1
|
Unalan-Altintop T, Arikan-Akdagli S. Fungal Nomenclature: One Fungus, One Name? Infect Dis Clin North Am 2024:S0891-5520(24)00080-1. [PMID: 39701895 DOI: 10.1016/j.idc.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Fungal nomenclature has been subject to change for many years and will probably continue to evolve and change in the future. One Fungus One Name principle guided the mycologists to reach a consensus on a single name. The change is inevitable in science; however, it comes with several challenges particularly in routine mycology laboratory practice and patient care, creating further difficulties and resistance to change. To overcome these challenges, the reason for change should be clear and made available on a publicly accessible source. Here, the changes of names in medically important fungi and the rationale behind are summarized.
Collapse
Affiliation(s)
- Tugce Unalan-Altintop
- Hacettepe University Medical School, Department of Medical Microbiology, Altindag, Ankara, 06100, Turkey
| | - Sevtap Arikan-Akdagli
- Hacettepe University Medical School, Department of Medical Microbiology, Altindag, Ankara, 06100, Turkey.
| |
Collapse
|
2
|
Chowdhary A, Jofre GI, Singh A, Dagilis AJ, Sepúlveda VE, McClure AT, Matute DR. Autochthonous Blastomyces dermatitidis, India. Emerg Infect Dis 2024; 30:2577-2582. [PMID: 39592392 PMCID: PMC11616655 DOI: 10.3201/eid3012.240830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
Blastomyces spp. fungi, the causal agent of blastomycosis, are common in North America but do occur in other areas of the world. The most prevalent pathogen in the genus is B. dermatitidis. Most B. dermatitidis isolates originate from North America, but there are sporadic reports of B. dermatitidis recovery from Africa and Asia. High-quality reports that incorporate genetic information about the fungus outside North America have been rare. Genome sequencing of 3 fungal isolates from patients in India with chronic respiratory diseases revealed that the isolates belong to a genetically differentiated lineage of B. dermatitidis. Because the patients had no history of traveling outside of Asia, blastomycosis was most likely autochthonously acquired, which suggests a local population of B. dermatitidis. Our results suggest the endemic range of B. dermatitidis is larger than previously thought, calling for a reassessment of the geographic range of different agents of endemic mycoses.
Collapse
|
3
|
Zhu HH, Liu MM, Boekhout T, Wang QM. Improvement of a MALDI-TOF database for the reliable identification of Candidozyma auris (formally Candida auris) and related species. Microbiol Spectr 2024:e0144424. [PMID: 39560426 DOI: 10.1128/spectrum.01444-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/26/2024] [Indexed: 11/20/2024] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a promising technique for the rapid identification microorganisms. The aim of this study was to create a new database for the accurate identification of Candidozyma auris (formerly known as Candida auris) and 11 species of the Candidozyma haemuli species complex, including C. chanthaburiensis, C. duobushaemuli, C. haemuli, C. heveicola, C. khanbhai, C. konsanensis, C. metrosideri, C. ohialehuae, C. pseudohaemuli, C. ruelliae, and C. vulturna. Seventy-one Candidozyma isolates from different national institutions were studied. Thirty-seven strains were used to create a MALDI-TOF (microTyper MS) database using the formic acid extraction method. The validation of this database was performed with 34 other strains of the genus Candidozyma, and the result was compared with the identification results when using DBRs v1.0.0.4 (Tianrui, China). Our library allowed a 100% identification of the evaluated strains with all strains showing log scores of >2.0. Repeatability and reproducibility tests result showed a coefficient of variation of the log score values of less than 5%. The MALDI-TOF MS system can identify C. auris and related species quickly and accurately. This method will play a crucial role in accurately diagnosing infectious agents of the genus Candidozyma in clinical practice. IMPORTANCE Importance Candidozyma auris, also known as Candida auris, has quickly spread across the world, and prompt identification of C. auris from infected individuals is critical. However, a standard identification method is lacking for the identification of C. auris in clinical and public health laboratories. To make matters worse, its biochemical assimilation profile was found to be similar to that of closely related and even no-related species, leading to frequent misidentification. To improve diagnostics of this and closely related species, we created a database of reference mass spectra resulting in the efficient and correct identification of all Candidozyma species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Moreover, potential pathogenic species of Candidozyma can be effectively identified by MALDI-TOF MS, and differentiated from non-clinically relevant phylogenetic relatives. Thus, MALDI-TOF MS may help expedite laboratory diagnosis and treatment of C. auris and related species of clinical importance and help the clinician to decide on early treatment.
Collapse
Affiliation(s)
- Hui-Hui Zhu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Miao-Miao Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Teun Boekhout
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - Qi-Ming Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, Hebei, China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding, Hebei, China
| |
Collapse
|
4
|
Lino R, Guimarães AR, Sousa E, Azevedo M, Santos L. Emerging Fungal Infections of the Central Nervous System in the Past Decade: A Literature Review. Infect Dis Rep 2024; 16:952-976. [PMID: 39452161 PMCID: PMC11507179 DOI: 10.3390/idr16050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Invasive fungal infections affecting the central nervous system (CNS) are a major health concern worldwide associated with high mortality rates. Their increased incidence is largely due to an increase in the vulnerable immunocompromised population, changing environmental factors, and development of more accurate diagnostic methods. The aim of this article is to identify fungal causes of CNS infections that are recently emerging or have the potential to become emerging pathogens in the near future, as well as their clinical characteristics, including: Candida auris, Trichosporon spp., Blastomyces spp., Sporothrix spp., Talaromyces marneffei, Lomentospora prolificans, and Scedosporium spp. METHODS A review of the literature in PubMed in the last ten years was conducted to identify central nervous system infections caused by each of these fungi. RESULTS The review identified 10 cases caused by C. auris, 5 cases by Trichosporon spp., 82 cases by Blastomyces spp., 36 cases by Sporothrix spp., 21 cases by T. marneffei, 22 cases by Lomentospora prolificans, and 42 cases by Scedosporium spp. DISCUSSION The exact burden of these diseases remains difficult to ascertain, but their apparent rise underscores the urgent need for improved diagnostic, treatment, and management strategies against CNS fungal pathogens to improve outcomes against these life-threatening infections.
Collapse
Affiliation(s)
- Rita Lino
- Infectious Diseases Department, Hospital de São João—Unidade Local de Saúde São João, 4200-319 Porto, Portugal; (A.R.G.); (E.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - André Rodrigues Guimarães
- Infectious Diseases Department, Hospital de São João—Unidade Local de Saúde São João, 4200-319 Porto, Portugal; (A.R.G.); (E.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Estela Sousa
- Infectious Diseases Department, Hospital de São João—Unidade Local de Saúde São João, 4200-319 Porto, Portugal; (A.R.G.); (E.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Mariana Azevedo
- Infectious Diseases Department, Hospital de São João—Unidade Local de Saúde São João, 4200-319 Porto, Portugal; (A.R.G.); (E.S.); (M.A.); (L.S.)
| | - Lurdes Santos
- Infectious Diseases Department, Hospital de São João—Unidade Local de Saúde São João, 4200-319 Porto, Portugal; (A.R.G.); (E.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), 4051 Basel, Switzerland
- ESCMID Study Group for Infections in Compromised Hosts (ESGICH), 4051 Basel, Switzerland
| |
Collapse
|
5
|
de la Peña-Camacho F, González-Chávez HE, Arrazola KS, Reyes-Ferreira E, Lugo-Rincon Gallardo FJ. Coinfection of Pulmonary Blastomycosis and Tuberculosis in an Immunosuppressed Patient: A Challenging Clinical Case. Cureus 2024; 16:e71729. [PMID: 39553077 PMCID: PMC11568884 DOI: 10.7759/cureus.71729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Fungal and tuberculosis lung infections are considered differential diagnoses due to their clinical and radiological similarities, but they are not mutually exclusive. In rare cases, both entities may manifest in patients with immunosuppression, which is an indicator of high mortality. This is predominantly due to the low level of suspicion, which consequently results in a delay in treatment and thus represents a significant diagnostic challenge. This article describes the clinical evolution of an immunosuppressed patient with co-infection of pulmonary blastomycosis and tuberculosis to emphasize the importance of recognizing these associations in daily practice.
Collapse
Affiliation(s)
- Francisco de la Peña-Camacho
- Internal Medicine, General Hospital of the Institute of Social Security and Services for State Workers, Queretaro, MEX
| | - Hugo E González-Chávez
- Internal Medicine, General Hospital of the Institute of Social Security and Services for State Workers, Queretaro, MEX
| | - Karen S Arrazola
- Internal Medicine, General Hospital of the Institute of Social Security and Services for State Workers, Queretaro, MEX
| | - Emmanuel Reyes-Ferreira
- Internal Medicine, General Hospital of the Institute of Social Security and Services for State Workers, Queretaro, MEX
| | | |
Collapse
|
6
|
Jofre GI, Dagilis AJ, Sepúlveda VE, Anspach T, Singh A, Chowdhary A, Matute DR. Admixture in the fungal pathogen Blastomyces. Genetics 2024; 228:iyae155. [PMID: 39315610 PMCID: PMC11631411 DOI: 10.1093/genetics/iyae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024] Open
Abstract
Blastomyces is an emerging primary fungal pathogen that affects patients worldwide. The evolutionary processes that have resulted in the current diversity in the genus remain largely unexplored. We used whole genome sequences from 99 Blastomyces isolates, including two sequenced in this study using long-read technologies, to infer the phylogenetic relationships between Blastomyces species. We find that five different methods infer five different phylogenetic trees. Additionally, we find gene tree discordance along the genome with differences in the relative phylogenetic placement of several species of Blastomyces, which we hypothesize is caused by introgression. Our results suggest the urgent need to systematically collect Blastomyces samples around the world and study the evolutionary processes that govern intra- and interspecific variation in these medically important fungi.
Collapse
Affiliation(s)
- Gaston I Jofre
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrius J Dagilis
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Ecology, Evolution and Behavior, University of Connecticut, Storrs, CT 06269, USA
| | | | - Tayte Anspach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ashutosh Singh
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110021, India
| | - Anuradha Chowdhary
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110021, India
| | - Daniel R Matute
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
de Hoog S, Tang C, Zhou X, Jacomel B, Lustosa B, Song Y, Kandemir H, A Ahmed S, Zhou S, Belmonte-Lopes R, Quan Y, Feng P, A Vicente V, Kang Y. Fungal primary and opportunistic pathogens: an ecological perspective. FEMS Microbiol Rev 2024; 48:fuae022. [PMID: 39118380 PMCID: PMC11409879 DOI: 10.1093/femsre/fuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/02/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024] Open
Abstract
Fungal primary pathogenicity on vertebrates is here described as a deliberate strategy where the host plays a role in increasing the species' fitness. Opportunism is defined as the coincidental survival of an individual strain in host tissue using properties that are designed for life in an entirely different habitat. In that case, the host's infection control is largely based on innate immunity, and the etiologic agent is not transmitted after infection, and thus fungal evolution is not possible. Primary pathogens encompass two types, depending on their mode of transmission. Environmental pathogens have a double life cycle, and tend to become enzootic, adapted to a preferred host in a particular habitat. In contrast, pathogens that have a host-to-host transmission pattern are prone to shift to a neighboring, immunologically naive host, potentially leading to epidemics. Beyond these prototypical life cycles, some environmental fungi are able to make large leaps between dissimilar hosts/habitats, probably due to the similarity of key factors enabling survival in an entirely different niche, and thus allowing a change from opportunistic to primary pathogenicity. Mostly, such factors seem to be associated with extremotolerance.
