1
|
Abdelaziz A, El-Far YM, Abdel-Rahman N. Citronellal Alleviates Insulin Resistance in High-Fat Diet/Streptozocin Model: Role of Asprosin/Olfactory Receptor Axis. Mol Nutr Food Res 2025:e202400654. [PMID: 39821628 DOI: 10.1002/mnfr.202400654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/10/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Ectopic olfactory receptors are expressed in nonolfactory tissues and perform diverse roles including regulation of glucose homeostasis. We explored the effect of citronellal treatment on olfactory receptor 4M1 subtype (OR4M1) signaling in insulin resistance and Type II diabetes in rats. We aimed to validate the anti-diabetic effect of citronellal through Asprosin/OR4M1 modulation. Exploring new antidiabetics and pharmacological targets is important to improve quality of life and limit complications. The model was established in Sprague-Dawley rats by a high-fat diet for 4 weeks followed by a single low-dose streptozotocin (STZ) (35 mg/kg/ip). One week after STZ injection, oral citronellal (100 mg/kg) was administered for 4 weeks. Citronellal lowered serum glucose and triglycerides and ameliorated OGTT and HOMA-IR results. Docking results revealed that citronellal blocked the Asprosin binding site at OR4M1. The hepatic expression of OR4M1 and Asprosin was reduced. Citronellal lowered cAMP levels causing attenuated levels of protein kinase A and downstream gluconeogenic enzymes: glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Citronellal also inhibited the expression of hepatic TLR-4 and inhibited JNK phosphorylation. Citronellal attenuated hepatic levels of NF-κB, p-NF-κB, and downstream proteins MCP-1 and TNF-α. These results suggest that citronellal alleviates insulin resistance by mitigating Asprosin/OR4M1 and Asprosin/TLR4/JNK signaling.
Collapse
Affiliation(s)
- Aya Abdelaziz
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Yousra M El-Far
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha Abdel-Rahman
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Dai W, Xiang A, Pan D, Xia Q, Sun Y, Wang Y, Wang W, Cao J, Zhou C. Insights into the identification of bitter peptides from Jinhua ham and its taste mechanism by molecular docking and transcriptomics analysis. Food Res Int 2024; 189:114534. [PMID: 38876604 DOI: 10.1016/j.foodres.2024.114534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
In order to identify the peptides responsible for bitter defects and to understand the mechanism of bitterness in dry-cured ham, the peptides were identified by LC-MS/MS, and the interaction between bitter peptides and receptor proteins were evaluated by molecular docking and molecular dynamics simulation; the signal transduction mechanism of bitter peptides was investigated using the model of HEK-293T cells by calcium imaging and transcriptomics analysis. The results of LC-MS/MS showed that 11 peptides were identified from the high bitterness fraction of defective ham; peptides PKAPPAK, VTDTTR and YIIEK derived from titin showed the highest bitterness values compared with other peptides. The results of molecular docking showed that lower CDOCKER energy was observed in the interaction between these peptides and hT2R16 in comparison with these receptors of hT2R1, hT2R4, hT2R5, hT2R8 and hT2R14, and the interaction of hT2R16 and peptides was stabilized by hydrophobic interaction and hydrogen bond. The average RMSF values of VTDTTR were higher than that of YIIEK and PKAPPAK, while EC50 values of VTDTTR were lower compared with PKAPPAK and YIIEK. Transcriptomics analysis showed that 529 differentially expressed genes were identified in HEK-293T cells during the stimulating by VTDTTR and were mainly enriched into neuroactive ligand-receptor interaction, MAPK pathway, cAMP pathway and calcium signaling pathway, which were mainly responsible for the bitter signal transduction of VTDTTR. These results could provide evidence for understanding the bitter defects of dry-cured ham and the taste mechanism of bitter peptide.
