1
|
Maity S, Bhuyan T, Jewell C, Kawakita S, Sharma S, Nguyen HT, Hassani Najafabadi A, Ermis M, Falcone N, Chen J, Mandal K, Khorsandi D, Yilgor C, Choroomi A, Torres E, Mecwan M, John JV, Akbari M, Wang Z, Moniz-Garcia D, Quiñones-Hinojosa A, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Developments in Glioblastoma-On-A-Chip for Advanced Drug Screening Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405511. [PMID: 39535474 DOI: 10.1002/smll.202405511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/08/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive form of cancer, comprising ≈80% of malignant brain tumors. However, there are no effective treatments for GBM due to its heterogeneity and the presence of the blood-brain barrier (BBB), which restricts the delivery of therapeutics to the brain. Despite in vitro models contributing to the understanding of GBM, conventional 2D models oversimplify the complex tumor microenvironment. Organ-on-a-chip (OoC) models have emerged as promising platforms that recapitulate human tissue physiology, enabling disease modeling, drug screening, and personalized medicine. There is a sudden increase in GBM-on-a-chip models that can significantly advance the knowledge of GBM etiology and revolutionize drug development by reducing animal testing and enhancing translation to the clinic. In this review, an overview of GBM-on-a-chip models and their applications is reported for drug screening and discussed current challenges and potential future directions for GBM-on-a-chip models.
Collapse
Affiliation(s)
- Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Orthopedic Surgery, Duke University School of Medicine, Duke University, Durham, NC, 27705, USA
| | - Tamanna Bhuyan
- Department of Applied Biology, School of Biological Sciences, University of Science & Technology Meghalaya, Meghalaya, 793101, India
| | - Christopher Jewell
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Can Yilgor
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Emily Torres
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Diogo Moniz-Garcia
- Department of Neurosurgery, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | | | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
2
|
Kasahara K, Leygeber M, Seiffarth J, Ruzaeva K, Drepper T, Nöh K, Kohlheyer D. Enabling oxygen-controlled microfluidic cultures for spatiotemporal microbial single-cell analysis. Front Microbiol 2023; 14:1198170. [PMID: 37408642 PMCID: PMC10318409 DOI: 10.3389/fmicb.2023.1198170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Microfluidic cultivation devices that facilitate O2 control enable unique studies of the complex interplay between environmental O2 availability and microbial physiology at the single-cell level. Therefore, microbial single-cell analysis based on time-lapse microscopy is typically used to resolve microbial behavior at the single-cell level with spatiotemporal resolution. Time-lapse imaging then provides large image-data stacks that can be efficiently analyzed by deep learning analysis techniques, providing new insights into microbiology. This knowledge gain justifies the additional and often laborious microfluidic experiments. Obviously, the integration of on-chip O2 measurement and control during the already complex microfluidic cultivation, and the development of image analysis tools, can be a challenging endeavor. A comprehensive experimental approach to allow spatiotemporal single-cell analysis of living microorganisms under controlled O2 availability is presented here. To this end, a gas-permeable polydimethylsiloxane microfluidic cultivation chip and a low-cost 3D-printed mini-incubator were successfully used to control O2 availability inside microfluidic growth chambers during time-lapse microscopy. Dissolved O2 was monitored by imaging the fluorescence lifetime of the O2-sensitive dye RTDP using FLIM microscopy. The acquired image-data stacks from biological experiments containing phase contrast and fluorescence intensity data were analyzed using in-house developed and open-source image-analysis tools. The resulting oxygen concentration could be dynamically controlled between 0% and 100%. The system was experimentally tested by culturing and analyzing an E. coli strain expressing green fluorescent protein as an indirect intracellular oxygen indicator. The presented system allows for innovative microbiological research on microorganisms and microbial ecology with single-cell resolution.