Collapse
Affiliation(s)
- Sybren de Hoog
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Department of Medical Microbiology, Radboud University of Nijmegen, 6525AJ Nijmegen, The Netherlands
| | - Chao Tang
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Xin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Bruna Jacomel
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Canisius Wilhelmina Hospital, 6532SZ Nijmegen, The Netherlands
| | - Bruno Lustosa
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital,100034 Beijing, China
| | - Hazal Kandemir
- Westerdijk Fungal Biodiversity Center, 3584CT Utrecht, The Netherlands
| | - Sarah A Ahmed
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Shaoqin Zhou
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| | - Ricardo Belmonte-Lopes
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yu Quan
- RadboudUMC-CWZ Centre of Expertise for Mycology, 6525GA Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, 1214GP Hilversum, The Netherlands
| | - Peiying Feng
- Third Affiliated Hospital of Sun Yat-sen University, 510630 Guangzhou, China
| | - Vania A Vicente
- Postgraduate Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, 81531-980 Curitiba, Brazil
- Postgraduate Program in Engineering Bioprocess and Biotechnology, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, 81531-980 Curitiba, Brazil
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, 561113 Guiyang, China
| |
Collapse
|
8
|
Kundu R, Bansal Y, Singla N. The Zoonotic Potential of Fungal Pathogens: Another Dimension of the One Health Approach. Diagnostics (Basel) 2024; 14:2050. [PMID: 39335729 PMCID: PMC11431391 DOI: 10.3390/diagnostics14182050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Zoonotic diseases are caused by viruses, bacteria, fungi and parasites and they comprise about 75% of all emerging infectious diseases. These can be transmitted via the direct (scratches on skin or animal bites) or indirect mode (through environmental shedding of infectious agent by the infected animal) of transmission. Environmental changes, whether in the form of urbanization, industrialization or destruction of wildlife habitats, lead to more human invasion in wildlife areas, subsequently leading to an increased passage of animals towards human dwellings and more exposure to animals, making humans susceptible to these infections. Climate change is another major factor. Global warming and the evolving thermotolerance of fungi, adapting more to human body temperature than their saprophytic nature, is leading to the emergence of humans as new hosts for fungi. The domestication of animals, rising populations, enhanced tourism, migratory populations, intrusions into wildlife, etc., are other known factors. Zoonotic fungal infections have long been neglected and are now gaining due attention. In this review, we briefly discuss the various aspects currently known for zoonotic fungal infections and bring forth the importance of this particular issue to be addressed in a timely manner.
Collapse
Affiliation(s)
- Reetu Kundu
- Department of Cytology and Gynecological Pathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India;
| | - Yashik Bansal
- Department of Microbiology, MM College of Medical Sciences and Research, Sadopur, Ambala 134007, India;
| | - Nidhi Singla
- Department of Microbiology, Government Medical College Hospital, Chandigarh 160030, India
| |
Collapse
|
9
|
García-Martín JM, Muro A, Fernández-Soto P. Diagnosis of Human Endemic Mycoses Caused by Thermally Dimorphic Fungi: From Classical to Molecular Methods. J Fungi (Basel) 2024; 10:637. [PMID: 39330397 PMCID: PMC11432851 DOI: 10.3390/jof10090637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Human endemic mycoses are potentially fatal diseases caused by a diverse group of fungi that can alter their morphology in response to an increase in temperature. These thermally dimorphic fungi affect both healthy and immunocompromised hosts, causing a substantial health and economic burden. Despite this, the diagnosis of endemic mycoses is still a formidable challenge for several reasons, including similar symptomatology, limited utility of classical diagnostic methods, inaccessibility to reliable molecular approaches in most endemic areas, and a lack of clinical suspicion out of these regions. This review summarizes essential knowledge on thermally dimorphic fungi and the life-threatening diseases they cause. The principle, advantages and limitations of the methods traditionally used for their diagnosis are also described, along with the application status and future directions for the development of alternative diagnostic strategies, which could help to reduce the disease burden in endemic areas.
Collapse
Affiliation(s)
- Joaquina María García-Martín
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (A.M.); (P.F.-S.)
| | | | | |
Collapse
|
10
|
Li N, Bowling J, de Hoog S, Aneke CI, Youn JH, Shahegh S, Cuellar-Rodriguez J, Kanakry CG, Rodriguez Pena M, Ahmed SA, Al-Hatmi AMS, Tolooe A, Walther G, Kwon-Chung KJ, Kang Y, Lee HB, Seyedmousavi A. Mucor germinans, a novel dimorphic species resembling Paracoccidioides in a clinical sample: questions on ecological strategy. mBio 2024; 15:e0014424. [PMID: 38953355 PMCID: PMC11323738 DOI: 10.1128/mbio.00144-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024] Open
Abstract
Dimorphism is known among the etiologic agents of endemic mycoses as well as in filamentous Mucorales. Under appropriate thermal conditions, mononuclear yeast forms alternate with multi-nucleate hyphae. Here, we describe a dimorphic mucoralean fungus obtained from the sputum of a patient with Burkitt lymphoma and ongoing graft-versus-host reactions. The fungus is described as Mucor germinans sp. nov. Laboratory studies were performed to simulate temperature-dependent dimorphism, with two environmental strains Mucor circinelloides and Mucor kunryangriensis as controls. Both strains could be induced to form multinucleate arthrospores and subsequent yeast-like cells in vitro. Multilateral yeast cells emerge in all three Mucor species at elevated temperatures. This morphological transformation appears to occur at body temperature since the yeast-like cells were observed in the lungs of our immunocompromised patient. The microscopic appearance of the yeast-like cells in the clinical samples is easily confused with that of Paracoccidioides. The ecological role of yeast forms in Mucorales is discussed.IMPORTANCEMucormycosis is a devastating disease with high morbidity and mortality in susceptible patients. Accurate diagnosis is required for timely clinical management since antifungal susceptibility differs between species. Irregular hyphal elements are usually taken as the hallmark of mucormycosis, but here, we show that some species may also produce yeast-like cells, potentially being mistaken for Candida or Paracoccidioides. We demonstrate that the dimorphic transition is common in Mucor species and can be driven by many factors. The multi-nucleate yeast-like cells provide an effective parameter to distinguish mucoralean infections from similar yeast-like species in clinical samples.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- RadboudUMC-CWZ Center for Expertise in Mycology, Nijmegen, the Netherlands
| | - Jennifer Bowling
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sybren de Hoog
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- RadboudUMC-CWZ Center for Expertise in Mycology, Nijmegen, the Netherlands
| | - Chioma I. Aneke
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jung-Ho Youn
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Sherin Shahegh
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Cuellar-Rodriguez
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher G. Kanakry
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Rodriguez Pena
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah A. Ahmed
- RadboudUMC-CWZ Center for Expertise in Mycology, Nijmegen, the Netherlands
| | | | - Ali Tolooe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Vet Veterinary Diagnostic Laboratory, Tehran, Iran
| | - Grit Walther
- German National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Kyung J. Kwon-Chung
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Institution of One Health Research, Guizhou Medical University, Guiyang, China.
| | - Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Amir Seyedmousavi
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Krückemeier S, Ramon M, Vidal E, Martino L, Burgaya J, Ribas MP, Dias-Alves A, Lobato-Bailón L, Pérez de Val B, Cabezón O, Espunyes J. Adiaspiromycoses in Wild Rodents from the Pyrenees, Northeastern Spain. J Wildl Dis 2024; 60:526-530. [PMID: 38264856 DOI: 10.7589/jwd-d-23-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
Adiaspiromycosis is a nontransmissible infectious pulmonary disease caused by the inhalation of propagules from fungal species belonging to the family Ajellomicetaceae, especially Emergomyces crescens. Adiaspiromycosis caused by E. crescens has been recorded in a broad number of species worldwide, with small burrowing mammals being considered the main hosts for this environmental pathogen. Only a handful of studies on adiaspiromycosis in European wildlife has been published to date. We assessed the occurrence of adiaspiromycosis in wild rodents (Murinae and Arvicolinae) from the central Spanish Pyrenees (NE Spain). The lungs of 302 mice and 46 voles were screened for the presence of adiaspores through histopathologic examination. Pulmonary adiaspiromycosis was recorded in 21.6% of all individuals (75/348), corresponding to 63/299 wood mice (Apodemus sylvaticus) and 12/40 bank voles (Myodes glareolus). Adiaspore burden varied highly between animals, with a mean of 0.19 spores/mm2 and a percentage of affected lung tissue ranging from <0.01% to >8%. These results show that the infection is present in wild rodents from the central Spanish Pyrenees. Although the impact of this infection on nonendangered species is potentially mild, it might contribute to genetic diversity loss in endangered species.
Collapse
Affiliation(s)
- Simon Krückemeier
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Edifici V, Travessera dels turons s/n, Bellaterra 08193, Spain
| | - Marc Ramon
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Edifici V, Travessera dels turons s/n, Bellaterra 08193, Spain
| | - Enric Vidal
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Edifici CReSA, Bellaterra 08193, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Laura Martino
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Edifici CReSA, Bellaterra 08193, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Judit Burgaya
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Edifici CReSA, Bellaterra 08193, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Maria Puig Ribas
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Edifici V, Travessera dels turons s/n, Bellaterra 08193, Spain
| | - Andrea Dias-Alves
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Edifici V, Travessera dels turons s/n, Bellaterra 08193, Spain
| | - Lourdes Lobato-Bailón
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Edifici V, Travessera dels turons s/n, Bellaterra 08193, Spain
| | - Bernat Pérez de Val
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Edifici CReSA, Bellaterra 08193, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Oscar Cabezón
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Edifici V, Travessera dels turons s/n, Bellaterra 08193, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Johan Espunyes
- Wildlife Conservation Medicine Research Group (WildCoM), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Edifici V, Travessera dels turons s/n, Bellaterra 08193, Spain
| |
Collapse
|
12
|
Höft MA, Duvenage L, Salie S, Keeton R, Botha A, Schwartz IS, Govender NP, Brown GD, Hoving JC. The pathogenesis of experimental Emergomycosis in mice. PLoS Negl Trop Dis 2024; 18:e0011850. [PMID: 38198478 PMCID: PMC10805315 DOI: 10.1371/journal.pntd.0011850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/23/2024] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
Emergomyces africanus is a recently identified thermally-dimorphic fungal pathogen that causes disseminated infection in people living with advanced HIV disease. Known as emergomycosis, this disseminated disease is associated with very high case fatality rates. Over the last decade, improved diagnostics and fungal identification in South Africa resulted in a dramatic increase in the number of reported cases. Although the true burden of disease is still unknown, emergomycosis is among the most frequently diagnosed dimorphic fungal infections in Southern Africa; and additional species in the genus have been identified on four continents. Little is known about the pathogenesis and the host's immune response to this emerging pathogen. Therefore, we established a murine model of pulmonary infection using a clinical isolate, E. africanus (CBS 136260). Both conidia and yeast forms caused pulmonary and disseminated infection in mice with organisms isolated in culture from lung, spleen, liver, and kidney. Wild-type C57BL/6 mice demonstrated a drop in body weight at two weeks post-infection, corresponding to a peak in fungal burden in the lung, spleen, liver, and kidney. An increase in pro-inflammatory cytokine production was detected in homogenized lung supernatants including IFN-γ, IL-1β, IL-6, IL12-p40 and IL-17 at three- and four-weeks post-infection. No significant differences in TNF, IL-12p70 and IL-10 were observed in wild-type mice between one and four-weeks post-infection. Rag-1-deficient mice, lacking mature T-and B-cells, had an increased fungal burden associated with reduced IFN-γ production. Together our data support a protective T-helper type-1 immune response to E. africanus infection. This may provide a possible explanation for the susceptibility of only a subset of people living with advanced HIV disease despite hypothesized widespread environmental exposure. In summary, we have established a novel murine model of E. africanus disease providing critical insights into the host immune components required for eliminating the infection.
