1
|
Liu CH, Liao CJ, Gupta S, Huang DW, Lee CY, Lai YT, Tai NH. Cross-Linking-Enabled Core-shell Nanostructure Based on Conductive Polymer Hydrogels/Carbon Nanotubes for Salivary Glucose Biosensor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15836-15848. [PMID: 39924952 DOI: 10.1021/acsami.4c20667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Due to the 3-fold increase in the number of people with diabetes, there is an urgent need for noninvasive, user-friendly glucose monitoring technologies. However, current noninvasive methods are limited by low accuracy and susceptibility to interference. In this work, we develop a noninvasive salivary glucose biosensor using a core-shell nanostructure of conductive polymer hydrogels/carbon nanotubes (CNTs) on carbon paper. With the electrostatic interaction between the functional groups on CNTs and pyrrole monomer, the cross-linked polypyrrole (PPy) hydrogel can form in situ on the CNTs surface. The 3D interconnected networks of core-shell PPy/CNTs feature high surface area, porosity, and flexibility, facilitating efficient electron and ion transport, thereby leading to a superior glucose sensing sensitivity of 119.74 μA mM-1 cm-2 in the region of 50-700 μM. Additionally, this biosensor exhibited an ultralow Michaelis-Menten constant of 0.33 mM and high specificity toward glucose, even in the presence of various interferences, demonstrating a high affinity for the enzyme toward PPy/CNTs. This facile, controlled synthesis of core-shell PPy/CNTs offers a promising avenue for constructing enzymatic biosensors for accurate and regular monitoring of blood glucose via saliva tests.
Collapse
Affiliation(s)
- Ching-Hao Liu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Chen-Jie Liao
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
| | - Shivam Gupta
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Da-Wei Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
| | - Chi-Young Lee
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Yi-Ting Lai
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC
| | - Nyan-Hwa Tai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
- Institute of Analytical and Environmental Science, National Tsing Hua University Hsinchu 300, Taiwan, ROC
| |
Collapse
|
2
|
Fang Z, Hu J, Xu MY, Li SW, Li C, Zhou X, Wei J. A biocompatible electrode/exoelectrogens interface augments bidirectional electron transfer and bioelectrochemical reactions. Bioelectrochemistry 2024; 158:108723. [PMID: 38733720 DOI: 10.1016/j.bioelechem.2024.108723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Bidirectional electron transfer is about that exoelectrogens produce bioelectricity via extracellular electron transfer at anode and drive cytoplasmic biochemical reactions via extracellular electron uptake at cathode. The key factor to determine above bioelectrochemical performances is the electron transfer efficiency under biocompatible abiotic/biotic interface. Here, a graphene/polyaniline (GO/PANI) nanocomposite electrode specially interfacing exoelectrogens (Shewanella loihica) and augmenting bidirectional electron transfer was conducted by in-situ electrochemical modification on carbon paper (CP). Impressively, the GO/PANI@CP electrode tremendously improved the performance of exoelectrogens at anode for wastewater treatment and bioelectricity generation (about 54 folds increase of power density compared to blank CP electrode). The bacteria on electrode surface not only showed fast electron release but also exhibited high electricity density of extracellular electron uptake through the proposed direct electron transfer pathway. Thus, the cathode applications of microbial electrosynthesis and bio-denitrification were developed via GO/PANI@CP electrode, which assisted the close contact between microbial outer-membrane cytochromes and nanocomposite electrode for efficient nitrate removal (0.333 mM/h). Overall, nanocomposite modified electrode with biocompatible interfaces has great potential to enhance bioelectrochemical reactions with exoelectrogens.
Collapse
Affiliation(s)
- Zhen Fang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiani Hu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meng-Yuan Xu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Wei Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Chunmei Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangtong Zhou
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Jing Wei
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
3
|
Moradian JM, Mi JL, Dai X, Sun GF, Du J, Ye XM, Yong YC. Yeast-induced formation of graphene hydrogels anode for efficient xylose-fueled microbial fuel cells. CHEMOSPHERE 2022; 291:132963. [PMID: 34800508 DOI: 10.1016/j.chemosphere.2021.132963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are of great interest due to their capability to directly convert organic compounds to electric energy. In particular, MFCs technology showed great potential to directly harness the energy from xylose in the form of bioelectricity and biohydrogen simultaneously. Herein, we report a yeast strain of Cystobasidium slooffiae JSUX1 enabled the reduction and assembly of graphene oxide (GO) nanosheets into three-dimensional reduced GO (3D rGO) hydrogels on the surface of carbon felt (CF) anode. The autonomously self-modified 3D rGO hydrogel anode entitled the yeast-based MFCs with two times enhancement on bioelectricity and biohydrogen production from xylose. Further analysis demonstrated that the 3D rGO hydrogel attracted more yeast cells and reduced the interfacial charge transfer resistance, which was the underlying mechanism for the improvement of MFCs performance. This work offers a new strategy to reinforce the performance of yeast-based MFCs and provides a new opportunity to efficiently harvest energy from xylose.