Collapse
Affiliation(s)
- Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo 315604, China; Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Aiyue Xiang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Daodong Pan
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Qiang Xia
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Yangying Sun
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jinxuan Cao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Changyu Zhou
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
3
|
Xie F, Shen J, Liu T, Zhou M, Johnston LJ, Zhao J, Zhang H, Ma X. Sensation of dietary nutrients by gut taste receptors and its mechanisms. Crit Rev Food Sci Nutr 2022; 63:5594-5607. [PMID: 34978220 DOI: 10.1080/10408398.2021.2021388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nutrients sensing is crucial for fundamental metabolism and physiological functions, and it is also an essential component for maintaining body homeostasis. Traditionally, basic taste receptors exist in oral cavity to sense sour, sweet, bitter, umami, salty and et al. Recent studies indicate that gut can sense the composition of nutrients by activating relevant taste receptors, thereby exerting specific direct or indirect effects. Gut taste receptors, also named as intestinal nutrition receptors, including at least bitter, sweet and umami receptors, have been considered to be activated by certain nutrients and participate in important intestinal physiological activities such as eating behavior, intestinal motility, nutrient absorption and metabolism. Additionally, gut taste receptors can regulate appetite and body weight, as well as maintain homeostasis via targeting hormone secretion or regulating the gut microbiota. On the other hand, malfunction of gut taste receptors may lead to digestive disorders, and then result in obesity, type 2 diabetes and gastrointestinal diseases. At present, researchers have confirmed that the brain-gut axis may play indispensable roles in these diseases via the secretion of brain-gut peptides, but the mechanism is still not clear. In this review, we summarize the current observation of knowledge in gut taste systems in order to shed light on revealing their important nutritional functions and promoting clinical implications.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiakun Shen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Cavedon M, Gubili C, Heppenheimer E, vonHoldt B, Mariani S, Hebblewhite M, Hegel T, Hervieux D, Serrouya R, Steenweg R, Weckworth BV, Musiani M. Genomics, environment and balancing selection in behaviourally bimodal populations: The caribou case. Mol Ecol 2019; 28:1946-1963. [PMID: 30714247 DOI: 10.1111/mec.15039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 02/03/2023]
Abstract
Selection forces that favour different phenotypes in different environments can change frequencies of genes between populations along environmental clines. Clines are also compatible with balancing forces, such as negative frequency-dependent selection (NFDS), which maintains phenotypic polymorphisms within populations. For example, NFDS is hypothesized to maintain partial migration, a dimorphic behavioural trait prominent in species where only a fraction of the population seasonally migrates. Overall, NFDS is believed to be a common phenomenon in nature, yet a scarcity of studies were published linking naturally occurring allelic variation with bimodal or multimodal phenotypes and balancing selection. We applied a Pool-seq approach and detected selection on alleles associated with environmental variables along a North-South gradient in western North American caribou, a species displaying partially migratory behaviour. On 51 loci, we found a signature of balancing selection, which could be related to NFDS and ultimately the maintenance of the phenotypic polymorphisms known within these populations. Yet, remarkably, we detected directional selection on a locus when our sample was divided into two behaviourally distinctive groups regardless of geographic provenance (a subset of GPS-collared migratory or sedentary individuals), indicating that, within populations, phenotypically homogeneous groups were genetically distinctive. Loci under selection were linked to functional genes involved in oxidative stress response, body development and taste perception. Overall, results indicated genetic differentiation along an environmental gradient of caribou populations, which we found characterized by genes potentially undergoing balancing selection. We suggest that the underlining balancing force, NFDS, plays a strong role within populations harbouring multiple haplotypes and phenotypes, as it is the norm in animals, plants and humans too.
