1
|
Erjavec A, Volmajer Valh J, Hribernik S, Kraševac Glaser T, Fras Zemljič L, Vuherer T, Neral B, Brunčko M. Advance Analysis of the Obtained Recycled Materials from Used Disposable Surgical Masks. Polymers (Basel) 2024; 16:935. [PMID: 38611193 PMCID: PMC11013069 DOI: 10.3390/polym16070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The production of personal protective equipment (PPE) has increased dramatically in recent years, not only because of the pandemic, but also because of stricter legislation in the field of Employee Protection. The increasing use of PPE, including disposable surgical masks (DSMs), is putting additional pressure on waste collectors. For this reason, it is necessary to find high-quality solutions for this type of waste. Mechanical recycling is still the most common type of recycling, but the recyclates are often classified as low-grade materials. For this reason, a detailed analysis of the recyclates is necessary. These data will help us to improve the properties and find the right end application that will increase the value of the materials. This work represents an extended analysis of the recyclates obtained from DSMs, manufactured from different polymers. Using surface and morphology tests, we have gained insights into the distribution of different polymers in polymer blends and their effects on mechanical and surface properties. It was found that the addition of ear loop material to the PP melt makes the material tougher. In the polymer blends obtained, PP and PA 6 form the surface (affects surface properties), while PU and PET are distributed mainly inside the injection-molded samples.
Collapse
Affiliation(s)
- Alen Erjavec
- Faculty of Mechanical Engineering, University of Maribor, Smetanova cesta 17, 2000 Maribor, Slovenia; (J.V.V.); (T.K.G.); (L.F.Z.); (T.V.); (B.N.); (M.B.)
| | - Julija Volmajer Valh
- Faculty of Mechanical Engineering, University of Maribor, Smetanova cesta 17, 2000 Maribor, Slovenia; (J.V.V.); (T.K.G.); (L.F.Z.); (T.V.); (B.N.); (M.B.)
| | - Silvo Hribernik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia;
| | - Tjaša Kraševac Glaser
- Faculty of Mechanical Engineering, University of Maribor, Smetanova cesta 17, 2000 Maribor, Slovenia; (J.V.V.); (T.K.G.); (L.F.Z.); (T.V.); (B.N.); (M.B.)
| | - Lidija Fras Zemljič
- Faculty of Mechanical Engineering, University of Maribor, Smetanova cesta 17, 2000 Maribor, Slovenia; (J.V.V.); (T.K.G.); (L.F.Z.); (T.V.); (B.N.); (M.B.)
| | - Tomaž Vuherer
- Faculty of Mechanical Engineering, University of Maribor, Smetanova cesta 17, 2000 Maribor, Slovenia; (J.V.V.); (T.K.G.); (L.F.Z.); (T.V.); (B.N.); (M.B.)
| | - Branko Neral
- Faculty of Mechanical Engineering, University of Maribor, Smetanova cesta 17, 2000 Maribor, Slovenia; (J.V.V.); (T.K.G.); (L.F.Z.); (T.V.); (B.N.); (M.B.)
| | - Mihael Brunčko
- Faculty of Mechanical Engineering, University of Maribor, Smetanova cesta 17, 2000 Maribor, Slovenia; (J.V.V.); (T.K.G.); (L.F.Z.); (T.V.); (B.N.); (M.B.)
| |
Collapse
|
2
|
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Surface functionalization of polyurethanes: A critical review. Adv Colloid Interface Sci 2024; 325:103100. [PMID: 38330882 DOI: 10.1016/j.cis.2024.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Synthetic polymers, particularly polyurethanes (PUs), have revolutionized bioengineering and biomedical devices due to their customizable mechanical properties and long-term stability. However, the inherent hydrophobic nature of PU surfaces arises common issues such as high friction, strong protein adsorption, and thrombosis, especially in the physiological environment of blood contact. To overcome these issues, researchers have explored various modification techniques to improve the surface biofunctionality of PUs. In this review, we have systematically summarized several typical surface modification methods including surface plasma modification, surface oxidation-induced grafting polymerization, isocyanate-based chemistry coupling, UV-induced surface grafting polymerization, adhesives-assisted attachment strategy, small molecules-bridge grafting, solvent evaporation technique, and hydrogen bonding interaction. Correspondingly, the advantages, limitations, and future prospects of these surface modification methods were discussed. This review provides an important guidance or tool for developing surface functionalized PUs in the fields of bioengineering and medical devices.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Xiaoduo Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Almousa R, Xie D, Chen Y, Li J, Anderson GG. Thermoplastic polyurethane surface coated with polymer brushes for reduced protein and cell attachment. J Biomater Appl 2024; 38:758-771. [PMID: 37963494 DOI: 10.1177/08853282231213937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The objective of this study was to coat negatively charged polymer brushes covalently onto the surface of thermoplastic polyurethane (TPU) using a simple conventional surface free-radical polymerization technique. The coated surfaces were assessed with contact angle, protein adsorption, cell adhesion and bacterial adhesion. Bovine serum albumin (BSA) and bovine fibrinogen (BFG) were used for protein adsorption evaluation. Mouse fibroblasts (NIH-3T3) and Pseudomonas aeruginosa (P. aeruginosa) were used to assess surface adhesion. Results show that the TPU surface modified with the attached polymer brushes exhibited significantly reduced contact angle, protein adsorption, and cell as well as bacterial adhesion, among which the negatively charged polymers showed the extremely low values in all the tests. Its contact angle is 5°, as compared to 70° for original TPU. Its BSA, BFG, 3T3 adhesion and P. aeruginosa adhesion were 93%, 84%, 92%, and 93% lower than original TPU. Furthermore, the TPU surface coated with negatively charged polymer brushes exhibited a hydrogel-like property. The results indicate that placing acrylic acids using a simple surface-initiated free-radical polymerization onto a TPU surface and then converting those to negative charges can be an effective and efficient route for fouling resistant applications.