Collapse
Affiliation(s)
- Jamile Mohammadi Moradian
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Institute for Advanced Materials, School of Materials Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Jian-Li Mi
- Institute for Advanced Materials, School of Materials Science & Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xinyan Dai
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Guo-Feng Sun
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jing Du
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiao-Mei Ye
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Wang Y, Van Le Q, Yang H, Lam SS, Yang Y, Gu H, Sonne C, Peng W. Progress in microbial biomass conversion into green energy. CHEMOSPHERE 2021; 281:130835. [PMID: 33992848 DOI: 10.1016/j.chemosphere.2021.130835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The increase in global population size over the past 100 decades has doubled the requirements for energy resources. To mitigate the limited fossil fuel available, new clean energy sources being environmental sustainable for replacement of traditional energy sources are explored to supplement the current scarcity. Biomass containing lignin and cellulose is the main raw material to replace fossil energy given its abundance and lower emission of greenhouse gases and NOx when transformed into energy. Bacteria, fungi and algae decompose lignocellulose leading to generation of hydrogen, methane, bioethanol and biodiesel being the clean energy used for heating, power generation and the automobile industry. Microbial Fuel Cell (MFC) uses microorganisms to decompose biomass in wastewater to generate electricity and remove heavy metals in wastewater. Biomass contains cellulose, hemicellulose, lignin and other biomacromolecules which need hydrolyzation for conversion into small molecules by corresponding enzymes in order to be utilized by microorganisms. This paper discusses microbial decomposition of biomass into clean energy and the five major ways of clean energy production, and its economic benefits for future renewable energy security.
Collapse
Affiliation(s)
- Yacheng Wang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Han Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Su Shiung Lam
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Gao X, Qiu S, Lin Z, Xie X, Yin W, Lu X. Carbon-Based Composites as Anodes for Microbial Fuel Cells: Recent Advances and Challenges. Chempluschem 2021; 86:1322-1341. [PMID: 34363342 DOI: 10.1002/cplu.202100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Owing to the low price, chemical stability and good conductivity, carbon-based materials have been extensively applied as the anode in microbial fuel cells (MFCs). In this review, apart from the charge storage mechanism and anode requirements, the major work focuses on five categories of carbon-based anode materials (traditional carbon, porous carbon, nano-carbon, metal/carbon composite and polymer/carbon composite). The relationship is demonstrated in depth between the physicochemical properties of the anode surface/interface/bulk (porosity, surface area, hydrophilicity, partical size, charge, roughness, etc.) and the bioelectrochemical performances (electron transfer, electrolyte diffusion, capacitance, toxicity, start-up time, current, power density, voltage, etc.). An outlook for future work is also proposed.
Collapse
Affiliation(s)
- Xingyuan Gao
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China.,MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Shuxian Qiu
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Ziting Lin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xiangjuan Xie
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Wei Yin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
6
|
Xian J, Ma H, Li Z, Ding C, Liu Y, Yang J, Cui F. α-FeOOH nanowires loaded on carbon paper anodes improve the performance of microbial fuel cells. CHEMOSPHERE 2021; 273:129669. [PMID: 33524763 DOI: 10.1016/j.chemosphere.2021.129669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Nanowires synthesized from metal oxides exhibit better conductivity than nanoparticles due to their greater aspect ratio which means that they can transmit electrons over longer distances; in addition, they are also more widely available than pili because their synthesis is not affected by the bacteria themselves. However, there is still little research on the application of metal oxides nanowires to enhance power generation of microbial fuel cells (MFC). In this study, a simple hydrothermal synthesis method was adopted to synthesize α-FeOOH nanowires on carbon paper (α-FeOOH-NWs), which serve as an anode to explore the mechanism of power generation enhancement of MFC. Characterization results reveal α-FeOOH-NWs on carbon paper are approximately 30-50 nm in diameter, with goethite structure. Electrochemical test results indicate that α-FeOOH nanowires could enhance the electrochemical activity of carbon paper and reduce the electron transfer resistance (Rct). Furthermore, α-FeOOH-NWs made the power density of MFC 3.2 times of the control device. SEM result demonstrates that nanowires are beneficial to the formation of biofilms and increase biomass on the electrode surface. Our results demonstrate that nanowires not only improve the electrochemical activity and conductivity of carbon paper but also facilitate the formation of biofilms and increase the biomass of the anode surface. These two mechanisms work together to boost extracellular electron transfer and power generation efficiency of MFC with α-FeOOH-NWs. Our study provides further evidence for the electrical conductivity of metal nanowires, promoting their potential applications in electricity generation such as MFC or other energy development fields.