Collapse
Affiliation(s)
- Keitaro Kasahara
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Leygeber
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Johannes Seiffarth
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Karina Ruzaeva
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dietrich Kohlheyer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
3
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
4
|
Song J, Bang S, Choi N, Kim HN. Brain organoid-on-a-chip: A next-generation human brain avatar for recapitulating human brain physiology and pathology. BIOMICROFLUIDICS 2022; 16:061301. [PMID: 36438549 PMCID: PMC9691285 DOI: 10.1063/5.0121476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases and neurodevelopmental disorders have become increasingly prevalent; however, the development of new pharmaceuticals to treat these diseases has lagged. Animal models have been extensively utilized to identify underlying mechanisms and to validate drug efficacies, but they possess inherent limitations including genetic heterogeneity with humans. To overcome these limitations, human cell-based in vitro brain models including brain-on-a-chip and brain organoids have been developed. Each technique has distinct advantages and disadvantages in terms of the mimicry of structure and microenvironment, but each technique could not fully mimic the structure and functional aspects of the brain tissue. Recently, a brain organoid-on-a-chip (BOoC) platform has emerged, which merges brain-on-a-chip and brain organoids. BOoC can potentially reflect the detailed structure of the brain tissue, vascular structure, and circulation of fluid. Hence, we summarize recent advances in BOoC as a human brain avatar and discuss future perspectives. BOoC platform can pave the way for mechanistic studies and the development of pharmaceuticals to treat brain diseases in future.
Collapse
Affiliation(s)
- Jiyoung Song
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seokyoung Bang
- Department of Medical Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Nakwon Choi
- Authors to whom correspondence should be addressed:; ; and
| | - Hong Nam Kim
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
5
|
Bhusal A, Dogan E, Nieto D, Mousavi Shaegh SA, Cecen B, Miri AK. 3D Bioprinted Hydrogel Microfluidic Devices for Parallel Drug Screening. ACS APPLIED BIO MATERIALS 2022; 5:4480-4492. [PMID: 36037061 PMCID: PMC11375967 DOI: 10.1021/acsabm.2c00578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conventional high-throughput screening (HTS) platforms suffer from the need for large cell volumes, high reagent consumption, significant assembly cost, and handling efforts. The assembly of three-dimensional (3D) bioprinted hydrogel-based microfluidic chips within platforms can address these problems. We present a continuous and seamless manufacturing approach to create a bioprinted microfluidic chips with a circular pattern scalable toward HTS platforms. Digital light processing 3D bioprinting is used to tune the local permeability of our chip, made of polyethylene glycol diacrylate and cell-laden gelatin methacryloyl, for creating predefined gradients of biochemical properties. We measured the flow-induced physical characteristics, the mass transport of drug agents, and the biological features of the proposed chip. We measured reactive oxygen species from the encapsulated cells through an integrated process and showed the capacity of the hydrogel-based chip for creating drug/agent gradients. This work introduces a chip design based on a hydrogel that can be changed and could be used for modern HTS platforms such as in vitro organoids.
Collapse
Affiliation(s)
- Anant Bhusal
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Elvan Dogan
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, New Jersey 07102, United States
| | - Daniel Nieto
- Department Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, Maastricht 6229 ER, Netherlands
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Mashhad University of Medical Sciences, P.O. Box 9187145785, Mashhad 9187145785, Iran
- Clinical Research Unit, Ghaem Hospital, Mashhad University of Medical Sciences, P.O. Box 91735451, Mashhad 91735451, Iran
| | - Berivan Cecen
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Amir K Miri
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, New Jersey 07102, United States
| |
Collapse
|
6
|
Liu F, Gaul L, Shu F, Vitenson D, Wu M. Microscope-based light gradient generation for quantitative growth studies of photosynthetic micro-organisms. LAB ON A CHIP 2022; 22:3138-3146. [PMID: 35730387 DOI: 10.1039/d2lc00393g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthetic micro-organisms are equipped with molecular machineries that are designed to transform light into chemical or bioenergy, and help shape and balance the ecosystem of all life forms on earth. Recently, aquatic ecosystems have been disrupted by climate change, which leads to the frequent occurrence of harmful algal blooms (HABs). HABs endanger drinking water resources and harm the fishing and coastal recreation industries. Despite its urgency, mechanistic understanding of how key biophysical and biochemical parameters impact algal growth is largely unexplored. In this article, we developed a microscope-based light gradient