Collapse
Affiliation(s)
- Maxine A. Höft
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lucian Duvenage
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sumayah Salie
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Roanne Keeton
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alfred Botha
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Ilan S. Schwartz
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nelesh P. Govender
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building Stocker Road, Exeter, United Kingdom
| | - Gordon D. Brown
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building Stocker Road, Exeter, United Kingdom
| | - Jennifer Claire Hoving
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building Stocker Road, Exeter, United Kingdom
| |
Collapse
|
13
|
Hoving JC. Emergomyces africanus poses an emerging threat. Nat Microbiol 2024; 9:4-5. [PMID: 38177299 DOI: 10.1038/s41564-023-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Jennifer Claire Hoving
- CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
14
|
Borman AM, Johnson EM. Changes in fungal taxonomy: mycological rationale and clinical implications. Clin Microbiol Rev 2023; 36:e0009922. [PMID: 37930182 PMCID: PMC10732072 DOI: 10.1128/cmr.00099-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 11/07/2023] Open
Abstract
Numerous fungal species of medical importance have been recently subjected to and will likely continue to undergo nomenclatural changes as a result of the application of molecular approaches to fungal classification together with abandonment of dual nomenclature. Here, we summarize those changes affecting key groups of fungi of medical importance, explaining the mycological (taxonomic) rationale that underpinned the changes and the clinical relevance/importance (where such exists) of the key nomenclatural revisions. Potential mechanisms to mitigate unnecessary taxonomic instability are suggested, together with approaches to raise awareness of important changes to minimize potential clinical confusion.
Collapse
Affiliation(s)
- Andrew M. Borman
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| | - Elizabeth M. Johnson
- UK HSA National Mycology Reference Laboratory, Science Quarter, Southmead Hospital, Bristol, United Kingdom
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, United Kingdom
| |
Collapse
|
15
|
Torres-Garcia D, Gené J, García D, Cano-Lira JF. Insights into Some Onygenalean Fungi from Freshwater Sediments in Spain and Description of Novel Taxa. J Fungi (Basel) 2023; 9:1129. [PMID: 38132730 PMCID: PMC10744713 DOI: 10.3390/jof9121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
During the course of a project investigating culturable Ascomycota diversity from freshwater sediments in Spain, we isolated 63 strains of cycloheximide-resistant fungi belonging to the order Onygenales. These well-known ascomycetes, able to infect both humans and animals, are commonly found in terrestrial habitats, colonizing keratin-rich soils or dung. Little is known about their diversity in aquatic environments. Combining morphological features and sequence analyses of the ITS and LSU regions of the nrDNA, we identified 14 species distributed in the genera Aphanoascus, Arachniotus, Arthroderma, Arthropsis, Emmonsiellopsis, Gymnoascoideus, Leucothecium, Malbranchea, and Myriodontium. Furthermore, three novel species for the genus Malbranchea are proposed as M. echinulata sp. nov., M. irregularis sp. nov., and M. sinuata sp. nov. The new genera Albidomyces and Neoarthropsis are introduced based on Arachniotus albicans and Arthropsis hispanica, respectively. Neoarthropsis sexualis sp. nov. is characterized and differentiated morphologically from its counterpart by the production of a sexual morph. The novel family Neoarthropsidaceae is proposed for the genera Albidomyes, Apinisia, Arachnotheca, Myriodontium, and Neoarthropsis, based on their phylogenetic relationships and phenotypic and ecological traits. Pseudoamaurascopsis gen. nov. is introduced to accommodate P. spiralis sp. nov., a fungus with unclear taxonomy related to Amaurascopsis and Polytolypa. We traced the ecology and global distribution of the novel fungi through ITS environmental sequences deposited in the GlobalFungi database. Studying the fungal diversity from freshwater sediments not only contributes to filling gaps in the relationships and taxonomy of the Ascomycota but also gives us insights into the fungal community that might represent a putative risk to the health of animals and humans inhabiting or transient in aquatic environments.
Collapse
Affiliation(s)
| | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.T.-G.); (D.G.); (J.F.C.-L.)
| | | | | |
Collapse
|
16
|
Vinayagamoorthy K, Gangavaram DR, Skiada A, Prakash H. Emergomycosis, an Emerging Thermally Dimorphic Fungal Infection: A Systematic Review. J Fungi (Basel) 2023; 9:1039. [PMID: 37888295 PMCID: PMC10607913 DOI: 10.3390/jof9101039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Emergomycosis is an endemic mycosis caused by the Emergomyces species. Infections due to this agent have been reported globally. Hence, the present systematic review on Emergomyces infections was conducted to study the disease epidemiology, underlying diseases and risk factors, causative agents, and treatment and outcome. The MEDLINE, Scopus, Embase, and Web of Science databases were searched systematically with appropriate keywords from January 1990 to October 2022. A total of 77 cases of emergomycosis were included in the analysis. Emergomycosis was most commonly seen in patients with human immunodeficiency virus (HIV) infection (n = 61, 79.2%) and HIV-uninfected patients with or without other comorbidities (n = 16, 20.8%). The underlying disease and risk factors significantly associated with emergomycosis in the HIV-infected patients were CD4+ T-cell counts less than 100 cells/mm3 (n = 55, 90.2%), anaemia (n = 30, 49.2%), and thrombocytopenia (n = 17, 27.9%), whereas in the HIV-uninfected patients, treatment with immunosuppressive drugs (n = 10, 62.5%), renal disease (n = 8, 50%), transplant recipients (n = 6, 37.5%), and diabetes mellitus (n = 4, 25%) were the significant risk factors associated with emergomycosis. Emergomyces africanus (n = 55, 71.4%) is the most common causative agent, followed by E. pasteurianus (n = 9, 11.7%) and E. canadensis (n = 5, 6.5%). E. africanus was most often isolated from HIV-infected patients (n = 54, 98.2%), whereas E. pasteurianus was most common in HIV-uninfected patients (n = 5, 55.6%). The all-cause mortality rate of the total cohort is 42.9%. No significant variation in the mortality rate is observed between the HIV-infected patients (n = 28, 36.4%) and the HIV-uninfected patients (n = 5, 6.5%). In conclusion, with an increase in the immunosuppressed population across the globe in addition to HIV infection, the case burden of emergomycosis may increase in the future. Hence, clinicians and mycologists should be vigilant and clinically suspicious of emergomycosis, which helps in early diagnosis and initiation of antifungal treatment to prevent disease mortality.
Collapse
Affiliation(s)
| | - Dinesh Reddy Gangavaram
- Department of Dermatology, Venereology and Leprosy, PES Institute of Medical Sciences & Research, Kuppam 517425, Andhra Pradesh, India;
| | - Anna Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Hariprasath Prakash
- Department of Microbiology, PES Institute of Medical Sciences & Research, Kuppam 517425, Andhra Pradesh, India
| |
Collapse
|
17
|
Laux K, Teixeira MDM, Barker B. Love in the time of climate change: A review of sexual reproduction in the order Onygenales. Fungal Genet Biol 2023; 167:103797. [PMID: 37100376 DOI: 10.1016/j.fgb.2023.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/02/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023]
Abstract
Life-threatening infections caused by fungi in the order Onygenales have been rising over the last few decades. Increasing global temperature due to anthropogenic climate change is one potential abiotic selection pressure that may explain the increase in infections. The generation of genetically novel offspring with novel phenotypes through the process of sexual recombination could allow fungi to adapt to changing climate conditions. The basic structures associated with sexual reproduction have been identified in Histoplasma, Blastomyces, Malbranchea, and Brunneospora. However, for Coccidioides and Paracoccidioides, the actual structural identification of these processes has yet to be identified despite having genetic evidence that suggests sexual recombination is occurring in these organisms. This review highlights the importance of assessing sexual recombination in the order Onygenales as a means of understanding the mechanisms these organisms might employ to enhance fitness in the face of a changing climate and provides details regarding the known reproductive mechanisms in the Onygenales.
Collapse
Affiliation(s)
- Klaire Laux
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA.
| | - Marcus de Melo Teixeira
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA; Nùcleo de Medicina Tropical, University of Brasilia, Universitário Darcy Ribeiro, s/n -Asa Norte, Brasília, DF 70910-900, Brazil
| | - Bridget Barker
- The Pathogen and Microbiome Institute, Northern Arizona University, 1395 S Knoles Dr., Bldg 56 Ste 210, Flagstaff, AZ 86011, USA.
| |
Collapse
|
18
|
Wang X, Long X, Jia S, Zhu J, Zhou Z, Ahmed S, Jiang Y, Jiang Y. In vitro and in vivo synergistic effects of hydroxychloroquine and itraconazole on Cryptococcus neoformans. Folia Microbiol (Praha) 2023:10.1007/s12223-023-01040-4. [PMID: 36753031 DOI: 10.1007/s12223-023-01040-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023]
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that can cause life-threatening invasive fungal infections. As its prevalence and drug resistance continue to rise, cryptococcosis requires new treatment options. Tapping into the potential antifungal effects of traditional drugs or combination therapy has become one of the options. This study was the first to examine the interaction of hydroxychloroquine (HCQ) and itraconazole (ITR) on Cryptococcus neoformans in vitro and in vivo. Our results showed that HCQ alone and in combination with ITR exhibited antifungal activity against C. neoformans planktonic cells. When HCQ was combined with ITR, the minimal inhibitory concentration (MIC) value of HCQ decreased to 32 μg/mL, and the MIC value of ITR decreased from 0.25 μg/mL to 0.06-0.25 μg/mL. The time-killing curve showed that the combined application of HCQ and ITR significantly shortened the killing time, dynamically defining the antifungal activity. The minimum biofilm clearance concentration (MBEC) of HCQ was only 32 μg/mL, which was significantly lower than the MIC of HCQ for planktonic cells. When combined with ITR, the MBEC of ITR decreased from 128 μg/mL to 2-1 μg/mL, and the MBEC of HCQ decreased from 32 μg/mL to 4 μg/mL, indicating a synergistic antifungal biofilm effect. In comparison to ITR alone, the combination of HCQ and ITR treatment increased the survival of C. neoformans-infected Galleria mellonella larvae and decreased the fungal burden of infected larvae. Mechanistic investigations revealed that HCQ might damage C. neoformans cell membranes, impact the structure of fungal cells, cause extracellular material leakage, and have a potent affinity for attaching to the C. neoformans genomic DNA. In conclusion, HCQ has potential clinical application in the treatment of cryptococcosis.