Collapse
Affiliation(s)
- Jiali Xian
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Hua Ma
- College of Environment and Ecology, Chongqing University, Chongqing, China.
| | - Zhe Li
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Chenchen Ding
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yan Liu
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Jixiang Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing, China
| |
Collapse
|
7
|
Punniyakotti P, Aruliah R, Angaiah S. Facile synthesis of reduced graphene oxide using Acalypha indica and Raphanus sativus extracts and their in vitro cytotoxicity activity against human breast (MCF-7) and lung (A549) cancer cell lines. 3 Biotech 2021; 11:157. [PMID: 33758735 DOI: 10.1007/s13205-021-02689-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022] Open
Abstract
In the present study, an eco-friendly approach is adapted for the synthesis of reduced graphene oxide (rGO's) by a simple hydrothermal reaction using two plant extracts namely Acalypha indica and Raphanus sativus. After the hydrothermal reaction, GO turns into a black color from brown color, which indicates the successful reduction of graphene oxide. Further, various characterization techniques such as UV-Vis spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction is used to confirm the physicochemical properties of synthesized rGO's. Raman analysis confirms the reduction of GO by noticing an increase in the ID/IG ratio significantly. Field emission scanning electron microscopy and transmission electron microscopy clearly show the morphology and crystalline nature of rGO's. FT-IR spectrum confirms that the bioactive molecules of the plant extract (i.e. polyphenols, flavonoids, terpenoids, etc.) playing a key role in the elimination of oxygen groups from the GO surface. Further, the synthesized rGO's are tested for their potential against human lung and breast cancer cell lines. A significant cancer cell inhibition activity is obtained even in the less concentration of rGO's with IC50 values for lung cancer cell lines are 38.46 µg/mL and 26.69 µg/mL for AIrGO and RSrGO, respectively. Similarly, IC50 values for breast cancer cell lines are 35.97 µg/mL and 33.22 µg/mL for AIrGO and RSrGO, respectively.
Collapse
|
8
|
Moradian JM, Fang Z, Yong YC. Recent advances on biomass-fueled microbial fuel cell. BIORESOUR BIOPROCESS 2021; 8:14. [PMID: 38650218 PMCID: PMC10992463 DOI: 10.1186/s40643-021-00365-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Biomass is one of the most abundant renewable energy resources on the earth, which is also considered as one of the most promising alternatives to traditional fuel energy. In recent years, microbial fuel cell (MFC) which can directly convert the chemical energy from organic compounds into electric energy has been developed. By using MFC, biomass energy could be directly harvested with the form of electricity, the most convenient, wide-spread, and clean energy. Therefore, MFC was considered as another promising way to harness the sustainable energies in biomass and added new dimension to the biomass energy industry. In this review, the pretreatment methods for biomass towards electricity harvesting with MFC, and the microorganisms utilized in biomass-fueled MFC were summarized. Further, strategies for improving the performance of biomass-fueled MFC as well as future perspectives were highlighted.