generator for studies of photosynthetic micro-organisms under well-defined light intensity gradients. This technology utilized a commercially available microscope, allowed for controlled light exposure and imaging of cells on the same microscope platform, and can be integrated with any micrometer-scale device. Using this technology, we studied the role of light intensity in the growth of photosynthetic micro-organisms. A parallel study was also carried out using a 96-well plate. Our work revealed that the growth rate of the microalgae/cyanobacteria was significantly regulated by the light intensity and followed Monod or van Oorschot kinetic models. The measured half-saturation constants were compared with those obtained in macro-scale devices, and indicated that shading, light spectrum, and temperature may all play important roles in the light sensitivity of photosynthetic micro-organisms. This work highlighted the importance of analytical tools for quantitative understanding of biophysical parameters in the growth of photosynthetic micro-organisms, and knowledge learned will be critical in the design of future technologies for managing algal blooms or optimizing bioenergy production.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Larissa Gaul
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Fang Shu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Daniel Vitenson
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
Zhang J, Tavakoli H, Ma L, Li X, Han L, Li X. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv Drug Deliv Rev 2022; 187:114365. [PMID: 35667465 DOI: 10.1016/j.addr.2022.114365] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/17/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has achieved remarkable success over the past decade by modulating patients' own immune systems and unleashing pre-existing immunity. However, only a minority of cancer patients across different cancer types are able to benefit from immunotherapy treatment; moreover, among those small portions of patients with response, intrinsic and acquired resistance remains a persistent challenge. Because the tumor microenvironment (TME) is well recognized to play a critical role in tumor initiation, progression, metastasis, and the suppression of the immune system and responses to immunotherapy, understanding the interactions between the TME and the immune system is a pivotal step in developing novel and efficient cancer immunotherapies. With unique features such as low reagent consumption, dynamic and precise fluid control, versatile structures and function designs, and 3D cell co-culture, microfluidic tumor organoid-on-a-chip platforms that recapitulate key factors of the TME and the immune contexture have emerged as innovative reliable tools to investigate how tumors regulate their TME to counteract antitumor immunity and the mechanism of tumor resistance to immunotherapy. In this comprehensive review, we focus on recent advances in tumor organoid-on-a-chip platforms for studying the interaction between the TME and the immune system. We first review different factors of the TME that recent microfluidic in vitro systems reproduce to generate advanced tools to imitate the crosstalk between the TME and the immune system. Then, we discuss their applications in the assessment of different immunotherapies' efficacy using tumor organoid-on-a-chip platforms. Finally, we present an overview and the outlook of engineered microfluidic platforms in investigating the interactions between cancer and immune systems, and the adoption of patient-on-a-chip models in clinical applications toward personalized immunotherapy.
Collapse
Affiliation(s)
- Jie Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Lei Ma
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lichun Han
- Xi'an Daxing Hospital, Xi'an 710016, China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA; Border Biomedical Research Center, Forensic Science, & Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA.
| |
Collapse
|
8
|
Zheng W, Xie R, Liang X, Liang Q. Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105867. [PMID: 35072338 DOI: 10.1002/smll.202105867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Biofabrication technologies are of importance for the construction of organ models and functional tissue replacements. Microfluidic manipulation, a promising biofabrication technique with micro-scale resolution, can not only help to realize the fabrication of specific microsized structures but also build biomimetic microenvironments for biofabricated tissues. Therefore, microfluidic manipulation has attracted attention from researchers in the manipulation of particles and cells, biochemical analysis, tissue engineering, disease diagnostics, and drug discovery. Herein, biofabrication based on microfluidic manipulation technology is reviewed. The application of microfluidic manipulation technology in the manufacturing of biomaterials and biostructures with different dimensions and the control of the microenvironment is summarized. Finally, current challenges are discussed and a prospect of microfluidic manipulation technology is given. The authors hope this review can provide an overview of microfluidic manipulation technologies used in biofabrication and thus steer the current efforts in this field.