Collapse
Affiliation(s)
- Xue Wang
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Microbiology, Basic Medical School, Guizhou Medical University, Guiyang, China
| | - Xuemei Long
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Songgan Jia
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiali Zhu
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhan Zhou
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Sarah Ahmed
- Centre of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Yinhui Jiang
- Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yanping Jiang
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China. .,Centre of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands.
| |
Collapse
|
19
|
Dangarembizi R, Wasserman S, Hoving JC. Emerging and re-emerging fungal threats in Africa. Parasite Immunol 2023; 45:e12953. [PMID: 36175380 PMCID: PMC9892204 DOI: 10.1111/pim.12953] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 02/04/2023]
Abstract
The emergence of deadly fungal infections in Africa is primarily driven by a disproportionately high burden of human immunodeficiency virus (HIV) infections, lack of access to quality health care, and the unavailability of effective antifungal drugs. Immunocompromised people in Africa are therefore at high risk of infection from opportunistic fungal pathogens such as Cryptococcus neoformans and Pneumocystis jirovecii, which are associated with high morbidity, mortality, and related socioeconomic impacts. Other emerging fungal threats include Emergomyces spp., Histoplasma spp., Blastomyces spp., and healthcare-associated multi-drug resistant Candida auris. Socioeconomic development and the Covid-19 pandemic may influence shifts in epidemiology of invasive fungal diseases on the continent. This review discusses the epidemiology, clinical manifestations, and current management strategies available for these emerging fungal diseases in Africa. We also discuss gaps in knowledge, policy, and research to inform future efforts at managing these fungal threats.
Collapse
Affiliation(s)
- Rachael Dangarembizi
- Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa,CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Contact information of corresponding author Dr Rachael Dangarembizi, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa, Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa, CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Jennifer Claire Hoving
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa,CMM AFRICA Medical Mycology Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
20
|
Blastomycosis: A Review of Mycological and Clinical Aspects. J Fungi (Basel) 2023; 9:jof9010117. [PMID: 36675937 PMCID: PMC9863754 DOI: 10.3390/jof9010117] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Blastomycosis is caused by a thermally dimorphic fungus that thrives in moist acidic soil. Blastomyces dermatitidis is the species responsible for most infections in North America and is especially common in areas around the Great Lakes, the St. Lawrence Seaway, and in several south-central and southeastern United States. Other Blastomyces species have more recently been discovered to cause disease in distinct geographic regions around the world. Infection almost always occurs following inhalation of conidia produced in the mold phase. Acute pulmonary infection ranges from asymptomatic to typical community-acquired pneumonia; more chronic forms of pulmonary infection can present as mass-like lesions or cavitary pneumonia. Infrequently, pulmonary infection can progress to acute respiratory distress syndrome that is associated with a high mortality rate. After initial pulmonary infection, hematogenous dissemination of the yeast form of Blastomyces is common. Most often this is manifested by cutaneous lesions, but osteoarticular, genitourinary, and central nervous system (CNS) involvement also occurs. The diagnosis of blastomycosis can be made by growth of the mold phase of Blastomyces spp. in culture or by histopathological identification of the distinctive features of the yeast form in tissues. Detection of cell wall antigens of Blastomyces in urine or serum provides a rapid method for a probable diagnosis of blastomycosis, but cross-reactivity with other endemic mycoses commonly occurs. Treatment of severe pulmonary or disseminated blastomycosis and CNS blastomycosis initially is with a lipid formulation of amphotericin B. After improvement, therapy can be changed to an oral azole, almost always itraconazole. With mild to moderate pulmonary or disseminated blastomycosis, oral itraconazole treatment is recommended.
Collapse
|
21
|
Kidd SE, Abdolrasouli A, Hagen F. Fungal Nomenclature: Managing Change is the Name of the Game. Open Forum Infect Dis 2023; 10:ofac559. [PMID: 36632423 PMCID: PMC9825814 DOI: 10.1093/ofid/ofac559] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/18/2022] [Indexed: 01/09/2023] Open
Abstract
Fungal species have undergone and continue to undergo significant nomenclatural change, primarily due to the abandonment of dual species nomenclature in 2013 and the widespread application of molecular technologies in taxonomy allowing correction of past classification errors. These have effected numerous name changes concerning medically important species, but by far the group causing most concern are the Candida yeasts. Among common species, Candida krusei, Candida glabrata, Candida guilliermondii, Candida lusitaniae, and Candida rugosa have been changed to Pichia kudriavzevii, Nakaseomyces glabrata, Meyerozyma guilliermondii, Clavispora lusitaniae, and Diutina rugosa, respectively. There are currently no guidelines for microbiology laboratories on implementing changes, and there is ongoing concern that clinicians will dismiss or misinterpret laboratory reports using unfamiliar species names. Here, we have outlined the rationale for name changes across the major groups of clinically important fungi and have provided practical recommendations for managing change.
Collapse
Affiliation(s)
- Sarah E Kidd
- Correspondence: Sarah E. Kidd, BMedSc(Hons), PhD , National Mycology Reference Centre, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia ()
| | - Alireza Abdolrasouli
- Department of Medical Microbiology, King's College Hospital, London, United Kingdom,Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
22
|
Hahn RC, Hagen F, Mendes RP, Burger E, Nery AF, Siqueira NP, Guevara A, Rodrigues AM, de Camargo ZP. Paracoccidioidomycosis: Current Status and Future Trends. Clin Microbiol Rev 2022; 35:e0023321. [PMID: 36074014 PMCID: PMC9769695 DOI: 10.1128/cmr.00233-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Paracoccidioidomycosis (PCM), initially reported in 1908 in the city of São Paulo, Brazil, by Adolpho Lutz, is primarily a systemic and neglected tropical mycosis that may affect individuals with certain risk factors around Latin America, especially Brazil. Paracoccidioides brasiliensis sensu stricto, a classical thermodimorphic fungus associated with PCM, was long considered to represent a monotypic taxon. However, advances in molecular taxonomy revealed several cryptic species, including Paracoccidioides americana, P. restrepiensis, P. venezuelensis, and P. lutzii, that show a preference for skin and mucous membranes, lymph nodes, and respiratory organs but can also affect many other organs. The classical diagnosis of PCM benefits from direct microscopy culture-based, biochemical, and immunological assays in a general microbiology laboratory practice providing a generic identification of the agents. However, molecular assays should be employed to identify Paracoccidioides isolates to the species level, data that would be complemented by epidemiological investigations. From a clinical perspective, all probable and confirmed cases should be treated. The choice of treatment and its duration must be considered, along with the affected organs, process severity, history of previous treatment failure, possibility of administering oral medication, associated diseases, pregnancy, and patient compliance with the proposed treatment regimen. Nevertheless, even after appropriate treatment, there may be relapses, which generally occur 5 years after the apparent cure following treatment, and also, the mycosis may be confused with other diseases. This review provides a comprehensive and critical overview of the immunopathology, laboratory diagnosis, clinical aspects, and current treatment of PCM, highlighting current issues in the identification, treatment, and patient follow-up in light of recent Paracoccidioides species taxonomic developments.
Collapse
Affiliation(s)
- Rosane Christine Hahn
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Júlio Muller Hospital, EBSERH, Cuiabá, Mato Grosso, Brazil
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Rinaldo Poncio Mendes
- Faculdade de Medicina de Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- Faculdade de Medicina, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology, Federal University of Alfenasgrid.411180.d (UNIFAL), Alfenas, Minas Gerais, Brazil
| | - Andreia Ferreira Nery
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
- Júlio Muller Hospital, EBSERH, Cuiabá, Mato Grosso, Brazil
| | - Nathan Pereira Siqueira
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Armando Guevara
- Medical Mycology Laboratory/Investigation, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Anderson Messias Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Zoilo Pires de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- Department of Medicine, Discipline of Infectious Diseases, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Carpouron JE, de Hoog S, Gentekaki E, Hyde KD. Emerging Animal-Associated Fungal Diseases. J Fungi (Basel) 2022; 8:611. [PMID: 35736094 PMCID: PMC9225262 DOI: 10.3390/jof8060611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
The Global Action Fund for Fungal Infections (GAFFI) estimates that fungal diseases kill around 150 people each hour, and yet they are globally overlooked and neglected. Histoplasma and Talaromyces, which are associated with wildlife, cause systemic infections that are often lethal in patients with impaired cellular immunity. Dermatophytes that cause outbreaks in human hosts are often associated with domesticated animals. Changes in human behavior have been identified as a main cause of the emergence of animal-associated fungal diseases in humans, sometimes caused by the disturbance of natural habitats. An understanding of ecology and the transmission modes of causative agents is therefore essential. Here, we focus on fungal diseases contracted from wildlife and domesticated animals, their habitats, feces and carcasses. We discuss some basic fungal lifestyles and the risk of transmission to humans and illustrate these with examples from emerging and established diseases.
Collapse
Affiliation(s)
- Julia Eva Carpouron
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (J.E.C.); (E.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sybren de Hoog
- Centre of Expertise in Mycology, Radboud University Medical Centre/Canisius Wilhelmina Hospital, 6525 GA Nijmegen, The Netherlands;
| | - Eleni Gentekaki
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (J.E.C.); (E.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin David Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (J.E.C.); (E.G.)
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou 510225, China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| |
Collapse
|
24
|
Abstract
AbstractThe order Onygenales is classified in the class Eurotiomycetes of the subphylum Pezizomycotina. Families in this order have classically been isolated from soil and dung, and two lineages contain causative agents of superficial, cutaneous and systemic infections in mammals. The ecology and habitat choices of the species are driven mainly by the keratin and cellulose degradation abilities. The present study aimed to investigate whether the ecological trends of the members of Onygenales can be interpreted in an evolutionary sense, linking phylogenetic parameters with habitat preferences, to achieve polyphasic definitions of the main taxonomic groups. Evolutionary processes were estimated by multiple gene genealogies and divergence time analysis. Previously described families, namely, Arthrodermataceae, Ajellomycetaceae, Ascosphaeraceae, Eremascaceae, Gymnoascaceae, Onygenaceae and Spiromastigoidaceae, were accepted in Onygenales, and two new families, Malbrancheaceae and Neogymnomycetaceae, were introduced. A number of species could not be assigned to any of the defined families. Our study provides a revised overview of the main lines of taxonomy of Onygenales, supported by multilocus analyses of ITS, LSU, TUB, TEF1, TEF3, RPB1, RPB2, and ribosomal protein 60S L10 (L1) (RP60S) sequences, combined with available data on ecology, physiology, morphology, and genomics.