Collapse
Affiliation(s)
- Rashed Almousa
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Department of Medical Equipment Technology, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Dong Xie
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette IN, USA
- Department of Biomedical Engineering, Indiana University Purdue University at Indianapolis, Indianapolis, IN, United States
| | - Yong Chen
- Department of Biomedical Engineering, Indiana University Purdue University at Indianapolis, Indianapolis, IN, United States
| | - Jiliang Li
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Gregory G Anderson
- Department of Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
4
|
Ma J, Zhou S, Lai Y, Wang Z, Ni N, Dai F, Xu Y, Yang X. Ionic Liquids Facilitate the Dispersion of Branched Polyethylenimine Grafted ZIF-8 for Reinforced Epoxy Composites. Polymers (Basel) 2023; 15:polym15081837. [PMID: 37111984 PMCID: PMC10146677 DOI: 10.3390/polym15081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) have been previously shown as an emerging modified class of epoxy resin. In this work, we report a simple strategy for preventing zeolitic imidazolate framework (ZIF-8) nanoparticles from agglomerating in epoxy resin (EP). Branched polyethylenimine grafted ZIF-8 in ionic liquid (BPEI-ZIF-8) nanofluid with good dispersion was prepared successfully using an ionic liquid as both the dispersant and curing agent. Results indicated that the thermogravimetric curve of the composite material had no noticeable change with increasing BPEI-ZIF-8/IL content. The glass transition temperature (Tg) of the epoxy composite was reduced with the addition of BPEI-ZIF-8/IL. The addition of 2 wt% BPEI-ZIF-8/IL into EP effectively improved the flexural strength to about 21.7%, and the inclusion of 0.5 wt% of BPEI-ZIF-8/IL EP composites increased the impact strength by about 83% compared to pure EP. The effect of adding BPEI-ZIF-8/IL on the Tg of epoxy resin was explored, and its toughening mechanism was analyzed in combination with SEM images showing fractures in the EP composites. Moreover, the damping and dielectric properties of the composites were improved by adding BPEI-ZIF-8/IL.