Collapse
Affiliation(s)
- Maria Cavedon
- Faculty of Environmental Design, University of Calgary, Calgary, Alberta, Canada
| | - Chrysoula Gubili
- Faculty of Environmental Design, University of Calgary, Calgary, Alberta, Canada.,School of Environment and Life Sciences, University of Salford, Salford, UK.,Hellenic Agricultural Organisation, Fisheries Research Institute, Kavala, Greece
| | - Elizabeth Heppenheimer
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Bridgett vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Stefano Mariani
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Mark Hebblewhite
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, Montana
| | - Troy Hegel
- Yukon Department of Environment, Whitehorse, Yukon, Canada
| | - Dave Hervieux
- Resource Management - Operations Division, Alberta Environment and Sustainable Resource Development, Grande Prairie, Alberta, Canada
| | - Robert Serrouya
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Robin Steenweg
- Resource Management - Operations Division, Alberta Environment and Sustainable Resource Development, Grande Prairie, Alberta, Canada
| | | | - Marco Musiani
- Department of Biological Sciences, Faculty of Science and Veterinary Medicine (Joint Appointment), University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Activation of intestinal olfactory receptor stimulates glucagon-like peptide-1 secretion in enteroendocrine cells and attenuates hyperglycemia in type 2 diabetic mice. Sci Rep 2017; 7:13978. [PMID: 29070885 PMCID: PMC5656655 DOI: 10.1038/s41598-017-14086-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/27/2017] [Indexed: 12/01/2022] Open
Abstract
Odorants are non-nutrients. However, they exist abundantly in foods, wines, and teas, and thus can be ingested along with the other nutrients during a meal. Here, we have focused on the chemical-recognition ability of these ORs and hypothesized that the odorants ingested during a meal may play a physiological role by activating the gut-expressed ORs. Using a human-derived enteroendocrine L cell line, we discovered the geraniol- and citronellal-mediated stimulation of glucagon-like peptide-1 (GLP-1) secretion and elucidated the corresponding cellular downstream signaling pathways. The geraniol-stimulated GLP-1 secretion event in the enteroendocrine cell line was mediated by the olfactory-type G protein, the activation of adenylyl cyclase, increased intracellular cAMP levels, and extracellular calcium influx. TaqMan qPCR demonstrated that two ORs corresponding to geraniol and citronellal were expressed in the human enteroendocrine cell line and in mouse intestinal specimen. In a type 2 diabetes mellitus mouse model (db/db), oral administration of geraniol improved glucose homeostasis by increasing plasma GLP-1 and insulin levels. This insulinotropic action of geraniol was GLP-1 receptor-mediated, and also was glucose-dependent. This study demonstrates that odor compounds can be recognized by gut-expressed ORs during meal ingestion and therefore, participate in the glucose homeostasis by inducing the secretion of gut-peptides.
Collapse
|
6
|
|
7
|
Kim KH, Jang HJ. Development of GLP-1 secretagogue using microarray in enteroendocrine L cells. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0403-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Lee IS, Kim KS, Kim KH, Park J, Jeong HS, Kim Y, Na YC, Lee SG, Ahn KS, Lee JH, Jang HJ. Anti-diabetic and anti-obesitic effects of aqueous extracts of Yangkyuksanhwa-tang and its two major compositions on db/db mice. Biomed Pharmacother 2016; 83:431-438. [PMID: 27424324 DOI: 10.1016/j.biopha.2016.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/29/2016] [Accepted: 07/03/2016] [Indexed: 11/15/2022] Open
Affiliation(s)
- In-Seung Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Ki-Suk Kim
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Kang-Hoon Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Jiyoung Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hyeon-Soo Jeong
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Yumi Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea; Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 120-140, Republic of Korea
| | - Yun-Cheol Na
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Jun Hee Lee
- College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| | - Hyeung-Jin Jang
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea; College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
9
|
Avau B, Depoortere I. The bitter truth about bitter taste receptors: beyond sensing bitter in the oral cavity. Acta Physiol (Oxf) 2016; 216:407-20. [PMID: 26493384 DOI: 10.1111/apha.12621] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 11/26/2022]
Abstract
The bitter taste receptor (TAS2R)-family of G-protein-coupled receptors has been identified on the tongue as detectors of bitter taste over a decade ago. In the last few years, they have been discovered in an ever growing number of extra-oral tissues, including the airways, the gut, the brain and even the testis. In tissues that contact the exterior, protective functions for TAS2Rs have been proposed, in analogy to their function on the tongue as toxicity detector. However, TAS2Rs have also been found in internal organs, suggesting other roles for these receptors, perhaps involving as yet unidentified endogenous ligands. The current review gives an overview of the different proposed functions for TAS2Rs in tissues other than the oral cavity; from appetite regulation to the treatment of asthma, regulation of gastrointestinal motility and control of airway innate immunity.