Collapse
|
25
|
Tharappel AM, Li Z, Li H. Inteins as Drug Targets and Therapeutic Tools. Front Mol Biosci 2022; 9:821146. [PMID: 35211511 PMCID: PMC8861304 DOI: 10.3389/fmolb.2022.821146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Multidrug-resistant pathogens are of significant concern in recent years. Hence new antifungal and anti-bacterial drug targets are urgently needed before the situation goes beyond control. Inteins are polypeptides that self-splice from exteins without the need for cofactors or external energy, resulting in joining of extein fragments. Inteins are present in many organisms, including human pathogens such as Mycobacterium tuberculosis, Cryptococcus neoformans, C. gattii, and Aspergillus fumigatus. Because intein elements are not present in human genes, they are attractive drug targets to develop antifungals and antibiotics. Thus far, a few inhibitors of intein splicing have been reported. Metal-ions such as Zn2+ and Cu2+, and platinum-containing compound cisplatin inhibit intein splicing in M. tuberculosis and C. neoformans by binding to the active site cysteines. A small-molecule inhibitor 6G-318S and its derivative 6G-319S are found to inhibit intein splicing in C. neoformans and C. gattii with a MIC in nanomolar concentrations. Inteins have also been used in many other applications. Intein can be used in activating a protein inside a cell using small molecules. Moreover, split intein can be used to deliver large genes in experimental gene therapy and to kill selected species in a mixed population of microbes by taking advantage of the toxin-antitoxin system. Furthermore, split inteins are used in synthesizing cyclic peptides and in developing cell culture model to study infectious viruses including SARS-CoV-2 in the biosafety level (BSL) 2 facility. This mini-review discusses the recent research developments of inteins in drug discovery and therapeutic research.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Hongmin Li,
| |
Collapse
|
26
|
Jia S, Long X, Hu W, Zhu J, Jiang Y, Ahmed S, de Hoog GS, Liu W, Jiang Y. The epidemic of the multiresistant dermatophyte Trichophyton indotineae has reached China. Front Immunol 2022; 13:1113065. [PMID: 36874152 PMCID: PMC9978415 DOI: 10.3389/fimmu.2022.1113065] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 02/18/2023] Open
Abstract
Due to its high degree of natural resistance to terbinafine in vitro and its tendency to spread globally from the Indian subcontinent, the emerging dermatophyte Trichophyton indotineae has become a major concern in dermatology. Herein, we present the first report of T. indotineae from mainland China. The transmission of the fungus to Guizhou Province in central China and eventual host susceptibilities were investigated. We studied 31 strains of the T. mentagrophytes complex from outpatient clinics of our hospital collected during the past 5 years. The set comprised four ITS genotypes, two of which were T. mentagrophytes genotype VIII, now known as Trichophyton indotineae; the earliest isolation in the Guiyang area appeared to date back to 2018. The isolate was derived from an Indian patient, while local Chinese patients had no dermatophytosis caused by this genotype. Reports from around the world indicated that almost all of the globally reported T. indotineae cases originated from the Indian subcontinent and surrounding countries without transmission among native populations, suggesting deviating local conditions or racial differences in immunity against this fungus.
Collapse
Affiliation(s)
- Songgan Jia
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Microbiology, Basic Medical School, Guizhou Medical University, Guiyang, China
| | - Xuemei Long
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Hu
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Jiali Zhu
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Yinhui Jiang
- Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Sarah Ahmed
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - G Sybren de Hoog
- Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Infectious Dermatology Group, Jiangsu Key Laboratory of Molecular Biology of Skin and STIs, Nanjing, Jiangsu, China
| | - Yanping Jiang
- Department of Dermatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Centre of Expertise in Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| |
Collapse
|
27
|
Schwartz IS, Muñoz JF, Kenyon CR, Govender NP, McTaggart L, Maphanga TG, Richardson S, Becker P, Cuomo CA, McEwen JG, Sigler L. Blastomycosis in Africa and the Middle East: A Comprehensive Review of Reported Cases and Reanalysis of Historical Isolates Based on Molecular Data. Clin Infect Dis 2021; 73:e1560-e1569. [PMID: 32766820 PMCID: PMC8492124 DOI: 10.1093/cid/ciaa1100] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Blastomycosis has been reported from countries in Africa and the Middle East, but a decades-long debate has persisted regarding whether this is the same disease known in North America and caused by Blastomyces dermatitidis and Blastomyces gilchristii. METHODS We reviewed published cases of human and veterinary blastomycosis from Africa and the Middle East. We abstracted epidemiological and clinical features of cases, including sites of disease, diagnosis, management, outcomes, and, where available, genetic and antigenic typing of case isolates. In addition, we sequenced nucleic acids from 9 clinical isolates from Africa deposited in global collections as B. dermatitidis; for 5, we sequenced the internal transcribed spacer regions, and for the other 4 we sequenced the whole genomes. RESULTS We identified 172 unique human patients with blastomycosis, including 159 patients from 25 African countries and 12 patients from 5 Middle Eastern countries, and also identified 7 reports of veterinary blastomycosis. In humans, cutaneous disease predominated (n = 100/137, 73%), followed by pulmonary (n = 73/129, 57%) and osteoarticular involvement (n = 61/128, 48%). Unusual direct microscopy/histopathological presentations included short hyphal fragments in tissues (n = 23/129, 18%). There were 34 genotyped case isolates that comprised 4 species: Blastomyces percursus (n = 22, 65%), from 8 countries throughout all regions; Blastomyces emzantsi (n = 9, 26%), from South Africa; B. dermatitidis (n = 1, 3%), from the Democratic Republic of Congo; and B. gilchristii (n = 2, 6%), from South Africa and Zimbabwe. CONCLUSIONS Blastomycosis occurs throughout Africa and the Middle East and is caused predominantly by B. percursus and, at least in South Africa, B. emzantsi, resulting in distinct clinical and pathological patterns of disease.
Collapse
Affiliation(s)
- Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jose F Muñoz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Chris R Kenyon
- Clinical Sciences Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Nelesh P Govender
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Tsidiso G Maphanga
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Susan Richardson
- Division of Microbiology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pierre Becker
- Belgian Coordinated Collections of Microorganisms (BCCM/IHEM) Fungal Collection, Mycology and Aerobiology, Sciensano, Brussels, Belgium
| | | | - Juan G McEwen
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Lynne Sigler
- Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
- UAMH Centre for Global Microfungal Diversity, University of Toronto, Ontario, Canada
| |
Collapse
|
28
|
Vilela R, Huebner M, Vilela C, Vilela G, Pettersen B, Oliveira C, Mendoza L. The taxonomy of two uncultivated fungal mammalian pathogens is revealed through phylogeny and population genetic analyses. Sci Rep 2021; 11:18119. [PMID: 34518564 PMCID: PMC8438014 DOI: 10.1038/s41598-021-97429-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Ever since the uncultivated South American fungal pathogen Lacazia loboi was first described 90 years ago, its etiology and evolutionary traits have been at the center of endless controversies. This pathogen infects the skin of humans and as long believed, dolphin skin. However, recent DNA analyses of infected dolphins placed its DNA sequences within Paracoccidioides species. This came as a surprise and suggested the human and dolphin pathogens may be different species. In this study, population genetic analyses of DNA from four infected dolphins grouped this pathogen in a monophyletic cluster sister to P. americana and to the other Paracoccidioides species. Based on the results we have emended the taxonomy of the dolphin pathogen as Paracoccidioides cetii and P. loboi the one infecting human. Our data warn that phylogenetic analysis of available taxa without the inclusion of unusual members may provide incomplete information for the accurate classification of anomalous species.
Collapse
Affiliation(s)
- Raquel Vilela
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, MI, 48824, USA
- Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, 31270, Brazil
| | - Marianne Huebner
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824, USA
| | - Camila Vilela
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, MI, 48824, USA
| | - Gabriella Vilela
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, MI, 48824, USA
| | - Bruno Pettersen
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, MI, 48824, USA
| | - Claudia Oliveira
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, MI, 48824, USA
| | - Leonel Mendoza
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, MI, 48824, USA.
- Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
29
|
Vitale RG, Giudicessi SL, Romero SM, Al-Hatmi AMS, Li Q, de Hoog GS. Recent developments in less known and multi-resistant fungal opportunists. Crit Rev Microbiol 2021; 47:762-780. [PMID: 34096817 DOI: 10.1080/1040841x.2021.1927978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fungal infections have increased in recent years due to host factors, such as oncohaematological and transplant-related disorders, immunosuppressive therapy, and AIDS. Additionally, molecular and proteomic facilities have become available to identify previously unrecognizable opportunists. For these reasons, reports on less-known and recalcitrant mycoses, such as those caused by black fungi, hyaline filamentous fungi, coelomycetes, Mucorales, and non-Candida yeasts have emerged. In this review, novel taxonomy in these groups, which often are multi-resistant to one or several classes of antifungals, is discussed. Clinical presentations, diagnosis and current treatment of some major groups are summarised.
Collapse
Affiliation(s)
- Roxana G Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.,Unidad de Parasitología, Sector Micología, Hospital J. M. Ramos Mejía, Buenos Aires, Argentina
| | - Silvana L Giudicessi
- Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC), UBA-CONICET, Buenos Aires, Argentina
| | - Stella M Romero
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.,Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Abdullah M S Al-Hatmi
- Center of Expertise in Mycology of Radboud, University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Natural & Medical Science Research Center, University of Nizwa, Nizwa, Omán
| | - Qirui Li
- Department of Pharmacy, Guiyang Medical University, Guiyang, PR China
| | - G Sybren de Hoog
- Center of Expertise in Mycology of Radboud, University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, PR China.,Department of Medical Microbiology, People's Hospital of Suzhou, National New & Hi-Tech Industrial Development Zone, Suzhou, PR China
| |
Collapse
|
30
|
Abstract
Various uncommon fungal pathogens have been increasingly identified as causes of disseminated and invasive fungal disease (IFD) worldwide. Growing recognition and clinical knowledge of these emerging fungal pathogens has occurred through improved molecular diagnostics, nucleic sequence databases, and taxonomic reclassification of medically significant fungi. However, emerging fungal diseases carry significant morbidity and mortality and, due to a paucity of published literature, the collective clinical experience with these fungi is often limited. In this review, we focus on unusual emerging fungal pathogens not extensively covered elsewhere in this issue of Infectious Diseases Clinics of North America.
Collapse
|
31
|
Abstract
Blastomycosis is the fungal disease caused by thermally dimorphic fungi in the genus Blastomyces, with B dermatitidis complex causing most cases. It is considered hyperendemic in areas adjacent to the Great Lakes and along the St. Lawrence, Mississippi, and Ohio rivers, but definitive geographic distribution of blastomycoses remains obscure. Clinical presentation is variable. Disseminated blastomycosis with extrapulmonary manifestations is more common in immunosuppressed individuals. Culture positivity is required for definitive diagnosis, but compatible histology is often sufficient for presumptive diagnosis and initiation of treatment. Treatment should be provided to all symptomatic cases to prevent progression or recurrence.