Collapse
Affiliation(s)
- Wenchen Zheng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ruoxiao Xie
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoping Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong, 510006, China
| | - Qionglin Liang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Microfluidic-Driven Biofabrication and the Engineering of Cancer-Like Microenvironments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:205-230. [DOI: 10.1007/978-3-031-04039-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Jia X, Yang X, Luo G, Liang Q. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal 2021; 209:114534. [PMID: 34929566 DOI: 10.1016/j.jpba.2021.114534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
In recent years, the progress of microfluidic technology has provided new tools for pharmaceutical analysis and the proposal of pharm-lab-on-a-chip is appealing for its great potential to integrate pharmaceutical test and pharmacological test in a single chip system. Here, we summarize and highlight recent advances of chip-based principles, techniques and devices for pharmaceutical test and pharmacological/toxicological test focusing on the separation and analysis of drug molecules on a chip and the construction of pharmacological models on a chip as well as their demonstrative applications in quality control, drug screening and precision medicine. The trend and challenge of microfluidic technology for pharmaceutical analysis are also discussed and prospected. We hope this review would update the insight and development of pharm-lab-on-a-chip.
Collapse
Affiliation(s)
- Xiaomeng Jia
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Xiaoping Yang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Guoan Luo
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
11
|
Kerk YJ, Jameel A, Xing X, Zhang C. Recent advances of integrated microfluidic suspension cell culture system. ENGINEERING BIOLOGY 2021; 5:103-119. [PMID: 36970555 PMCID: PMC9996741 DOI: 10.1049/enb2.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Microfluidic devices with superior microscale fluid manipulation ability and large integration flexibility offer great advantages of high throughput, parallelisation and multifunctional automation. Such features have been extensively utilised to facilitate cell culture processes such as cell capturing and culturing under controllable and monitored conditions for cell-based assays. Incorporating functional components and microfabricated configurations offered different levels of fluid control and cell manipulation strategies to meet diverse culture demands. This review will discuss the advances of single-phase flow and droplet-based integrated microfluidic suspension cell culture systems and their applications for accelerated bioprocess development, high-throughput cell selection, drug screening and scientific research to insight cell biology. Challenges and future prospects for this dynamically developing field are also highlighted.
Collapse
Affiliation(s)
- Yi Jing Kerk
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Aysha Jameel
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Xin‐Hui Xing
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| | - Chong Zhang
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| |
Collapse
|
12
|
A PDMS-Based Interdigitated Platform for Trophoblast Invasion Study Under Oxygen Stress Conditions. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Winter M, Jankovic-Karasoulos T, Roberts CT, Bianco-Miotto T, Thierry B. Bioengineered Microphysiological Placental Models: Towards Improving Understanding of Pregnancy Health and Disease. Trends Biotechnol 2021; 39:1221-1235. [PMID: 33965246 DOI: 10.1016/j.tibtech.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Driven by a lack of appropriate human placenta models, recent years have seen the introduction of bioengineered in vitro models to better understand placental health and disease. Thus far, the focus has been on the maternal-foetal barrier. However, there are many other physiologically and pathologically significant aspects of the placenta that would benefit from state-of-the-art bioengineered models, in particular, integrating advanced culture systems with contemporary biological concepts such as organoids. This critical review defines and discusses the key parameters required for the development of physiologically relevant in vitro models of the placenta. Specifically, it highlights the importance of cell type, mechanical forces, and culture microenvironment towards the use of physiologically relevant models to improve the understanding of human placental function and dysfunction.
Collapse
Affiliation(s)
- Marnie Winter
- ARC Centre of Excellence in Convergent BioNano Science and Technology and Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia.