Collapse
Affiliation(s)
- B. Avau
- Translational Research Center for Gastrointestinal Disorders (TARGID); Gut Peptide Research Lab; University of Leuven; Leuven Belgium
| | - I. Depoortere
- Translational Research Center for Gastrointestinal Disorders (TARGID); Gut Peptide Research Lab; University of Leuven; Leuven Belgium
| |
Collapse
|
10
|
Kim KS, Jung Yang H, Lee IS, Kim KH, Park J, Jeong HS, Kim Y, Seok Ahn K, Na YC, Jang HJ. The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice. Sci Rep 2015; 5:18325. [PMID: 26675132 PMCID: PMC4682129 DOI: 10.1038/srep18325] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/16/2015] [Indexed: 12/25/2022] Open
Abstract
Ginsenosides can be classified on the basis of the skeleton of their aglycones. Here, we hypothesized that the sugar moieties attached to the dammarane backbone enable binding of the ginsenosides to the sweet taste receptor, eliciting glucagon-like peptide-1 (GLP-1) secretion in the enteroendocrine L cells. Using the human enteroendocrine NCI-H716 cells, we demonstrated that 15 ginsenosides stimulate GLP-1 secretion according to the position of their sugar moieties. Through a pharmacological approach and RNA interference technique to inhibit the cellular signal cascade and using the Gαgust−/− mice, we elucidated that GLP-1 secreting effect of Rg3 mediated by the sweet taste receptor mediated the signaling pathway. Rg3, a ginsenoside metabolite that transformed the structure through a steaming process, showed the strongest GLP-1 secreting effects in NCI-H716 cells and also showed an anti-hyperglycemic effect on a type 2 diabetic mouse model through increased plasma GLP-1 and plasma insulin levels during an oral glucose tolerance test. Our study reveals a novel mechanism where the sugar moieties of ginsenosides Rg3 stimulates GLP-1 secretion in enteroendocrine L cells through a sweet taste receptor-mediated signal transduction pathway and thus has an anti-hyperglycemic effect on the type 2 diabetic mouse model.
Collapse
Affiliation(s)
- Ki-Suk Kim
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Hea Jung Yang
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - In-Seung Lee
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Kang-Hoon Kim
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Jiyoung Park
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Hyeon-Soo Jeong
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Yoomi Kim
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea.,Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 120-140, Republic of Korea
| | - Kwang Seok Ahn
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 120-140, Republic of Korea
| | - Hyeung-Jin Jang
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, 1 Heogi-dong, Dongdaemun-gu, Seoul, 130-701 Republic of Korea
| |
Collapse
|
11
|
Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:171742. [PMID: 26788106 PMCID: PMC4693015 DOI: 10.1155/2015/171742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) participates in glucose homeostasis and feeding behavior. Because GLP-1 is rapidly inactivated by the enzymatic cleavage of dipeptidyl peptidase-4 (DPP4) long-acting GLP-1 analogues, for example, exenatide and DPP4 inhibitors, for example, liraglutide, have been developed as therapeutics for type 2 diabetes mellitus (T2DM). However, the inefficient clinical performance and the incidence of side effects reported on the existing therapeutics for T2DM have led to the development of a novel therapeutic strategy to stimulate endogenous GLP-1 secretion from enteroendocrine L cells. Since the GLP-1 secretion of enteroendocrine L cells depends on the luminal nutrient constituents, the intestinal nutrient sensors involved in GLP-1 secretion have been investigated. In particular, nutrient sensors for tastants, cannabinoids, and bile acids are able to recognize the nonnutritional chemical compounds, which are abundant in medicinal plants. These GLP-1 secretagogues derived from medicinal plants are easy to find in our surroundings, and their effectiveness has been demonstrated through traditional remedies. The finding of GLP-1 secretagogues is directly linked to understanding of the role of intestinal nutrient sensors and their recognizable nutrients. Concurrently, this study demonstrates the possibility of developing novel therapeutics for metabolic disorders such as T2DM and obesity using nutrients that are readily accessible in our surroundings.