Collapse
|
32
|
Samaddar A, Sharma A. Emergomycosis, an Emerging Systemic Mycosis in Immunocompromised Patients: Current Trends and Future Prospects. Front Med (Lausanne) 2021; 8:670731. [PMID: 33968970 PMCID: PMC8104006 DOI: 10.3389/fmed.2021.670731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, the global emergence of emergomycosis, a systemic fungal infection caused by a novel dimorphic fungus Emergomyces species has been observed among immunocompromised individuals. Though initially classified under the genus Emmonsia, a taxonomic revision in 2017 based on DNA sequence analyses placed five Emmonsia-like fungi under a separate genus Emergomyces. These include Emergomyces pasteurianus, Emergomyces africanus, Emergomyces canadensis, Emergomyces orientalis, and Emergomyces europaeus. Emmonsia parva was renamed as Blastomyces parvus, while Emmonsia crescens and Emmonsia sola remained within the genus Emmonsia until a taxonomic revision in 2020 placed both the species under the genus Emergomyces. However, unlike other members of the genus, Emergomyces crescens and Emergomyces sola do not cause disseminated disease. The former causes adiaspiromycosis, a granulomatous pulmonary disease, while the latter has not been associated with human disease. So far, emergomycosis has been mapped across four continents: Asia, Europe, Africa and North America. However, considering the increasing prevalence of HIV/AIDS, it is presumed that the disease must have a worldwide distribution with many cases going undetected. Diagnosis of emergomycosis remains challenging. It should be considered in the differential diagnosis of histoplasmosis as there is considerable clinical and histopathological overlap between the two entities. Sequencing the internal transcribed spacer region of ribosomal DNA is considered as the gold standard for identification, but its application is compromised in resource limited settings. Serological tests are non-specific and demonstrate cross-reactivity with Histoplasma galactomannan antigen. Therefore, an affordable, accessible, and reliable diagnostic test is the need of the hour to enable its diagnosis in endemic regions and also for epidemiological surveillance. Currently, there are no consensus guidelines for the treatment of emergomycosis. The recommended regimen consists of amphotericin B (deoxycholate or liposomal formulation) for 1–2 weeks, followed by oral itraconazole for at least 12 months. This review elaborates the taxonomic, clinical, diagnostic, and therapeutic aspects of emergomycosis. It also enumerates several novel antifungal drugs which might hold promise in the treatment of this condition and therefore, can be potential areas of future studies.
Collapse
Affiliation(s)
- Arghadip Samaddar
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Anuradha Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
33
|
Kaplan M, Zhu Y, Kus JV, McTaggart L, Chaturvedi V, Chaturvedi S. Development of a Duplex Real-Time PCR Assay for the Differentiation of Blastomyces dermatitidis and Blastomyces gilchristii and a Retrospective Analysis of Culture and Primary Specimens from Blastomycosis Cases from New York (2005 to 2019). J Clin Microbiol 2021; 59:e02078-20. [PMID: 33298609 PMCID: PMC8106702 DOI: 10.1128/jcm.02078-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
Blastomycosis due to Blastomyces dermatitidis and Blastomyces gilchristii is a significant cause of respiratory mycoses in North America with occasional reported outbreaks. We developed a highly sensitive, specific, and reproducible TaqMan duplex real-time PCR assay for the differentiation of B. dermatitidis and B. gilchristii The new assay permitted retrospective analysis of Blastomyces cultures (2005 to 2019) and primary clinical specimens from blastomycosis cases (2013 to 2019) from New York patients. We identified B. dermatitidis as the predominant pathogen in 38 cases of blastomycosis, while B. gilchristii was a minor pathogen involved in five cases; these findings expand understanding of blastomycosis in New York. The duplex real-time PCR assay could be implemented in reference and public health laboratories to further understand the ecology and epidemiology of blastomycosis due to B. dermatitidis and B. gilchristii.
Collapse
Affiliation(s)
- Mitchell Kaplan
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - YanChun Zhu
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Julianne V Kus
- Public Health Laboratory, Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lisa McTaggart
- Public Health Laboratory, Public Health Ontario, Toronto, Ontario, Canada
| | - Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Sudha Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
34
|
Abstract
The current article summarizes recent changes in nomenclature for fungi of medical importance published in the years 2018 to 2019, including new species and revised names for existing ones. Many of the revised names have been widely adopted without further discussion. However, those that concern common pathogens of humans may take longer to achieve general usage, with new and current names reported together to engender increasing familiarity with the correct taxonomic classification.
Collapse
|
35
|
Pulmonary adiaspiromycosis in armadillos killed by motor vehicle collisions in Brazil. Sci Rep 2021; 11:272. [PMID: 33432031 PMCID: PMC7801722 DOI: 10.1038/s41598-020-79521-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022] Open
Abstract
Knowledge of infectious diseases in wildlife provides important information for preventing potential outbreaks of zoonotic diseases. Adiaspiromycosis is a neglected human disease caused by dimorphic Onygenales fungi. The disease is produced by the inflammatory response against growing adiaspores, leading to granulomatous pneumonia. In humans, adiaspiromycosis is relevant in immunosuppressed patients. In animals, it is associated with pneumonia in fossorial species. Given the potential role of armadillos in the epidemiology of adiaspiromycosis, in this study, we sought to investigate the occurrence and pathological features of adiaspiromycosis in roadkilled armadillos. In total, 54 armadillo carcasses were suitable for postmortem pathologic examinations between February 2017 and 2020. Adiaspores, associated with granulomatous lesions, were observed in ten six-banded (Euphractus sexcinctus) and two southern naked-tailed armadillos (Cabassous unicinctus). A previously uncharacterized Onygenales species was molecularly identified in two E. sexcinctus. In summary, herein we report 12 cases of pulmonary adiaspiromycosis (PA) in two species of free-living armadillos in Brazil. Both, the morphology of the fungus, as well as the histopathological findings (granulomatous inflammatory response to adiaspores) are consistent with PA; however, as the molecular identification differs from the reported species, the potential impact of this fungus for human PA is unknown, and we cannot rule out its impact on public health.
Collapse
|
36
|
Current and New Perspectives in the Diagnosis of Blastomycosis and Histoplasmosis. J Fungi (Basel) 2020; 7:jof7010012. [PMID: 33383637 PMCID: PMC7823406 DOI: 10.3390/jof7010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
The diagnosis of blastomycosis and histoplasmosis can be difficult for clinicians who rarely see infections caused by these environmentally restricted dimorphic fungi. Historically, the diagnosis of blastomycosis has been established by culture and sometimes by histopathologic identification. Currently, antigen detection in urine and serum has been shown to aid in the rapid diagnosis of blastomycosis, and newer antibody assays are likely to contribute to our diagnostic capability in the near future. The gold standard for the diagnosis of histoplasmosis has been culture of the organism from involved tissues, aided in some patients by histopathological verification of the typical yeast forms in tissues. Antigen detection has contributed greatly to the ability of clinicians to rapidly establish the diagnosis of histoplasmosis, especially in severely ill and immunocompromised patients, and antibody testing for Histoplasma capsulatum provides important adjunctive diagnostic capability for several forms of both acute and chronic histoplasmosis. For both of these endemic mycoses, novel molecular tests are under active investigation, but remain available in only a few reference laboratories. In this review, we provide a synopsis of diagnostic test options that aid in establishing whether a patient has blastomycosis or histoplasmosis.
Collapse
|
37
|
Maphanga TG, Naicker SD, Gómez BL, Mhlanga M, Mpembe RS, Schwartz IS, Bamford C, Nel J, Govender NP. Cross-reactivity of a Histoplasma capsulatum antigen enzyme immunoassay in urine specimens from persons with emergomycosis in South Africa. Med Mycol 2020; 59:672-682. [PMID: 33330930 DOI: 10.1093/mmy/myaa100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/26/2020] [Indexed: 01/20/2023] Open
Abstract
Histoplasma antigen detection in urine is a rapid diagnostic method for disseminated histoplasmosis, although cross-reactivity has been reported in specimens from patients with other thermally dimorphic fungal infections. We tested urine specimens, from persons with suspected invasive fungal infections, using a commercial monoclonal antibody Histoplasma enzyme immunoassay (EIA) at a South African national mycology reference laboratory from August 2014 through December 2018. Corresponding fungal culture and histopathology results were obtained from an electronic laboratory information system. In some cases, cultured fungal isolates were sent with the urine specimen for species-level identification by phenotypic and molecular methods. Cross-reactivity was confirmed using culture filtrates of several fungal pathogens. Of 212 referred cases, 41 (19%) were excluded since they had no recorded clinical history (n = 1), alternative diagnoses were confirmed (n = 2), or no fungal culture or histopathology results (n = 38). Eighty-seven of 212 (41%) had laboratory evidence of an invasive fungal disease, while 84 (40%) did not. Of the 87 cases, 37 (43%) were culture-confirmed mycoses: emergomycosis (n = 18), histoplasmosis (n = 8), sporotrichosis (n = 6), cryptococcosis (n = 2), talaromycosis (n = 1), and other fungi isolated (n = 2). The sensitivity and specificity of the EIA were calculated for two groups: culture-confirmed (n = 37) and histology-confirmed invasive fungal disease (n = 50). The sensitivity and specificity of the EIA for diagnosis of histoplasmosis compared to culture were 88% (7/8, 95%CI 47-100%) and 72% (21/29, 95%CI 53-87%), respectively, and for diagnosis of emergomycosis/histoplasmosis compared to histology was 83% (29/35, 95%CI 66-93%) and 93% (14/15, 95%CI 68-100%), respectively. Cross-reactions occurred in urine specimens of patients with Emergomyces africanus infection and in culture filtrates of E. africanus, T. marneffei and Blastomyces species. A commercial Histoplasma EIA had satisfactory accuracy for diagnosis of culture-confirmed histoplasmosis, but cross-reacted in urine specimens from patients with invasive disease caused by the closely-related pathogen, E. africanus and in culture filtrates of E. africanus and other related fungi. LAY SUMMARY Emergomyces africanus and Histoplasma capsulatum are fungi that cause a multi-system disease among HIV-seropositive persons with a low CD4 cell count. Handling live cultures of these fungi to confirm a diagnosis requires specialized laboratory equipment and infrastructure which is infrequently accessible in low-resource settings. The features of the two diseases (i.e., disseminated histoplasmosis and emergomycosis) may be indistinguishable when infected tissue is prepared, stained, and examined under a microscope. Enzyme immunoassays (EIA) have been developed as rapid diagnostic tools for the detection of a cell wall component of H. capsulatum in urine specimens, although cross-reactions have been reported in specimens from patients with other fungal infections. We evaluated the accuracy of a commercial Histoplasma EIA to diagnose histoplasmosis and to assess cross-reactions in urine specimens from persons with emergomycosis and in cultures of E. africanus and related fungi. We report a sensitivity and specificity of 88% (95%CI 47-100%) and 72% (95%CI 53-87%) for diagnosis of histoplasmosis compared to culture and 83% (95%CI 66-93%) and 93% (95%CI 68-100%) for diagnosis of either histoplasmosis/emergomycosis compared to a diagnosis made by microscopic examination of infected tissue. The assay cross-reacted in urine specimens from patients with emergomycosis and in culture filtrates of related fungi. Although the EIA cross-reacted with other related fungi, this test can decrease the time to diagnosis and facilitate early treatment of emergomycosis and histoplasmosis in South Africa.