Collapse
Affiliation(s)
- Junchi Ma
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Shihao Zhou
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yuanchang Lai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Zhaodi Wang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Nannan Ni
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Feng Dai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yahong Xu
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Xin Yang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
5
|
Vatanpour V, Jouyandeh M, Akhi H, Mousavi Khadem SS, Ganjali MR, Moradi H, Mirsadeghi S, Badiei A, Esmaeili A, Rabiee N, Habibzadeh S, Koyuncu I, Nouranian S, Formela K, Saeb MR. Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. CHEMOSPHERE 2022; 290:133363. [PMID: 34929269 DOI: 10.1016/j.chemosphere.2021.133363] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Hyperbranched polyethyleneimine functionalized silica (PEI-SiO2) nanoparticles with considerable hydrophilicity were synthesized and incorporated into a polysulfone (PSF)/dimethylacetamide (DMA)/polyvinylpyrrolidone (PVP) membrane casting solution in five different ratios to fabricate PEI-SiO2/PSF nanocomposite membranes using nonsolvent-induced phase separation. The hydrophilic PEI-SiO2 nanoparticles were characterized by TEM, FTIR, TGA, and XPS analyses. Morphology, water contact angles, mean pore sizes, overall porosity, tensile strengths, water flux, antifouling and the dye separation performances of the PEI-SiO2/PSF membranes were also studied. The PEI-SiO2 nanoparticles were uniformly dispersed in the PSF-based membranes, where a fall in the water contact angle was observed from 65.4° to 49.7° by addition of 2 wt% nanoparticles. The fouling resistance parameters of the PEI-SiO2/PSF membranes were declined with an increase in the nanoparticle concentration, suggesting the superior hydrophilic nature of the PEI-SiO2 nanoparticles. The permeability of the nanocomposite membranes was increased from 38.5 to 70 L m-2 h-1 bar-1 by incorporation of 2 wt% PEI-SiO2. Finally, improvements were observed in the flux recovery ratio (95.8%), Reactive Green 19 dye rejection (99.6%) and tensile strengths of the PEI-SiO2/PSF membranes over the neat PSF and SiO2/PSF membranes, which were used as controls. The results of this study demonstrate the promising application of PEI-SiO2 nanoparticles in improving the separation and antifouling performances of the PSF membranes for water purification.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Kharazmi University, Tehran, 15719-14911, Iran.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran, 14176-14411, Iran
| | - Hossein Akhi
- Department of Applied Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
| | | | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, University of Tehran, Tehran, 14176-14411, Iran; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, 14117-13137, Iran.
| | - Hiresh Moradi
- Research and Development Unit, Ghaffari Chemical Industries Corporation, Tehran, Iran
| | - Somayeh Mirsadeghi
- Endocrinology and Metabolism Center, Endocrinology and Metabolism Clinical Medical Institute, Tehran University of Medical Sciences, 14117-13137, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, University of Tehran, Tehran, 14176-14411, Iran
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, College of the North Atlantic - Qatar, P.O. Box 24449, Doha, Qatar
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, 11155-9161, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15916-34311, Iran
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Sasan Nouranian
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, United States
| | - Krzysztof Formela
- Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
6
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
7
|
Sheng Y, Yang J, Zhao X, Liu H, Cui S, Chen L, Zeng R, Wang X, Huang CH, Li W. Development and In Vitro Biodegradation of Biomimetic Zwitterionic Phosphorylcholine Chitosan Coating on Zn1Mg Alloy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54445-54458. [PMID: 33231070 DOI: 10.1021/acsami.0c16662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zinc (Zn) alloys are promising alternatives to magnesium (Mg)- and iron (Fe)-based alloys because of their moderate corrosion rate and superior biocompatibility. To reduce the mass release of Zn2+ and improve the biocompatibility of Zn implants, the biomimetic zwitterionic polymer layer (phosphorylcholine chitosan-PCCs) was immobilized on the plasma-treated Zn1Mg surface. It is the chemical bonds between the -NH2 groups of the PCCs chain and O-C═O (C═O) groups on the plasma-treated Zn1Mg (Zn1Mg-PP) that contributes to the strong bonding strength between the film and the substrate, by which the PCCs (approx. 200 nm thick) layer can bear a 5.93 N normal load. The electrochemical impedance spectroscopy (EIS) results showed that the PCCs layer remarkably increased the resistance against corrosion attack, protecting substrates from over-quick degradation, and the protective effect of the layer with a thickness of 200 nm lasts for about 24 h. The corrosion products of Zn1Mg-PP-PCC in NaCl solution were determined as Zn5(OH)8Cl2·H2O and Zn3(PO4)2. Besides, the bulk Zn1Mg can trigger more aggressive macrophage activity, while the surface of Zn1Mg-PP and Zn1Mg-PP-PCC and their corrosion products (Zn3(PO4)2) tend to promote the differentiation of macrophages into the M2 phenotype, which is beneficial for implant applications.
