps.4712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The fungus Diaporthe eres was isolated from a fungal pathogen-infected leaf of Hedera helix (English ivy) exhibiting necrosis. It is hypothesized that the causative fungus produces phytotoxins as evidenced by necrotic lesions on the leaves. RESULTS The fungus was isolated and grown in Czapek Dox broth culture medium and potato dextrose broth culture medium and identified as Diaporthe eres. The ethyl acetate extracts of the culture broths were phytotoxic to lettuce (Lactuca sativa) and bentgrass (Agrostis stolonifera). 3,4-Dihydro-8-hydroxy-3,5-dimethylisocoumarin (1) and tyrosol (2) were isolated and identified as the phytotoxic constituents. Six analogs of 3,4-dihydro-isocoumarin were synthesized and shown to be phytotoxic. The synthesized 3,4-dihydro-8-hydroxy-3,7-dimethylisocoumarin and 3,4-dihydro-8-hydroxy-3,3,7-trimethylisocoumarin were two- to three-fold more phytotoxic than the naturally occurring 1 in a Lemna paucicostata growth bioassay. CONCLUSION Synthesis and herbicidal activities of the several new analogs of 1 are reported for the first time. These promising molecules should be used as templates for synthesis and testing of more analogs. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Natascha Techen
- National Center for Natural Products Research, University, MS, USA
| | | | | | | |
Collapse
|