| | - Tanja Jankovic-Karasoulos
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Claire T Roberts
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia, 5005, Australia; Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia; Waite Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Benjamin Thierry
- ARC Centre of Excellence in Convergent BioNano Science and Technology and Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, 5095, Australia
| |
Collapse
|
14
|
Zheng L, Wang B, Sun Y, Dai B, Fu Y, Zhang Y, Wang Y, Yang Z, Sun Z, Zhuang S, Zhang D. An Oxygen-Concentration-Controllable Multiorgan Microfluidic Platform for Studying Hypoxia-Induced Lung Cancer-Liver Metastasis and Screening Drugs. ACS Sens 2021; 6:823-832. [PMID: 33657793 DOI: 10.1021/acssensors.0c01846] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Various cancer metastasis models based on organ-on-a-chip platforms have been established to study molecular mechanisms and screen drugs. However, current platforms can neither reveal hypoxia-induced cancer metastasis mechanisms nor allow drug screening under a hypoxia environment on a multiorgan level. We have developed a three-dimensional-culture multiorgan microfluidic (3D-CMOM) platform in which the dissolved oxygen concentration can be precisely controlled. An organ-level lung cancer and liver linkage model was established under normoxic/hypoxic conditions. A transcriptomics analysis of the hypoxia-induced lung cancer cells (A549 cells) on the platform indicated that the hypoxia-inducible factor 1α (HIF-1α) pathway could elevate epithelial-mesenchymal transition (EMT) transcription factors (Snail 1 and Snail 2), which could promote cancer metastasis. Then, protein detection demonstrated that HIF-1α and EMT transcription factor expression levels were positively correlated with the secretion of cancer metastasis damage factors alpha-fetoprotein (AFP), alkaline phosphatase (ALP), and gamma-glutamyl transpeptidase (γ-GT) from liver cells. Furthermore, the cancer treatment effects of HIF-1α inhibitors (tirapazamine, SYP-5, and IDF-11774) were evaluated using the platform. The treatment effect of SYP-5 was enhanced under the hypoxic conditions with fewer side effects, similar to the findings of TPZ. We can envision its wide application in future investigations of cancer metastasis and screening of drugs under hypoxic conditions with the potential to replace animal experiments.
Collapse
Affiliation(s)
- Lulu Zheng
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Bo Wang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yunfan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Bo Dai
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yongfeng Fu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, 131 Dongan Road, Shanghai 200032, China
| | - Yule Zhang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuwen Wang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhijin Yang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zhen Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 300, Jungong Road, Shanghai 200090, China
| | - Songlin Zhuang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Dawei Zhang
- University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
15
|
Fitzgerald AA, Li E, Weiner LM. 3D Culture Systems for Exploring Cancer Immunology. Cancers (Basel) 2020; 13:cancers13010056. [PMID: 33379189 PMCID: PMC7795162 DOI: 10.3390/cancers13010056] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary To study any disease, researchers need convenient and relevant disease models. In cancer, the most commonly used models are two-dimensional (2D) culture models, which grow cells on hard, rigid, plastic surfaces, and mouse models. Cancer immunology is especially difficult to model because the immune system is exceedingly complex; it contains multiple types of cells, and each cell type has several subtypes and a spectrum of activation states. These many immune cell types interact with cancer cells and other components of the tumor, ultimately influencing disease outcomes. 2D culture methods fail to recapitulate these complex cellular interactions. Mouse models also suffer because the murine and human immune systems vary significantly. Three-dimensional (3D) culture systems therefore provide an alternative method to study cancer immunology and can fill the current gaps in available models. This review will describe common 3D culture models and how those models have been used to advance our understanding of cancer immunology. Abstract Cancer immunotherapy has revolutionized cancer treatment, spurring extensive investigation into cancer immunology and how to exploit this biology for therapeutic benefit. Current methods to investigate cancer-immune cell interactions and develop novel drug therapies rely on either two-dimensional (2D) culture systems or murine models. However, three-dimensional (3D) culture systems provide a potentially superior alternative model to both 2D and murine approaches. As opposed to 2D models, 3D models are more physiologically relevant and better replicate tumor complexities. Compared to murine models, 3D models are cheaper, faster, and can study the human immune system. In this review, we discuss the most common 3D culture systems—spheroids, organoids, and microfluidic chips—and detail how these systems have advanced our understanding of cancer immunology.