Collapse
Affiliation(s)
- Yinying Sheng
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Junjie Yang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Xueyang Zhao
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Hui Liu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Shaogang Cui
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Lianxi Chen
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, China
| | - Xiaojian Wang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
- National Joint Engineering Center of High-performance Wear-resistant Metallic Materials, Guangzhou 510632, China
| | - Chi-Hsien Huang
- Department of Material Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| | - Wei Li
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
- National Joint Engineering Center of High-performance Wear-resistant Metallic Materials, Guangzhou 510632, China
| |
Collapse
|
8
|
Faustino CMC, Lemos SMC, Monge N, Ribeiro IAC. A scope at antifouling strategies to prevent catheter-associated infections. Adv Colloid Interface Sci 2020; 284:102230. [PMID: 32961420 DOI: 10.1016/j.cis.2020.102230] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/15/2023]
Abstract
The use of invasive medical devices is becoming more common nowadays, with catheters representing one of the most used medical devices. However, there is a risk of infection associated with the use of these devices, since they are made of materials that are prone to bacterial adhesion with biofilm formation, often requiring catheter removal as the only therapeutic option. Catheter-related urinary tract infections (CAUTIs) and central line-associated bloodstream infections (CLABSIs) are among the most common causes of healthcare-associated infections (HAIs) worldwide while endotracheal intubation is responsible for ventilator-associated pneumonia (VAP). Therefore, to avoid the use of biocides due to the potential risk of bacterial resistance development, antifouling strategies aiming at the prevention of bacterial adherence and colonization of catheter surfaces represent important alternative measures. This review is focused on the main strategies that are able to modify the physical or chemical properties of biomaterials, leading to the creation of antiadhesive surfaces. The most promising approaches include coating the surfaces with hydrophilic polymers, such as poly(ethylene glycol) (PEG), poly(acrylamide) and poly(acrylates), betaine-based zwitterionic polymers and amphiphilic polymers or the use of bulk-modified poly(urethanes). Natural polysaccharides and its modifications with heparin, have also been used to improve hemocompatibility. Recently developed bioinspired techniques yielding very promising results in the prevention of bacterial adhesion and colonization of surfaces include slippery liquid-infused porous surfaces (SLIPS) based on the superhydrophilic rim of the pitcher plant and the Sharklet topography inspired by the shark skin, which are potential candidates as surface-modifying approaches for biomedical devices. Concerning the potential application of most of these strategies in catheters, more in vivo studies and clinical trials are needed to assure their efficacy and safety for possible future use.
Collapse
Affiliation(s)
- Célia M C Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sara M C Lemos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
9
|
Roth Y, Y. Lewitus D. The Grafting of Multifunctional Antithrombogenic Chemical Networks on Polyurethane Intravascular Catheters. Polymers (Basel) 2020; 12:E1131. [PMID: 32429046 PMCID: PMC7284597 DOI: 10.3390/polym12051131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023] Open
Abstract
Intravascular catheters (IVCs) and other medical tubing are commonly made of polymeric materials such as polyurethane (PU). Polymers tend to be fouled by surface absorption of proteins and platelets, often resulting in the development of bacterial infections and thrombosis during catheterization, which can lead to embolism and death. Existing solutions to fouling are based on coating the IVCs with hydrophilic, anti-thrombogenic, or antimicrobial materials. However, the delamination of the coatings themselves is associated with significant morbidity, as reported by the United States Food and Drug Administration (FDA). We developed a lubricious, antimicrobial, and antithrombogenic coating complex, which can be covalently attached to the surface of industrial PU catheters. The coating complex is pre-synthesized and comprises 2-methacryloyloxyethyl phosphorylcholine (MPC) as an antifouling agent, covalently attached to branched polyethyleneimine (bPEI) as a lubricating agent. The two-step coating procedure involves PU-amine surface activation using a diisocyanate, followed by chemical grafting of the bPEI-S-MPC complex. Compared with neat PU, the coating was found to reduce the coefficient of friction of the IVC surface by 30% and the hemolysis ratio by more than 50%. Moreover, the coating exhibited a significant antimicrobial activity under JIS Z2801:2000 standard compared with neat PU. Finally, in in-vivo acute rabbit model studies, the coating exhibited significant antithrombogenic properties, reducing the thrombogenic potential to a score of 1.3 on coated surfaces compared with 3.3 on uncoated surfaces. The materials and process developed could confer lubricious, antithrombogenic, and antimicrobial properties on pre-existing PU-based catheters.
Collapse
Affiliation(s)
| | - Dan Y. Lewitus
- Department of Plastics and Polymer Engineering, Shenkar Engineering, Design, Art, Ramat Gan 52526, Israel;
| |
Collapse
|
10
|
Hou Z, Xu J, Teng J, Jia Q, Wang X. Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110571. [PMID: 32228944 DOI: 10.1016/j.msec.2019.110571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
In order to improve the hemocompatibility of durable medical-grade polyurethane, a novel series of segmented poly(ester-urethane)s containing uniformly sized hard segments and phosphorylcholine (PC) groups on the side chains (SPU-PCs) was prepared by a facile method. The 2-methacryloyloxyethyl phosphorylcholine (MPC) was first reacted with α-thioglycerol by Michael addition to give a diol compound (MPC-diol), then the SPU-PCs with various PC content were prepared by a one-step chain extension of the mixture of MPC-diol and poly(ε-caprolactone) diol (PCL-diol) with aliphatic diurethane diisocyanates (HBH). The chemical structures of MPC-diol and SPU-PCs were confirmed by 1H NMR and FT-IR, and the influences of PC content on the physicochemical properties of the SPU-PC films were studied. The introduction of PC groups enhanced the degree of micro-phase separation and improved the hydrolytic degradation of the films. Due to the denser hydrogen bonds formed in the uniformly sized hard segments, the films exhibited favorable tensile properties and a slow hydrolytic degradation rate. The results of water contact angle and XPS analysis indicated that the PC groups on the flexible side chains were concentrated on the surface after contact with water. The surface hemocompatibility of the films was evaluated by testing the protein adsorption and platelet adhesion, and the results revealed that the films surfaces could dramatically suppress the protein adsorption and platelet adhesion. The PC-containing polyurethane films possessed outstanding tensile properties, low degradation rate and good surface hemocompatibility, implying their great potential for use as long-term implant or blood-contacting devices.