Collapse
Affiliation(s)
- Tsidiso G Maphanga
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Department of Medical Microbiology, University of the Free State, Bloemfontein, South Africa
| | - Serisha D Naicker
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa.,School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Beatriz L Gómez
- School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Mabatho Mhlanga
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ruth S Mpembe
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Ilan S Schwartz
- Department of Medicine, University of Alberta, Alberta, Canada
| | - Colleen Bamford
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa.,Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Jeremy Nel
- School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelesh P Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa.,School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.,Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
38
|
Regional Differences in Antifungal Susceptibility of the Prevalent Dermatophyte Trichophyton rubrum. Mycopathologia 2020; 186:53-70. [PMID: 33313977 PMCID: PMC7946697 DOI: 10.1007/s11046-020-00515-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/25/2020] [Indexed: 01/24/2023]
Abstract
In vitro susceptibility testing for Trichophyton rubrum has shown resistance to terbinafine, azoles and amorolfine, locally, but epidemiological cutoffs are not available. In order to assess the appropriateness of current first-line antifungal treatment for T. rubrum in China, we characterized antifungal susceptibility patterns of Chinese T. rubrum strains to nine antifungals and also described the upper limits of wild-type (WT) minimal inhibitory concentrations (MIC) (UL-WT) based on our study and another six studies published during the last decades. Sixty-two clinical isolates originating from seven provinces in China were identified as T. rubrum sensu stricto; all Chinese strains showed low MICs to eight out of nine antifungal drugs. Terbinafine (TBF) showed the lowest MICs of all antifungal classes tested in both the Chinese and global groups, with a 97.5% UL-WT MIC-value of 0.03 mg/L. No non-WT isolates were observed for TBF in China, but were reported in 18.5% of the global group. Our study indicated that TBF was still the most active drug for Chinese T. rubrum isolates, and all strains were within the WT-population. TBF therefore remains recommended for primary therapy to dermatophytosis caused by T. rubrum in China now, but regular surveillance of dermatophytes and antifungal susceptibility is recommended.
Collapse
|
39
|
Spiromastigoides asexualis: Phylogenetic Analysis and Evaluation as a Cause of False-Positive Blastomyces DNA Probe Test Results. J Clin Microbiol 2020; 58:JCM.01325-20. [PMID: 32907993 DOI: 10.1128/jcm.01325-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
This is the first case of Spiromastigoides asexualis human infection, and it notably gave a false-positive Blastomyces DNA probe laboratory result. We further investigated other Spiromastigoides isolates as a cause of false-positive testing results, their phylogenetic relationship, and their susceptibility profiles to clinically available antifungal agents. Other S. asexualis isolates also resulted in positive Blastomyces DNA probe results, while Spiromastigoides species other than S. asexualis did not.
Collapse
|
40
|
Abstract
During the last two decades, many onygenalean pathogens were discovered, redefined, or re-classified from existing taxa into clusters of micro-species, among which the original genotypes often appeared to be uncommon and exceptional. The impact of these developments on the diagnosis and treatment of fungal diseases remains to be determined in most instances. This exciting collection of invited articles provides a full flavor of ongoing changes in the knowledge about taxonomy, genetics, ecology, epidemiology, and clinical spectra of human and animal pathogens classified in the order Onygenales. Recent developments have set the stage for an ambitious translational research agenda. Diagnostic mycology laboratories now need MALDI-TOF-MS spectra, PCR probes, and other specific tools to assist them in the rapid diagnosis of new species. Similarly, an educational set of type materials of new species needs to be readily available for enhanced expertise among the wider medical mycology community. As several new species were discovered retrospectively, it is crucial to expand the re-sampling to other fungal culture collections and archived paraffin tissues. Finally, clinical and laboratory investigations are needed to get an accurate assessment of the prevalence and impact of new pathogens as the cause of major fungal diseases.
Collapse
Affiliation(s)
- Vishnu Chaturvedi
- Mycology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - G Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands. .,Centre of Expertise in Mycology, Radboud University Medical Centre/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.
| |
Collapse
|
41
|
Dukik K, de Hoog GS, Stielow JB, Freeke J, van den Ende BG, Vicente VA, Menken SBJ, Ahmed SA. Molecular and Phenotypic Characterization of Nannizzia (Arthrodermataceae). Mycopathologia 2020; 185:9-35. [PMID: 30976955 DOI: 10.1007/s11046-019-00336-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phylogenetic studies of the family Arthrodermataceae have revealed seven monophyletic dermatophyte clades representing the genera Trichophyton, Epidermophyton, Nannizzia, Lophophyton, Paraphyton, Microsporum, and Arthroderma. Members of the genus Nannizzia are geo- or zoophiles that occasionally infect humans. With the newly proposed taxonomy, the genus Nannizzia comprises thirteen species, i.e., Nannizzia aenigmatica, N. corniculata, N. duboisii, N. fulva, N. graeserae, N. gypsea, N. nana, N. incurvata, N. perplicata, N. persicolor, N. praecox, and two novel species. Nannizzia polymorpha sp. nov. was isolated from a skin lesion of a patient from French Guiana. For the strain originally described as Microsporum racemosum by Borelli in 1965, we proposed Nannizzia lorica nom. nov. The species are fully characterized with five sequenced loci (ITS, LSU, TUB2, RP 60S L1 and TEF3), combined with morphology of the asexual form and physiological features. A key to the species based on phenotypic and physiological characters is provided.
Collapse
Affiliation(s)
- Karolina Dukik
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - G Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
- Center of Expertise in Mycology of Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Foundation Atlas of Clinical Fungi, Hilversum, The Netherlands
| | - J Benjamin Stielow
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Thermo Fisher Scientific, Landsmeer, The Netherlands
| | - Joanna Freeke
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Thermo Fisher Scientific, Landsmeer, The Netherlands
| | | | - Vania A Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Steph B J Menken
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Sarah A Ahmed
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
- Foundation Atlas of Clinical Fungi, Hilversum, The Netherlands.
- Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.
| |
Collapse
|
42
|
Hamm PS, Taylor JW, Cook JA, Natvig DO. Decades-old studies of fungi associated with mammalian lungs and modern DNA sequencing approaches help define the nature of the lung mycobiome. PLoS Pathog 2020; 16:e1008684. [PMID: 32730326 PMCID: PMC7392203 DOI: 10.1371/journal.ppat.1008684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Paris S. Hamm
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Joseph A. Cook
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Donald O. Natvig
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
43
|
Jiang Y, Tsui CKM, Ahmed SA, Hagen F, Shang Z, Gerrits van den Ende AHG, Verweij PE, Lu H, de Hoog GS. Intraspecific Diversity and Taxonomy of Emmonsia crescens. Mycopathologia 2020; 185:613-627. [PMID: 32710392 DOI: 10.1007/s11046-020-00475-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022]
Abstract
Emmonsia crescens is known as an environmental pathogen causing adiaspiromycosis in small rodents. As the generic name Emmonsia is no longer available for this species, its taxonomic position is re-evaluated. The intraspecific variation of Emmonsia crescens was analyzed using molecular, morphological, and physiological data, and the relationship between frequency of adiaspiromycosis and body temperature of host animals was explored. A North American and a pan-global lineage could be discerned, each with subclusters at low genetic distance. European strains produced the classical type of very large adiaspores, while in the North American lineage adiaspores relatively small, resembling the broad-based budding cells of Blastomyces. Members of the closely related genus Emergomyces may exhibit large, broad-based in addition to small, narrow-based budding cells. We conclude that the morphology of the pathogenic phase in these fungi differs gradationally between species and even populations, and is therefore less suitable as a diagnostic criterion for generic delimitation. Two Emmonsia species are reclassified in Emergomyces.
Collapse
Affiliation(s)
- Y Jiang
- Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Guiyang, China. .,Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands.
| | - C K M Tsui
- Department of Pathology, Sidra Medicine, Doha, Qatar.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar.,Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - S A Ahmed
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - F Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Z Shang
- Department of Immunology, Basic Medical School, Guizhou Medical University, Guiyang, China
| | | | - P E Verweij
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - H Lu
- Department of Dermatology, The Affiliated Hospital, Guizhou Medical University, Guiyang, China.
| | - G S de Hoog
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Rodrigues A, Beale M, Hagen F, Fisher M, Terra P, de Hoog S, Brilhante R, de Aguiar Cordeiro R, de Souza Collares Maia Castelo-Branco D, Rocha M, Sidrim J, de Camargo Z. The global epidemiology of emerging Histoplasma species in recent years. Stud Mycol 2020; 97:100095. [PMID: 33335607 PMCID: PMC7714791 DOI: 10.1016/j.simyco.2020.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histoplasmosis is a serious infectious disease in humans caused by Histoplasma spp. (Onygenales), whose natural reservoirs are thought to be soil enriched with bird and bat guano. The true global burden of histoplasmosis is underestimated and frequently the pulmonary manifestations are misdiagnosed as tuberculosis. Molecular data on epidemiology of Histoplasma are still scarce, even though there is increasing recognition of histoplasmosis in recent years in areas distant from the traditional endemic regions in the Americas. We used multi-locus sequence data from protein coding loci (ADP-ribosylation factor, H antigen precursor, and delta-9 fatty acid desaturase), DNA barcoding (ITS1/2+5.8s), AFLP markers and mating type analysis to determine the genetic diversity, population structure and recognise the existence of different phylogenetic species among 436 isolates of Histoplasma obtained globally. Our study describes new phylogenetic species and the molecular characteristics of Histoplasma lineages causing outbreaks with a high number of severe outcomes in Northeast Brazil between 2011 and 2015. Genetic diversity levels provide evidence for recombination, common ancestry and clustering of Brazilian isolates at different geographic scales with the emergence of LAm C, a new genotype assigned to a separate population cluster in Northeast Brazil that exhibited low diversity indicative of isolation. The global survey revealed that the high genetic variability among Brazilian isolates along with the presence of divergent cryptic species and/or genotypes may support the hypothesis of Brazil being the center of dispersion of Histoplasma in South America, possibly with the contribution of migratory hosts such as birds and bats. Outside Brazil, the predominant species depends on the region. We confirm that histoplasmosis has significantly broadened its area of occurrence, an important feature of emerging pathogens. From a practical point of view, our data point to the emergence of histoplasmosis caused by a plethora of genotypes, and will enable epidemiological analysis focused on understanding the processes that lead to histoplasmosis. Further, the description of this diversity opens avenues for comparative genomic studies, which will allow progress toward a consensus taxonomy, improve understanding of the presence of hybrids in natural populations of medically relevant fungi, test reproductive barriers and to explore the significance of this variation.
Collapse
Affiliation(s)
- A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, 04023-062, Brazil
- Correspondence: A.M. Rodrigues; Z.P. de Camargo
| | - M.A. Beale
- Parasites and Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong, People's Republic of China
| | - M.C. Fisher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - P.P.D. Terra
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, 04023-062, Brazil
| | - S. de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - R.S.N. Brilhante
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - R. de Aguiar Cordeiro
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - M.F.G. Rocha
- Postgraduate Program in Veterinary Science, State University of Ceará, Fortaleza, Ceará, Brazil
| | - J.J.C. Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Z.P. de Camargo
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, 04023-062, Brazil
- Correspondence: A.M. Rodrigues; Z.P. de Camargo
| |
Collapse
|
45
|
Human Blastomycosis in South Africa Caused by Blastomyces percursus and Blastomyces emzantsi sp. nov., 1967 to 2014. J Clin Microbiol 2020; 58:JCM.01661-19. [PMID: 31896663 DOI: 10.1128/jcm.01661-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
We reevaluated 20 cases of blastomycosis diagnosed in South Africa between 1967 and 2014, with Blastomyces dermatitidis considered to be the etiological agent, in light of newly described species and the use of more advanced technologies. In addition to histopathological and/or culture-based methods, all 20 isolates were phenotypically and genotypically characterized, including multilocus typing of five genes and whole-genome sequencing. Antifungal susceptibility testing was performed as outlined by Clinical and Laboratory Standards Institute documents M27-A3 and M38-A2. We merged laboratory and corresponding clinical case data, where available. Morphological characteristics and phylogenetic analyses of five-gene and whole-genome sequences revealed two groups, both of which were closely related to but distinct from B. dermatitidis, Blastomyces gilchristii, and Blastomyces parvus The first group (n = 12) corresponded to the recently described species Blastomyces percursus, and the other (n = 8) is described here as Blastomyces emzantsi sp. nov. Both species exhibited incomplete conversion to the yeast phase at 37°C and were heterothallic for mating types. All eight B. emzantsi isolates belonged to the α mating type. Whole-genome sequencing confirmed distinct species identities as well as the absence of a full orthologue of the BAD-1 gene. Extrapulmonary (skin or bone) disease, probably resulting from hematogenous spread from a primary lung infection, was more common than pulmonary disease alone. Voriconazole, posaconazole, itraconazole, amphotericin B, and micafungin had the most potent in vitro activity. Over the 5 decades, South African cases of blastomycosis were caused by species that are distinct from B. dermatitidis Increasing clinical awareness and access to simple rapid diagnostics may improve the diagnosis of blastomycosis in resource-limited countries.