Collapse
|
16
|
Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes. Nat Protoc 2020; 16:937-964. [PMID: 33318693 DOI: 10.1038/s41596-020-00442-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Microtissues with specific structures and integrated vessels play a key role in maintaining organ functions. To recapitulate the in vivo environment for tissue engineering and organ-on-a-chip purposes, it is essential to develop perfusable biomimetic microscaffolds. We developed facile all-aqueous microfluidic approaches for producing perfusable hydrogel microtubes with diverse biomimetic sizes and shapes. Here, we provide a detailed protocol describing the construction of the microtube spinning platforms, the assembly of microfluidic devices, and the fabrication and characterization of various perfusable hydrogel microtubes. The hydrogel microtubes can be continuously generated from microfluidic devices due to the crosslinking of alginate by calcium in the coaxial flows and collecting bath. Owing to the mild all-aqueous spinning process, cells can be loaded into the alginate prepolymer for microtube spinning, which enables the direct production of cell-laden hydrogel microtubes. By manipulating the fluid dynamics at the microscale, the composable microfluidic devices and platforms can be used for the facile generation of six types of biomimetic perfusable microtubes. The microfluidic platforms and devices can be set up within 3 h from commonly available and inexpensive materials. After 10-20 min required to adjust the platform and fluids, perfusable hydrogel microtubes can be generated continuously. We describe how to characterize the microtubes using scanning electron or confocal microscopy. As an example application, we describe how the microtubes can be used for the preparation of a vascular lumen and how to perform barrier permeability tests of the vascular lumen.
Collapse
|
17
|
Yáñez Feliú G, Vidal G, Muñoz Silva M, Rudge TJ. Novel Tunable Spatio-Temporal Patterns From a Simple Genetic Oscillator Circuit. Front Bioeng Biotechnol 2020; 8:893. [PMID: 33014996 PMCID: PMC7509427 DOI: 10.3389/fbioe.2020.00893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Multicellularity, the coordinated collective behavior of cell populations, gives rise to the emergence of self-organized phenomena at many different spatio-temporal scales. At the genetic scale, oscillators are ubiquitous in regulation of multicellular systems, including during their development and regeneration. Synthetic biologists have successfully created simple synthetic genetic circuits that produce oscillations in single cells. Studying and engineering synthetic oscillators in a multicellular chassis can therefore give us valuable insights into how simple genetic circuits can encode complex multicellular behaviors at different scales. Here we develop a study of the coupling between the repressilator synthetic genetic ring oscillator and constraints on cell growth in colonies. We show in silico how mechanical constraints generate characteristic patterns of growth rate inhomogeneity in growing cell colonies. Next, we develop a simple one-dimensional model which predicts that coupling the repressilator to this pattern of growth rate via protein dilution generates traveling waves of gene expression. We show that the dynamics of these spatio-temporal patterns are determined by two parameters; the protein degradation and maximum expression rates of the repressors. We derive simple relations between these parameters and the key characteristics of the traveling wave patterns: firstly, wave speed is determined by protein degradation and secondly, wavelength is determined by maximum gene expression rate. Our analytical predictions and numerical results were in close quantitative agreement with detailed individual based simulations of growing cell colonies. Confirming published experimental results we also found that static ring patterns occur when protein stability is high. Our results show that this pattern can be induced simply by growth rate dilution and does not require transition to stationary phase as previously suggested. Our method generalizes easily to other genetic circuit architectures thus providing a framework for multi-scale rational design of spatio-temporal patterns from genetic circuits. We use this method to generate testable predictions for the synthetic biology design-build-test-learn cycle.
Collapse
Affiliation(s)
- Guillermo Yáñez Feliú
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Vidal
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Muñoz Silva
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Timothy J. Rudge
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Metabolic Switching of Tumor Cells under Hypoxic Conditions in a Tumor-on-a-chip Model. MICROMACHINES 2020; 11:mi11040382. [PMID: 32260396 PMCID: PMC7231186 DOI: 10.3390/mi11040382] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
Abstract
Hypoxia switches the metabolism of tumor cells and induces drug resistance. Currently, no therapeutic exists that effectively and specifically targets hypoxic cells in tumors. Development of such therapeutics critically depends on the availability of in vitro models that accurately recapitulate hypoxia as found in the tumor microenvironment. Here, we report on the design and validation of an easy-to-fabricate tumor-on-a-chip microfluidic platform that robustly emulates the hypoxic tumor microenvironment. The tumor-on-a-chip model consists of a central chamber for 3D tumor cell culture and two side channels for medium perfusion. The microfluidic device is fabricated from polydimethylsiloxane (PDMS), and oxygen diffusion in the device is blocked by an embedded sheet of polymethyl methacrylate (PMMA). Hypoxia was confirmed using oxygen-sensitive probes and the effect on the 3D tumor cell culture investigated by a pH-sensitive dual-labeled fluorescent dextran and a fluorescently labeled glucose analogue. In contrast to control devices without PMMA, PMMA-containing devices gave rise to decreases in oxygen and pH levels as well as an increased consumption of glucose after two days of culture, indicating a rapid metabolic switch of the tumor cells under hypoxic conditions towards increased glycolysis. This platform will open new avenues for testing anti-cancer therapies targeting hypoxic areas.