Collapse
Affiliation(s)
- Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China.
| | - Jun Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Jinwei Teng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Qi Jia
- Jinan Thermal Power Co. Ltd., Jinan 250001, PR China
| | - Xuejie Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
11
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
12
|
Tuning with Phosphorylcholine Grafts Improves the Physicochemical Properties of PLL/pDNA Nanoparticles at Neutral pH. Macromol Res 2019. [DOI: 10.1007/s13233-020-8019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Almouse R, Wen X, Na S, Anderson G, Xie D. Polyvinylchloride surface with enhanced cell/bacterial adhesion-resistant and antibacterial functions. J Biomater Appl 2019; 33:1415-1426. [DOI: 10.1177/0885328219834680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study reports synthesis and attachment of a novel antibacterial and hydrophilic polymer onto a polyvinylchloride surface via a simple and mild surface coating technique. The compound 3,4-dichloro-5-hydroxy-2(5H)-furanone was derivatized and copolymerized with N-vinylpyrrolidone. The copolymer was then covalently coated onto polyvinylchloride surface. 3T3 mouse fibroblast cells and bacterium Pseudomonas aeruginosa were used to evaluate surface adhesion and antibacterial activity. Results showed that the polymer-modified polyvinylchloride surface not only exhibited significantly decreased 3T3 fibroblast cell adhesion with a 64–84% reduction but also demonstrated significantly decreased P. aeruginosa adhesion with a 65–84% reduction, as compared to unmodified polyvinylchloride. Furthermore, the modified polyvinylchloride surfaces exhibited significant antibacterial functions by inhibiting P. aeruginosa growth with a 58–80% reduction and killing bacteria, as compared to unmodified polyvinylchloride. These results demonstrate that covalent polymer attachment conferred cell/bacterial adhesion-resistant and antibacterial properties to the polyvinylchloride surface.
Collapse
Affiliation(s)
- Rashed Almouse
- Department of Biomedical Engineering, Purdue School of Engineering and Technology Indiana University-Purdue University at Indianapolis
- Department of Medical Equipment Technology, College of Applied Medical Science Majmaah University, Almajmaah, Riyadh, Saudi Arabia
| | - Xin Wen
- Department of Biomedical Engineering, Purdue School of Engineering and Technology Indiana University-Purdue University at Indianapolis
| | - Sungsoo Na
- Department of Biomedical Engineering, Purdue School of Engineering and Technology Indiana University-Purdue University at Indianapolis
| | - Gregory Anderson
- Department of Biology, Purdue School of Science Indiana University-Purdue University at Indianapolis
| | - Dong Xie
- Department of Biomedical Engineering, Purdue School of Engineering and Technology Indiana University-Purdue University at Indianapolis
| |
Collapse
|
14
|
Heparinized Polyurethane Surface Via a One-Step Photografting Method. Molecules 2019; 24:molecules24040758. [PMID: 30791534 PMCID: PMC6412568 DOI: 10.3390/molecules24040758] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 11/24/2022] Open
Abstract
Traditional methods using coupling chemistry for surface grafting of heparin onto polyurethane (PU) are disadvantageous due to their generally low efficiency. In order to overcome this problem, a quick one-step photografting method is proposed here. Three heparin derivatives incorporating 0.21, 0.58, and 0.88 wt% pendant aryl azide groups were immobilized onto PU surfaces, leading to similar grafting densities of 1.07, 1.17, and 1.13 μg/cm2, respectively, yet with increasing densities of anchoring points. The most negatively charged surface and the maximum binding ability towards antithrombin III were found for the heparinized PU with the lowest amount of aryl azide/anchor sites. Furthermore, decreasing the density of anchoring points was found to inhibit platelet adhesion to a larger extent and to prolong plasma recalcification time, prothrombin time, thrombin time, and activated partial thromboplastin time to a larger extent. This was also found to enhance the bioactivity of immobilized heparin from 22.9% for raw heparin to 36.9%. This could be explained by the enhanced molecular mobility of immobilized heparin when it is more loosely anchored to the PU surface, as well as a higher surface charge.