Collapse
|
12
|
GLP-1 secretion is stimulated by 1,10-phenanthroline via colocalized T2R5 signal transduction in human enteroendocrine L cell. Biochem Biophys Res Commun 2015; 468:306-11. [PMID: 26505793 DOI: 10.1016/j.bbrc.2015.10.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) hormone is known to regulate blood glucose by an insulinotropic effect and increases proliferation as and also prevents apoptosis of pancreatic β cells. We know that GLP-1 is secreted by nutrients such as fatty acids and sweet compounds but also bitter compounds via stimulation of G-protein coupled receptors (GPCRs) in the gut. Among these, bitter compounds are multiply-contained in phytochemicals or artificial materials and perceived as ligands of various bitter taste receptors. We hypothesized that GLP-1 hormone is secreted through stimulation of a single bitter taste receptor by 1,10-phenanthroline which is known agonist of taste receptor type 2 member 5 (T2R5). To prove this hypothesis, we used the representatively well-known 1,10-phenanthroline as ligand of single receptor and evaluated the existence of T2R5 by double-labeling immunofluorescence and then 1,10-phenanthroline is able to secrete GLP-1 hormone through stimulation of T2R5 in human enteroendocrine cells. Consequently, we verify that GLP-1 hormone is colocalized with T2R5 in the human duodenum and ileum tissue and is secreted by 1,10-phenanthroline via T2R5 signal transduction in differentiated human enteroendocrine L cells.
Collapse
|
13
|
Suh HW, Lee KB, Kim KS, Yang HJ, Choi EK, Shin MH, Park YS, Na YC, Ahn KS, Jang YP, Um JY, Jang HJ. A bitter herbal medicine Gentiana scabra root extract stimulates glucagon-like peptide-1 secretion and regulates blood glucose in db/db mouse. JOURNAL OF ETHNOPHARMACOLOGY 2015; 172:219-226. [PMID: 26129938 DOI: 10.1016/j.jep.2015.06.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/09/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gentiana scabra root extract (GS) is frequently prescribed as an internal remedy in traditional Korean medicine for treatment of diabetes mellitus. GS contains bitter iridoid glycosides including loganic acid, gentiopicrin, trifloroside, and rindoside. We previously reported that the intestinal bitter taste sensation stimulates GLP-1 secretion, and thereupon hypothesized that the blood glucose regulatory effect of GS is due to its GLP-1 secreting effect in enteroendocrine L cells. MATERIALS AND METHOD We studied GLP-1 secreting effect of GS treatment and its cellular downstream mechanism in human enteroendocrine NCI-H716 cells using the G protein-coupled receptor (GPCR) pathway inhibitors. Intracellular calcium assay also demonstrated the signal transduction pathway stimulated by the GS treatment. Using db/db mice, we performed oral glucose tolerance test (OGTT) to examine the blood glucose lowering effect of GS administration. We also collected the mouse plasma during the OGTT to measure the GLP-1 and insulin levels. RESULT We demonstrated dose-dependent GLP-1 secreting effect of GS on the NCI-H716 cells. The GLP-1 secreting effect of GS is mediated by the G protein βγ-subunit and inositol triphosphate. Using db/db mice, we found that the effect of GS on lowering blood glucose is due to its GLP-1 secretion, and consequential insulinotropic effect. The chemical fingerprint of GS was obtained through a direct analysis in realtime mass spectrometry (DART-MS) and high-performance liquid chromatography (HPLC)/MS. Through the GLP-1 secretion study, we found that loganic acid, an iridoid glycoside, contributes to the GLP-1 secreting effect of GS. CONCLUSION The findings of this study highlight the potential of exploiting the antidiabetic effect of GS on type 2 diabetes mellitus patients.
