1
|
Liao A, Zheng W, Wang S, Wang N, Li Y, Chen D, Wang Y. Sortilin is associated with progranulin deficiency and autism-like behaviors in valproic acid-induced autism rats. CNS Neurosci Ther 2024; 30:e70015. [PMID: 39218796 PMCID: PMC11366450 DOI: 10.1111/cns.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Neuroinflammation and microglial activation-related dendritic injury contribute to the pathogenesis of Autism Spectrum Disorder (ASD). Previous studies show that Progranulin (PGRN) is a growth factor associated with inflammation and synaptic development, but the role of PGRN in autism and the mechanisms underlying changes in PGRN expression remain unclear. AIMS To investigate the impact of PGRN in autism, we stereotactically injected recombinant PGRN into the hippocampus of ASD model rats. Additionally, we explored the possibility that sortilin may be the factor behind the alterations in PGRN by utilizing SORT1 knockdown. Ultimately, we aimed to identify potential targets for the treatment of autism. RESULTS PGRN could alleviate inflammatory responses, protect neuronal dendritic spines, and ameliorate autism-like behaviors. Meanwhile, elevated expression of sortilin and decreased levels of PGRN were observed in both ASD patients and rats. Enhanced sortilin levels facilitated PGRN internalization into lysosomes. Notably, suppressing SORT1 expression amplified PGRN levels, lessened microglial activation, and mitigated inflammation, thereby alleviating autism-like behaviors. CONCLUSION Collectively, our findings highlight elevated sortilin levels in ASD rat brains, exacerbating dendrite impairment by affecting PGRN expression. PGRN supplementation and SORT1 knockdown hold potential as therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Ailing Liao
- NHC Key Laboratory of Birth Defects and Reproductive HealthChongqing Population and Family Planning Science and Technology Research InstituteChongqingChina
| | - Wenxia Zheng
- Institute of Neuroscience, School of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | | | - Nashi Wang
- Library/ArchiveChongqing Medical UniversityChongqingChina
| | | | - Di Chen
- Institute of Neuroscience, School of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| | - Yan Wang
- Institute of Neuroscience, School of Basic Medical ScienceChongqing Medical UniversityChongqingChina
| |
Collapse
|
2
|
Turkistani A, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Alexiou A, Papadakis M, Elfiky MM, Saad HM, Batiha GES. Therapeutic Potential Effect of Glycogen Synthase Kinase 3 Beta (GSK-3β) Inhibitors in Parkinson Disease: Exploring an Overlooked Avenue. Mol Neurobiol 2024; 61:7092-7108. [PMID: 38367137 PMCID: PMC11338983 DOI: 10.1007/s12035-024-04003-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/20/2024] [Indexed: 02/19/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease of the brain due to degeneration of dopaminergic neurons in the substantia nigra (SN). Glycogen synthase kinase 3 beta (GSK-3β) is implicated in the pathogenesis of PD. Therefore, the purpose of the present review was to revise the mechanistic role of GSK-3β in PD neuropathology, and how GSK-3β inhibitors affect PD neuropathology. GSK-3 is a conserved threonine/serine kinase protein that is intricate in the regulation of cellular anabolic and catabolic pathways by modulating glycogen synthase. Over-expression of GSK-3β is also interconnected with the development of different neurodegenerative diseases. However, the underlying mechanism of GSK-3β in PD neuropathology is not fully clarified. Over-expression of GSK-3β induces the development of PD by triggering mitochondrial dysfunction and oxidative stress in the dopaminergic neurons of the SN. NF-κB and NLRP3 inflammasome are activated in response to dysregulated GSK-3β in PD leading to progressive neuronal injury. Higher expression of GSK-3β in the early stages of PD neuropathology might contribute to the reduction of neuroprotective brain-derived neurotrophic factor (BDNF). Thus, GSK-3β inhibitors may be effective in PD by reducing inflammatory and oxidative stress disorders which are associated with degeneration of dopaminergic in the SN.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of Pharmacology and Toxicology, College of Medicine, Taif University, 21944, Taif, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Mohamed M Elfiky
- Anatomy Department, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Anatomy Department, Faculty of Medicine, Menoufia University, Shibin El Kom, Al Minufya, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
3
|
Lee GB, Mazli WNAB, Hao L. Multiomics Evaluation of Human iPSCs and iPSC-Derived Neurons. J Proteome Res 2024; 23:3149-3160. [PMID: 38415376 DOI: 10.1021/acs.jproteome.3c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Human induced pluripotent stem cells (iPSCs) can be differentiated into neurons, providing living human neurons to model brain diseases. However, it is unclear how different types of molecules work together to regulate stem cell and neuron biology in healthy and disease states. In this study, we conducted integrated proteomics, lipidomics, and metabolomics analyses with confident identification, accurate quantification, and reproducible measurements to compare the molecular profiles of human iPSCs and iPSC-derived neurons. Proteins, lipids, and metabolites related to mitosis, DNA replication, pluripotency, glycosphingolipids, and energy metabolism were highly enriched in iPSCs, whereas synaptic proteins, neurotransmitters, polyunsaturated fatty acids, cardiolipins, and axon guidance pathways were highly enriched in neurons. Mutations in the GRN gene lead to the deficiency of the progranulin (PGRN) protein, which has been associated with various neurodegenerative diseases. Using this multiomics platform, we evaluated the impact of PGRN deficiency on iPSCs and neurons at the whole-cell level. Proteomics, lipidomics, and metabolomics analyses implicated PGRN's roles in neuroinflammation, purine metabolism, and neurite outgrowth, revealing commonly altered pathways related to neuron projection, synaptic dysfunction, and brain metabolism. Multiomics data sets also pointed toward the same hypothesis that neurons seem to be more susceptible to PGRN loss compared to iPSCs, consistent with the neurological symptoms and cognitive impairment from patients carrying inherited GRN mutations.