Collapse
|
15
|
Wen X, Almousa R, Anderson G, Na S, Xie D. Coating polyvinylchloride surface for improved antifouling property. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:322-336. [DOI: 10.1080/09205063.2019.1570434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xin Wen
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indianapolis, IN, USA
| | - Rashed Almousa
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indianapolis, IN, USA
| | - Gregory Anderson
- Department of Biology, Purdue School of Science, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indianapolis, IN, USA
| | - Dong Xie
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indianapolis, IN, USA
| |
Collapse
|
16
|
Almousa R, Wen X, Na S, Anderson G, Xie D. A modified polyvinylchloride surface with antibacterial and antifouling functions. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rashed Almousa
- Department of Biomedical Engineering, Purdue School of Engineering and TechnologyIndiana University‐Purdue University at Indianapolis Indianapolis IN 46202 USA
- Department of Medical Equipment Technology, College of Applied Medical ScienceMajmaah University Al Majma'ah Riyadh 11952 Saudi Arabia
| | - Xin Wen
- Department of Biomedical Engineering, Purdue School of Engineering and TechnologyIndiana University‐Purdue University at Indianapolis Indianapolis IN 46202 USA
| | - Sungsoo Na
- Department of Biomedical Engineering, Purdue School of Engineering and TechnologyIndiana University‐Purdue University at Indianapolis Indianapolis IN 46202 USA
| | - Gregory Anderson
- Department of Biology, Purdue School of ScienceIndiana University‐Purdue University at Indianapolis Indianapolis IN 46202 USA
| | - Dong Xie
- Department of Biomedical Engineering, Purdue School of Engineering and TechnologyIndiana University‐Purdue University at Indianapolis Indianapolis IN 46202 USA
| |
Collapse
|
17
|
Xie D, Howard L, Almousa R. Surface modification of polyurethane with a hydrophilic, antibacterial polymer for improved antifouling and antibacterial function. J Biomater Appl 2018; 33:340-351. [PMID: 30089433 DOI: 10.1177/0885328218792687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antimicrobial surface is important for the inhibition of bacteria or biofilm formation on biomaterials. The objective of this study was to immobilize a novel hydrophilic polymer containing the antibacterial moiety onto polyurethane surface via a simple surface coating technology to make the surface not only antibacterial but also antifouling. The compound 3,4-dichloro-5-hydroxy-2(5H)-furanone was derivatized, characterized and incorporated onto polyvinylpyrrolidone containing succinimidyl functional groups, followed by coating onto the polyurethane surface. Contact angle, antibacterial function and protein adsorption of the modified surface were evaluated. The result shows that the modified surface exhibited significantly enhanced hydrophilicity with a 54-65% decrease in contact angle, increased antibacterial activity to Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa with a 24-57% decrease in viability, and reduced human serum albumin adsorption with a 64-70% decrease in adsorption, as compared to the original polyurethane.
Collapse
Affiliation(s)
- Dong Xie
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis 46202, IN, USA
| | - Leah Howard
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis 46202, IN, USA
| | - Rashed Almousa
- Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University at Indianapolis, Indianapolis 46202, IN, USA
| |
Collapse
|
18
|
Adipurnama I, Yang MC, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomater Sci 2018; 5:22-37. [PMID: 27942617 DOI: 10.1039/c6bm00618c] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular implants, especially vascular grafts made of synthetic polymers, find wide clinical applications in the treatment of cardiovascular diseases. However, cases of failure still exist, notably caused by restenosis and thrombus formation. Aiming to solve these problems, various approaches to surface modification of synthetic vascular grafts have been used to improve both the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification using hydrophilic molecules can enhance hemocompatibility, but this may limit the initial vascular endothelial cell adhesion. Therefore, the improvement of endothelialization on these grafts with specific peptides and biomolecules is now an exciting field of research. In this review, several techniques to improve surface modification and endothelialization on vascular grafts, mainly polyurethane (PU) grafts, are summarized, together with the recent development and evolution of the different strategies: from the use of PEG, zwitterions, and polysaccharides to peptides and other biomolecules and genes; from in vitro endothelialization to in vivo endothelialization; and from bio-inert and bio-active to bio-mimetic approaches.