Collapse
Affiliation(s)
- Jamile Mohammadi Moradian
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China.
| |
Collapse
|
9
|
Bioelectrochemical treatment of real-field bagasse-based paper mill wastewater in dual-chambered microbial fuel cell. 3 Biotech 2021; 11:42. [PMID: 33479596 DOI: 10.1007/s13205-020-02606-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/23/2020] [Indexed: 01/20/2023] Open
Abstract
The present study is aimed at analysing the feasibility of bioelectrochemical treatment of bagasse-based paper mill wastewater. Bioelectrochemical treatment was carried out in dual-chambered microbial fuel cell with plain graphite plates as electrodes. Wastewater from sugarcane bagasse storage and washing units of paper mill was used as anolyte. High power density and current density of 53 mW m-2 and 173 mA m-2 at 470 Ω, respectively, could be produced with wastewater treatment efficiency of 85% and coulumbic efficiency of 6%. Whereas, wastewater from pulping and bleaching units of bagasse-based paper mill was not suitable for bioelectrochemical treatment, yielding low power density and current density of 4 mW m-2 and 16 mA m-2 respectively at 10,000 Ω. Later, treating blended wastewater containing bagasse wash water and pulping wastewater in the ratio of 9:1 v/v generated higher power density and current density of 73 mW m-2/202 mA m-2, respectively, at 470 Ω, with wastewater treatment efficiency and coulumbic efficiency of 82% and 18%, respectively. Lignin and its derivatives present in pulping wastewater mediated electron transfer leading to high power density. Further, compounds in pulping wastewater were also toxic to methanogens growth in anode chamber of MFC, resulting in improved coulumbic efficiency of the blended wastewater treatment.
Collapse
|
10
|
Zhang T, Tremblay PL. Graphene: An Antibacterial Agent or a Promoter of Bacterial Proliferation? iScience 2020. [PMID: 33294795 DOI: 10.1016/j.sci.2020.101787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Graphene materials (GMs) are being investigated for multiple microbiological applications because of their unique physicochemical characteristics including high electrical conductivity, large specific surface area, and robust mechanical strength. In the last decade, studies on the interaction of GMs with bacterial cells appear conflicting. On one side, GMs have been developed to promote the proliferation of electroactive bacteria on the surface of electrodes in bioelectrochemical systems or to accelerate interspecies electron transfer during anaerobic digestion. On the other side, GMs with antibacterial properties have been synthesized to prevent biofilm formation on membranes for water treatment, on medical equipment, and on tissue engineering scaffolds. In this review, we discuss the mechanisms and factors determining the positive or negative impact of GMs on bacteria. Furthermore, we examine the bacterial growth-promoting and antibacterial applications of GMs and debate their practicability.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
11
|
Abstract
Graphene materials (GMs) are being investigated for multiple microbiological applications because of their unique physicochemical characteristics including high electrical conductivity, large specific surface area, and robust mechanical strength. In the last decade, studies on the interaction of GMs with bacterial cells appear conflicting. On one side, GMs have been developed to promote the proliferation of electroactive bacteria on the surface of electrodes in bioelectrochemical systems or to accelerate interspecies electron transfer during anaerobic digestion. On the other side, GMs with antibacterial properties have been synthesized to prevent biofilm formation on membranes for water treatment, on medical equipment, and on tissue engineering scaffolds. In this review, we discuss the mechanisms and factors determining the positive or negative impact of GMs on bacteria. Furthermore, we examine the bacterial growth-promoting and antibacterial applications of GMs and debate their practicability.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
12
|
Jia Y, Ma D, Wang X. Electrochemical preparation and application of PANI/MWNT and PPy/MWNT composite anodes for anaerobic fluidized bed microbial fuel cell. 3 Biotech 2020; 10:3. [PMID: 31824814 DOI: 10.1007/s13205-019-1950-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/11/2019] [Indexed: 12/25/2022] Open
Abstract
Polyaniline (PANI)/multi-walled carbon nanotubes (MWNT) and polypyrrole (PPy)/MWNT composite anodes were first prepared using electrochemical cyclic voltammetry (CV) method. FTIR and SEM spectra proved that PPy/MWNT and PANI/MWNT were successfully modified on graphite rods, meanwhile, the modified mechanism was also investigated. EIS tests indicated that the Rct values for unmodified anode, PANI/MWNT anode and PPy/MWNT anode were 226.20, 87.93 and 34.95 Ω, respectively, which meant that PPy/MWNT composite anode possessed best electrical conductivity compared with PANI/MWNT anode and unmodified anode. By using PPy/MWNT and PANI/MWNT modified anodes in AFBMFC, the maximum output power density improved by 65.13% and 45.59% compared to that of PPy anode and PANI anode, respectively. Meanwhile, the COD removal rates for the three anodes followed as PPy/MWNT anode > PANI/MWNT anode > PPy anode > PANI anode > unmodified anode.
Collapse
Affiliation(s)
- Yun Jia
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong China
| | - Dong Ma
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong China
| | - Xuyun Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 Shandong China
| |
Collapse
|