Collapse
Affiliation(s)
- Hyo-Weon Suh
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Ki-Beom Lee
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Ki-Suk Kim
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hea Jung Yang
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Eun-Kyeong Choi
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Min Hee Shin
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul 120-140, Republic of Korea
| | - Kwang Seok Ahn
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Young Pyo Jang
- College of Pharmacy, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Jae Young Um
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Hyeung-Jin Jang
- College of Oriental Medicine, Institute of Oriental Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
14
|
Kim KH, Chung WS, Kim Y, Kim KS, Lee IS, Park JY, Jeong HS, Na YC, Lee CH, Jang HJ. Transcriptomic Analysis Reveals Wound Healing of Morus alba Root Extract by Up-Regulating Keratin Filament and CXCL12/CXCR4 Signaling. Phytother Res 2015; 29:1251-8. [PMID: 26014513 DOI: 10.1002/ptr.5375] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 11/07/2022]
Abstract
Facilitation of the wound healing process is important because a prolonged wound site increases pain and the risk of infection. In oriental medicine, an extract of Morus alba root (MA) has usually been prescribed as traditional treatment for accelerating wound healing, and it has been proven to be safe for centuries. To study the molecular mechanism of MA-mediated skin wound healing, we performed a primary cell culture and a skin explant culture and observed significant difference between the groups with and without MA extract. In the cellular system, a real-time cell analysis and real-time quantitative PCR were performed. It was found that MA extract enhanced proliferation in a dose-dependent manner on Kera-308 cell line, and up-regulated keratin expression including wound-induced Krt6a. In skin explant culture, the mRNA level derived from cell outgrowth displayed a tendency toward more up-regulated mRNA associated keratin filaments and toward a more up-regulated mRNA level of C-X-C motif chemokine 12 (CXCL12) and a chemokine receptor 4 (CXCR4) axis signaling pathway downstream. In this process, we concluded that MA extract had a scientific possibility of wound repair by increasing intracellular and extracellular supports and by inducing a CXCL12/CXCR4 signaling pathway.
Collapse
Affiliation(s)
- Kang-Hoon Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Won-Seok Chung
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Yoomi Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Ki-Suk Kim
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - In-Seung Lee
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Ji Young Park
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Hyeon-Soo Jeong
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 120-140, Republic of Korea
| | - Chang-Hun Lee
- School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Hyeung-Jin Jang
- College of Korean Medicine, Institute of Korean Medicine, Kyung Hee University, Heogi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
15
|
Kim KS, Egan JM, Jang HJ. Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia 2014; 57:2117-25. [PMID: 25016595 PMCID: PMC5160131 DOI: 10.1007/s00125-014-3326-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS This study was designed to ascertain whether human enteroendocrine cells express bitter taste receptors, and whether activation of these receptors with bitter-tasting ligands induces secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). METHODS We used human enteroendocrine NCI-H716 cells, isolated duodenal segments from mice, and whole mice as our experimental systems for investigating stimuli and mechanisms underlying GLP-1- and PYY-stimulated release. We measured hormone levels by ELISA and determined bitter taste receptor expression by real-time quantitative PCR. We adopted a pharmacological approach using inhibitors and enhancers of downstream signalling pathways known to be involved in bitter taste transduction in taste bud cells to investigate these pathways in NCI-H716 cells. RESULTS Using a pharmacological approach, we identified signalling pathways triggered by the denatonium benzoate (DB)-activated bitter receptors. This involved activation of α-gustducin (Gαgust)-the specific G-protein subunit that is also present in taste bud cells-reduction of intracellular cAMP levels and enhancement of phospholipase C (PLC) activity, which ultimately led to increased intracellular calcium concentrations and hormone release. Gavage of DB, followed by gavage of glucose, to db/db mice stimulated GLP-1 and subsequent insulin secretion, leading to lower blood glucose levels. CONCLUSIONS/INTERPRETATION Our study demonstrates that activation of gut-expressed bitter taste receptors stimulates GLP-1 secretion in a PLC-dependent manner. In diabetic mice, DB (a ligand of bitter taste receptor cells), when given via gavage, lowers blood glucose levels in diabetic mice after oral glucose administration, through increased secretion of GLP-1.
Collapse
Affiliation(s)
- Ki-Suk Kim
- Department of Biochemistry, College of Korean Medicine, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul, 130-701, Republic of Korea
| | | | | |
Collapse
|
16
|
Shin MH, Park YJ, Kim KS, Cho DH, Uh IJ, Kim KH, Ha IJ, Chung WS, Jung HJ, Jung SK, Jang HJ. The anti-inflammatory effects of Alisma herb extract on allergic asthma mouse model. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0021-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|