Collapse
Affiliation(s)
- Iman Adipurnama
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Beata Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
19
|
Bioinspired Polyethersulfone Membrane Design via Blending with Functional Polyurethane. INT J POLYM SCI 2017. [DOI: 10.1155/2017/2158124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Polyurethanes (PUs) are currently considered to be biocompatible materials but limited by a low resistance to thrombus. We therefore design a heparin-like PU (HLPU) to modify polyethersulfone (PES) membranes approaching integrated antifouling and antithrombotic properties by bioinspiration of heparin structure. Poly(vinyl pyrrolidone)-HLPU (PVP-HLPU) was synthesized via reversible addition-fragmentation chain transfer polymerization of VP using PU as a macroinitiator and then sulfonated by concentrated H2SO4. FTIR and NMR results demonstrated the successful synthesis of PVP-HLPU. By incorporation of PVP-HLPU, the cross-sectional structure of PES composite membranes altered from finger-like structure to sponge-like structure resulting in tunable permeability. The increased hydrophilicity verified by water contact angles benefited both the permeability and antifouling property. As a consequence, the composite membranes showed good blood compatibility, including decreased protein adsorption, suppressed platelet adhesion, lowered thrombin-antithrombin III generation, reduced complement activation, and prolonged clotting times. Interestingly, the PVP-capped HLPU showed better blood compatibility compared to polyethyleneglycol-capped and citric acid-capped HLPUs. The results demonstrated the enhanced antifouling and antithrombotic properties of PES hemodialysis membranes by the introduction of functional HLPUs. Also, the proposed method may forward the fabrication of hemocompatible membranes via bioinspired surface design.
Collapse
|
20
|
Li Q, Hao X, Lv J, Ren X, Zhang K, Ullah I, Feng Y, Shi C, Zhang W. Mixed micelles obtained by co-assembling comb-like and grafting copolymers as gene carriers for efficient gene delivery and expression in endothelial cells. J Mater Chem B 2017; 5:1673-1687. [DOI: 10.1039/c6tb02212j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Preparation and characterization of controlled heparin release waterborne polyurethane coating systems. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1787-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Zia F, Zia KM, Zuber M, Tabasum S, Rehman S. Heparin based polyurethanes: A state-of-the-art review. Int J Biol Macromol 2016; 84:101-11. [DOI: 10.1016/j.ijbiomac.2015.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/15/2015] [Accepted: 12/01/2015] [Indexed: 10/22/2022]
|
23
|
Yang J, Liu W, Lv J, Feng Y, Ren X, Zhang W. REDV–polyethyleneimine complexes for selectively enhancing gene delivery in endothelial cells. J Mater Chem B 2016; 4:3365-3376. [DOI: 10.1039/c6tb00686h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy provides a new strategy for promoting endothelialization, and rapid endothelialization has attracted increasing attention for inhibiting thrombosis and restenosis in artificial vascular implants.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Wen Liu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University-Helmholtz-Zentrum Geesthacht
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| |
Collapse
|
24
|
Yang J, Feng Y, Zhang L. Biodegradable carrier/gene complexes to mediate the transfection and proliferation of human vascular endothelial cells. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin University; Tianjin China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin University; Tianjin China
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin China
| | - Li Zhang
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin China
| |
Collapse
|
25
|
Li Q, Shi C, Zhang W, Behl M, Lendlein A, Feng Y. Nanoparticles complexed with gene vectors to promote proliferation of human vascular endothelial cells. Adv Healthc Mater 2015; 4:1225-35. [PMID: 25755152 DOI: 10.1002/adhm.201400817] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/12/2015] [Indexed: 11/09/2022]
Abstract
Amphiphilic block copolymers containing biodegradable hydrophobic segments of depsipeptide based copolymers have been synthesized and explored as gene carriers for enhancing proliferation of endothelial cells in vitro. These polymers form nanoparticles (NPs) with positive charges on their surface, which could condense recombinant plasmids of enhanced green fluorescent protein plasmid and ZNF580 gene (pEGFP-ZNF580) and protect them against DNase I. ZNF580 gene is efficiently transported into EA.hy926 cells to promote their proliferation, whereby the transfection efficiency of NPs/pEGFP-ZNF580 is approximately similar to that of Lipofectamine 2000. These results indicate that the NPs might have potential as a carrier for pEGFP-ZNF580, which could support endothelialization of cardiovascular implants.