Collapse
|
46
|
Ashraf N, Kubat RC, Poplin V, Adenis AA, Denning DW, Wright L, McCotter O, Schwartz IS, Jackson BR, Chiller T, Bahr NC. Re-drawing the Maps for Endemic Mycoses. Mycopathologia 2020; 185:843-865. [PMID: 32040709 PMCID: PMC7416457 DOI: 10.1007/s11046-020-00431-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/24/2020] [Indexed: 01/19/2023]
Abstract
Endemic mycoses such as histoplasmosis, coccidioidomycosis, blastomycosis, paracoccidioidomycosis, and talaromycosis are well-known causes of focal and systemic disease within specific geographic areas of known endemicity. However, over the past few decades, there have been increasingly frequent reports of infections due to endemic fungi in areas previously thought to be “non-endemic.” There are numerous potential reasons for this shift such as increased use of immune suppressive medications, improved diagnostic tests, increased disease recognition, and global factors such as migration, increased travel, and climate change. Regardless of the causes, it has become evident that our previous understanding of endemic regions for these fungal diseases needs to evolve. The epidemiology of the newly described Emergomyces is incomplete; our understanding of it continues to evolve. This review will focus on the evidence underlying the established areas of endemicity for these mycoses as well as new data and reports from medical literature that support the re-thinking these geographic boundaries. Updating the endemic fungi maps would inform clinical practice and global surveillance of these diseases.
Collapse
Affiliation(s)
- Nida Ashraf
- Division of Infectious Diseases, Department of Internal Medicine, University of Kansas, Kansas City, KS, USA
| | - Ryan C Kubat
- Division of Infectious Diseases, Department of Internal Medicine, University of Kansas, Kansas City, KS, USA
| | - Victoria Poplin
- Department of Internal Medicine, University of Kansas, Kansas City, KS, USA
| | - Antoine A Adenis
- Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - David W Denning
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura Wright
- Geographic Research Analysis and Services Program, Division of Toxicology and Human Health Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Orion McCotter
- Mycotic Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Brendan R Jackson
- Mycotic Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tom Chiller
- Mycotic Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nathan C Bahr
- Division of Infectious Diseases, Department of Internal Medicine, University of Kansas, Kansas City, KS, USA.
| |
Collapse
|
47
|
Schwartz IS, Wiederhold NP, Hanson KE, Patterson TF, Sigler L. Blastomyces helicus, a New Dimorphic Fungus Causing Fatal Pulmonary and Systemic Disease in Humans and Animals in Western Canada and the United States. Clin Infect Dis 2020; 68:188-195. [PMID: 29878145 PMCID: PMC6321858 DOI: 10.1093/cid/ciy483] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/04/2018] [Indexed: 11/29/2022] Open
Abstract
Background Blastomyces helicus (formerly Emmonsia helica) is a dimorphic fungus first isolated from a man with fungal encephalitis in Alberta, Canada. The geographic range, epidemiology, and clinical features of disease are unknown. Methods We reviewed human and veterinary isolates of B. helicus identified among Blastomyces and Emmonsia isolates at the University of Alberta Microfungus Collection and Herbarium, University of Texas Health San Antonio’s Fungus Testing Laboratory, and Associated Regional and University Pathologists Laboratories. Isolates were selected based on low Blastomyces dermatitidis DNA probe values and/or atypical morphology. Species identification was confirmed for most isolates by DNA sequence analysis of the internal transcribed spacer with or without D1/D2 ribosomal RNA regions. Epidemiological and clinical data were analyzed. Results We identified isolates from 10 human and 5 veterinary cases of B. helicus infection; all were referred from western regions of Canada and the United States. Isolates remained sterile in culture, producing neither conidia nor sexual spores in the mycelial phase, but often producing coiled hyphae. Isolates were most frequently cultured from blood and bronchoalveolar lavage in humans and lungs in animals. Most infected persons were immunocompromised. Histopathological findings included pleomorphic, small or variably sized yeast-like cells, with single or multiple budding, sometimes proliferating to form short, branching, hyphal-like elements. Disease carried a high case-fatality rate. Conclusions Blastomyces helicus causes fatal pulmonary and systemic disease in humans and companion animals. It differs from B. dermatitidis in morphological presentation in culture and in histopathology, by primarily affecting immunocompromised persons, and in a geographic range that includes western regions of North America.
Collapse
Affiliation(s)
- Ilan S Schwartz
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada.,San Antonio Center for Medical Mycology
| | - Nathan P Wiederhold
- San Antonio Center for Medical Mycology.,Fungus Testing Laboratory, University of Texas Health San Antonio
| | - Kimberly E Hanson
- Division of Infectious Diseases, Department of Medicine.,Clinical Microbiology Division, Department of Pathology, University of Utah, Salt Lake City
| | - Thomas F Patterson
- San Antonio Center for Medical Mycology.,South Texas Veterans Health Care System, San Antonio
| | - Lynne Sigler
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
48
|
Rooms I, Mugisha P, Gambichler T, Hadaschik E, Esser S, Rath PM, Haase G, Wilmes D, McCormick-Smith I, Rickerts V. Disseminated Emergomycosis in a Person with HIV Infection, Uganda. Emerg Infect Dis 2020; 25:1750-1751. [PMID: 31441766 PMCID: PMC6711225 DOI: 10.3201/eid2509.181234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We describe emergomycosis in a patient in Uganda with HIV infection. We tested a formalin-fixed, paraffin-embedded skin biopsy to identify Emergomyces pasteurianus or a closely related pathogen by sequencing broad-range fungal PCR amplicons. Results suggest that emergomycosis is more widespread and genetically diverse than previously documented. PCR on tissue blocks may help clarify emergomycosis epidemiology.
Collapse
|
49
|
de Almeida SM, Imano ECM, Vicente VA, Gomes RR, Trentin AP, Zamarchi K, Schneider GX, Pinheiro RL, da Silva NM, de Hoog GS. Primary Central Nervous System Infection by Histoplasma in an Immunocompetent Adult. Mycopathologia 2020; 185:331-338. [PMID: 31989393 DOI: 10.1007/s11046-019-00394-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
Abstract
Central nervous system (CNS) infection by Histoplasma capsulatum is a rare disease in immunocompromised individuals in endemic areas. About one quarter of cases result from hematogenous dissemination. A 23-year-old upholsterer with chronic occipital headache had developed intracranial hypertension and dizziness, incoordination with ataxic gait, and acute confusion 5 months prior to admission. Laboratory examinations and chest roentgenogram were normal. Postcontrast T1-weighted MRI of the brain revealed a multiple ring-enhancing cerebellar, brain stem and parietal lobe lesions, and meningeal contrast enhancement. Cerebrospinal fluid culture was positive for H. capsulatum species complex, which was confirmed by phylogenetic analysis. Thirteen years after the diagnosis and treatment, there was no H. capsulatum recurrence; sequels related to complications due to the ventriculoperitoneal shunt. This case shows a primary neurological presentation of cerebral histoplasmosis, without meningitis or disseminated disease in nonimmune-compromised patient. The authors propose a categorization of the diagnosis of CNS histoplasmosis. Routine diagnostics of sibling species within the H. capsulatum complex proved to be difficult.
Collapse
Affiliation(s)
- Sérgio M de Almeida
- Diagnostic Support Unit, Hospital of Clinics, Federal University of Parana, Curitiba, Parana, Brazil
| | - Elaine C M Imano
- Microbiology, Parasitology and Pathology Postgraduate Program, Pathology Basic Department, Federal University of Parana, Curitiba, Parana, Brazil
| | - Vania A Vicente
- Microbiology, Parasitology and Pathology Postgraduate Program, Pathology Basic Department, Federal University of Parana, Curitiba, Parana, Brazil.
| | - Renata R Gomes
- Microbiology, Parasitology and Pathology Postgraduate Program, Pathology Basic Department, Federal University of Parana, Curitiba, Parana, Brazil
| | - Ana P Trentin
- Diagnostic Support Unit, Hospital of Clinics, Federal University of Parana, Curitiba, Parana, Brazil.,Neuroinfection Clinic, Hospital of Clinics, Federal University of Parana, Curitiba, Parana, Brazil
| | - Kassiely Zamarchi
- Microbiology, Parasitology and Pathology Postgraduate Program, Pathology Basic Department, Federal University of Parana, Curitiba, Parana, Brazil
| | - Gabriela X Schneider
- Microbiology, Parasitology and Pathology Postgraduate Program, Pathology Basic Department, Federal University of Parana, Curitiba, Parana, Brazil
| | - Rosangela L Pinheiro
- Department of Mycology, Hospital of Clinics, Federal University of Parana, Curitiba, Parana, Brazil
| | - Nickolas M da Silva
- Bioprocess Engineering and Biotechnology Department, Federal University of Parana, Curitiba, Parana, Brazil
| | - G S de Hoog
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Center of Expertise in Mycology, Radboud University Medical Center, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
50
|
Van Dyke MCC, Teixeira MM, Barker BM. Fantastic yeasts and where to find them: the hidden diversity of dimorphic fungal pathogens. Curr Opin Microbiol 2019; 52:55-63. [PMID: 31181385 PMCID: PMC11227906 DOI: 10.1016/j.mib.2019.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/29/2022]
Abstract
Dimorphic fungal pathogens are a significant cause of human disease worldwide. Notably, the dimorphic fungal pathogens within the order Onygenales are considered primary pathogens, causing disease in healthy hosts. Current changes in taxonomy are underway due to advances in molecular phylogenetics, population genetics, and new emerging dimorphic fungal pathogens causing human disease. In this review, we highlight evolutionary relationships of dimorphic fungal pathogens that cause human disease within the order Onygenales and provide rationale to support increased investment in studies understanding the evolutionary relationships of these pathogens to improve rapid diagnostics, help identify mechanisms of antifungal resistance, understand adaptation to human host, and factors associated with virulence.
Collapse
Affiliation(s)
| | - Marcus M Teixeira
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States; Faculty of Medicine, University of Brasília, Brasília-DF, Brazil
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States.
| |
Collapse
|