Collapse
|
19
|
Xie R, Zheng W, Guan L, Ai Y, Liang Q. Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902838. [PMID: 31559675 DOI: 10.1002/smll.201902838] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/06/2019] [Indexed: 05/23/2023]
Abstract
Vascular systems are responsible for various physiological and pathological processes related to all organs in vivo, and the survival of engineered tissues for enough nutrient supply in vitro. Thus, biomimetic vascularization is highly needed for constructing both a biomimetic organ model and a reliable engineered tissue. However, many challenges remain in constructing vascularized tissues, requiring the combination of suitable biomaterials and engineering techniques. In this review, the advantages of hydrogels on building engineered vascularized tissues are discussed and recent engineering techniques for building perfusable microchannels in hydrogels are summarized, including micromolding, 3D printing, and microfluidic spinning. Furthermore, the applications of these perfusable hydrogels in manufacturing organ-on-a-chip devices and transplantable engineered tissues are highlighted. Finally, current challenges in recapitulating the complexity of native vascular systems are discussed and future development of vascularized tissues is prospected.
Collapse
Affiliation(s)
- Ruoxiao Xie
- MOE Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenchen Zheng
- MOE Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liandi Guan
- MOE Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yongjian Ai
- MOE Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qionglin Liang
- MOE Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Wan L, Neumann CA, LeDuc PR. Tumor-on-a-chip for integrating a 3D tumor microenvironment: chemical and mechanical factors. LAB ON A CHIP 2020; 20:873-888. [PMID: 32025687 PMCID: PMC7067141 DOI: 10.1039/c9lc00550a] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tumor progression, including metastasis, is significantly influenced by factors in the tumor microenvironment (TME) such as mechanical force, shear stress, chemotaxis, and hypoxia. At present, most cancer studies investigate tumor metastasis by conventional cell culture methods and animal models, which are limited in data interpretation. Although patient tissue analysis, such as human patient-derived xenografts (PDX), can provide important clinical relevant information, they may not be feasible for functional studies as they are costly and time-consuming. Thus, in vitro three-dimensional (3D) models are rapidly being developed that mimic TME and allow functional investigations of metastatic mechanisms and drug responses. One of those new 3D models is tumor-on-a-chip technology that provides a powerful in vitro platform for cancer research, with the ability to mimic the complex physiological architecture and precise spatiotemporal control. Tumor-on-a-chip technology can provide integrated features including 3D scaffolding, multicellular culture, and a vasculature system to simulate dynamic flow in vivo. Here, we review a select set of recent achievements in tumor-on-a-chip approaches and present potential directions for tumor-on-a-chip systems in the future for areas including mechanical and chemical mimetic systems. We also discuss challenges and perspectives in both biological factors and engineering methods for tumor-on-a-chip progress. These approaches will allow in the future for the tumor-on-a-chip systems to test therapeutic approaches for individuals through using their cancerous cells gathered through approaches like biopsies, which then will contribute toward personalized medicine treatments for improving their outcomes.