Collapse
Affiliation(s)
- Qian Li
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Changcan Shi
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology; Logistics University of Chinese People's Armed Police Force; Tianjin 300162 China
| | - Marc Behl
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin 300072 China
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT); Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
| | - Andreas Lendlein
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin 300072 China
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT); Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
| | - Yakai Feng
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin 300072 China
- Key Laboratory of Systems Bioengineering of Ministry of Education; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin 300072 China
| |
Collapse
|
26
|
PLGA/SF blend scaffolds modified with plasmid complexes for enhancing proliferation of endothelial cells. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Yang J, Khan M, Zhang L, Ren X, Guo J, Feng Y, Wei S, Zhang W. Antimicrobial surfaces grafted random copolymers with REDV peptide beneficial for endothelialization. J Mater Chem B 2015; 3:7682-7697. [DOI: 10.1039/c5tb01155h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional surfaces have been created by surface modification and click reactions. These surfaces possess excellent hemocompatibility and endothelialization, as well as effective antimicrobial activity.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Musammir Khan
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Li Zhang
- Tianjin University Helmholtz-Zentrum Geesthacht
- Joint Laboratory for Biomaterials and Regenerative Medicine
- 300072 Tianjin
- China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Shuping Wei
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| |
Collapse
|
28
|
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev 2015; 44:5680-742. [DOI: 10.1039/c4cs00483c] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent developments of surface modification and endothelialization of biomaterials in vascular tissue engineering applications.
Collapse
Affiliation(s)
- Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Haixia Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Qian Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xuefang Hao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Juan Lv
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Free University of Berlin
- D-14195 Berlin
- Germany
| | - Wenzhong Li
- Department of Cardiac Surgery
- University of Rostock
- D-18057 Rostock
- Germany
| |
Collapse
|
29
|
Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2014.07.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Liu X, Yuan L, Li D, Tang Z, Wang Y, Chen G, Chen H, Brash JL. Blood compatible materials: state of the art. J Mater Chem B 2014; 2:5718-5738. [PMID: 32262016 DOI: 10.1039/c4tb00881b] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Devices that function in contact with blood are ubiquitous in clinical medicine and biotechnology. These devices include vascular grafts, coronary stents, heart valves, catheters, hemodialysers, heart-lung bypass systems and many others. Blood contact generally leads to thrombosis (among other adverse outcomes), and no material has yet been developed which remains thrombus-free indefinitely and in all situations: extracorporeally, in the venous circulation and in the arterial circulation. In this article knowledge on blood-material interactions and "thromboresistant" materials is reviewed. Current approaches to the development of thromboresistant materials are discussed including surface passivation; incorporation and/or release of anticoagulants, antiplatelet agents and thrombolytic agents; and mimicry of the vascular endothelium.
Collapse
Affiliation(s)
- Xiaoli Liu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Modification of polycarbonateurethane surface with poly (ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion. Front Chem Sci Eng 2014. [DOI: 10.1007/s11705-014-1414-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
32
|
Tan D, Li Z, Yao X, Xiang C, Tan H, Fu Q. The influence of fluorocarbon chain and phosphorylcholine on the improvement of hemocompatibility: a comparative study in polyurethanes. J Mater Chem B 2014; 2:1344-1353. [DOI: 10.1039/c3tb21473g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The synergistic effect of a fluorocarbon chain and phosphorylcholine groups on the improvement of hemocompatibility in polyurethanes was investigated.
Collapse
Affiliation(s)
- Dongsheng Tan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065, China
| | - Zhen Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065, China
| | - Xuelin Yao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065, China
| | - Chunlan Xiang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065, China
| |
Collapse
|
33
|
de Mel A, Ramesh B, Scurr DJ, Alexander MR, Hamilton G, Birchall M, Seifalian AM. Fumed Silica Nanoparticle Mediated Biomimicry for Optimal Cell-Material Interactions for Artificial Organ Development. Macromol Biosci 2013; 14:307-13. [DOI: 10.1002/mabi.201300382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 09/20/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Achala de Mel
- UCL Centre for Nanotechnology and Regenerative Medicine; University College London; London UK
- Division of Surgery and Interventional Science; London UK
| | - Bala Ramesh
- UCL Centre for Nanotechnology and Regenerative Medicine; University College London; London UK
- Division of Surgery and Interventional Science; London UK
| | - David J. Scurr
- Laboratory of Biophysics and Surface Analysis; School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
| | - Morgan R. Alexander
- Laboratory of Biophysics and Surface Analysis; School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
| | - George Hamilton
- Division of Surgery and Interventional Science; London UK
- Royal Free London NHS Foundation Trust Hospital; London UK
| | - Martin Birchall
- UCL Centre for Nanotechnology and Regenerative Medicine; University College London; London UK
- UCL Ear Institute; Royal National Throat; Nose and Ear Hospital; London UK
| | - Alexander M. Seifalian
- UCL Centre for Nanotechnology and Regenerative Medicine; University College London; London UK
- Division of Surgery and Interventional Science; London UK
- Royal Free London NHS Foundation Trust Hospital; London UK
| |
Collapse
|