Collapse
Affiliation(s)
- L Wan
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213 US.
| | - C A Neumann
- Department of Pharmacology & Chemical Biology, University of Pittsburgh Medical Center Hillman Cancer Center, Magee Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA, 15213 US.
| | - P R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213 US.
| |
Collapse
|
21
|
SUN W, CHEN YQ, WANG MF, WANG YR, ZHANG M, ZHANG HY, HU P. Study on Drug Resistance to Tumor Cell in Oxygen Gradient and Co-culture Microfluidic Chip. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(19)61214-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Enhancing Neurogenesis of Neural Stem Cells Using Homogeneous Nanohole Pattern-Modified Conductive Platform. Int J Mol Sci 2019; 21:ijms21010191. [PMID: 31888101 PMCID: PMC6981825 DOI: 10.3390/ijms21010191] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Biocompatible platforms, wherein cells attach and grow, are important for controlling cytoskeletal dynamics and steering stem cell functions, including differentiation. Among various components, membrane integrins play a key role in focal adhesion of cells (18-20 nm in size) and are, thus, highly sensitive to the nanotopographical features of underlying substrates. Hence, it is necessary to develop a platform/technique that can provide high flexibility in controlling nanostructure sizes. We report a platform modified with homogeneous nanohole patterns, effective in guiding neurogenesis of mouse neural stem cells (mNSCs). Sizes of nanoholes were easily generated and varied using laser interference lithography (LIL), by changing the incident angles of light interference on substrates. Among three different nanohole patterns fabricated on conductive transparent electrodes, 500 nm-sized nanoholes showed the best performance for cell adhesion and spreading, based on F-actin and lamellipodia/filopodia expression. Enhanced biocompatibility and cell adhesion of these nanohole patterns ultimately resulted in the enhanced neurogenesis of mNSCs, based on the mRNAs expression level of the mNSCs marker and several neuronal markers. Therefore, platforms modified with homogeneous nanohole patterns fabricated by LIL are promising for the precise tuning of nanostructures in tissue culture platforms and useful for controlling various differentiation lineages of stem cells.
Collapse
|
23
|
An S, Han SY, Cho SW. Hydrogel-integrated Microfluidic Systems for Advanced Stem Cell Engineering. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3402-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
A Matrix Metalloproteinase Sensing Biosensor for the Evaluation of Chronic Wounds. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3403-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Ai Y, Zhang F, Wang C, Xie R, Liang Q. Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Parittotokkaporn S, Dravid A, Bansal M, Aqrawe Z, Svirskis D, Suresh V, O’Carroll SJ. Make it simple: long-term stable gradient generation in a microfluidic microdevice. Biomed Microdevices 2019; 21:77. [DOI: 10.1007/s10544-019-0427-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Oh HJ, Kim J, Park H, Chung S, Hwang DW, Lee DS. Graphene-oxide quenching-based molecular beacon imaging of exosome-mediated transfer of neurogenic miR-193a on microfluidic platform. Biosens Bioelectron 2019; 126:647-656. [DOI: 10.1016/j.bios.2018.11.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 11/18/2018] [Indexed: 01/10/2023]
|
28
|
Sun W, Chen Y, Wang Y, Luo P, Zhang M, Zhang H, Hu P. Interaction study of cancer cells and fibroblasts on a spatially confined oxygen gradient microfluidic chip to investigate the tumor microenvironment. Analyst 2019; 143:5431-5437. [PMID: 30311621 DOI: 10.1039/c8an01216d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper reports a single-layered microfluidic device for studying the interaction of cancer cells and fibroblasts in an oxygen gradient. This gradient can be established from 1.9% to 18.8% using a spatially confined oxygen scavenging chemical reaction. Due to the spatial design of the chip, only cancer cells can sustain low oxygen conditions when co-cultured with fibroblasts in the adjacent channels, simulating the cell-cell interactions of the hypoxic cancer cells and the surrounding fibroblasts in tumor microenvironment in vivo. Moreover, a cell migration assay is performed on the chip for studying the tumor invasion ability. The results show that the migration speed of B16 cells is increased by hypoxia and the co-culture with L929 cells. In addition, we use ELISA to quantify the migration-related cytokines transforming growth factor-β1 (TGF-β1) in the microfluidic system. Our results confirm interaction between cancer cells and fibroblasts. This microfluidic device provides new insight for the investigation of tumor microenvironment and cell interactions.
Collapse
Affiliation(s)
- Wei Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | | | | | | | | | | | | |
Collapse
|