Collapse
Affiliation(s)
- Gwang Bin Lee
- Department of Chemistry, The George Washington University, 800 22nd St. NW, Washington, D.C. 20052, United States
| | - Wan Nur Atiqah Binti Mazli
- Department of Chemistry, The George Washington University, 800 22nd St. NW, Washington, D.C. 20052, United States
| | - Ling Hao
- Department of Chemistry, The George Washington University, 800 22nd St. NW, Washington, D.C. 20052, United States
| |
Collapse
|
4
|
Li X, Saiyin H, Chen X, Yu Q, Ma L, Liang W. Ketamine impairs growth cone and synaptogenesis in human GABAergic projection neurons via GSK-3β and HDAC6 signaling. Mol Psychiatry 2024; 29:1647-1659. [PMID: 36414713 PMCID: PMC11371642 DOI: 10.1038/s41380-022-01864-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
The growth cone guides the axon or dendrite of striatal GABAergic projection neurons that protrude into the midbrain and cortex and form complex neuronal circuits and synaptic networks in a developing brain, aberrant projections and synaptic connections in the striatum related to multiple brain disorders. Previously, we showed that ketamine, an anesthetic, reduced dendritic growth, dendritic branches, and spine density in human striatal GABAergic neurons. However, whether ketamine affects the growth cone, the synaptic connection of growing striatal GABAergic neurons has not been tested. Using human GABAergic projection neurons derived from human inducible pluripotent stem cells (hiPSCs) and embryonic stem cells (ES) in vitro, we tested ketamine effects on the growth cones and synapses in developing GABAergic neurons by assessing the morphometry and the glycogen synthase kinase-3 (GSK-3) and histone deacetylase 6 (HDAC6) pathway. Ketamine exposure impairs growth cone formation, synaptogenesis, dendritic development, and maturation via ketamine-mediated activation of GSK-3 pathways and inhibiting HDAC6, an essential stabilizing protein for dendritic morphogenesis and synapse maturation. Our findings identified a novel ketamine neurotoxic pathway that depends on GSK-3β and HDAC6 signaling, suggesting that microtubule acetylation is a potential target for reducing ketamine's toxic effect on GABAergic projection neuronal development.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyu Chen
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiong Yu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Weimin Liang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Nabizadeh F, Zafari R. Progranulin and neuropathological features of Alzheimer's disease: longitudinal study. Aging Clin Exp Res 2024; 36:55. [PMID: 38441695 PMCID: PMC10914850 DOI: 10.1007/s40520-024-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Progranulin is an anti-inflammatory protein that plays an essential role in the synapse function and the maintenance of neurons in the central nervous system (CNS). It has been shown that the CSF level of progranulin increases in Alzheimer's disease (AD) patients and is associated with the deposition of amyloid-beta (Aβ) and tau in the brain tissue. In this study, we aimed to assess the longitudinal changes in cerebrospinal fluid (CSF) progranulin levels during different pathophysiological stages of AD and investigate associated AD pathologic features. METHODS We obtained the CSF and neuroimaging data of 1001 subjects from the ADNI database. The participants were classified into four groups based on the A/T/N framework: A + /TN + , A + /TN-, A-/TN + , and A-/TN-. RESULTS Based on our analysis there was a significant difference in CSF progranulin (P = 0.001) between ATN groups. Further ANOVA analysis revealed that there was no significant difference in the rate of change of CSF-progranulin ATN groups. We found that the rate of change of CSF progranulin was associated with baseline Aβ-PET only in the A-/TN + group. A significant association was found between the rate of change of CSF progranulin and the Aβ-PET rate of change only in A-/TN + CONCLUSION: Our findings revealed that an increase in CSF progranulin over time is associated with faster formation of Aβ plaques in patients with only tau pathology based on the A/T/N classification (suspected non-Alzheimer's pathology). Together, our findings showed that the role of progranulin-related microglial activity on AD pathology can be stage-dependent, complicated, and more prominent in non-AD pathologic changes. Thus, there is a need for further studies to consider progranulin-based therapies for AD treatment.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
6
|
Thomasen PB, Salasova A, Kjaer-Sorensen K, Woloszczuková L, Lavický J, Login H, Tranberg-Jensen J, Almeida S, Beel S, Kavková M, Qvist P, Kjolby M, Ovesen PL, Nolte S, Vestergaard B, Udrea AC, Nejsum LN, Chao MV, Van Damme P, Krivanek J, Dasen J, Oxvig C, Nykjaer A. SorCS2 binds progranulin to regulate motor neuron development. Cell Rep 2023; 42:113333. [PMID: 37897724 DOI: 10.1016/j.celrep.2023.113333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/25/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility. In mice, SorCS2 and PGRN are co-expressed by newborn MNs from embryonic day 9.5 until adulthood. Using cell-fate tracing and nerve segmentation, we find that SorCS2 deficiency perturbs cell-fate decisions of brachial MNs accompanied by innervation deficits of posterior nerves. Additionally, adult SorCS2 knockout mice display slower motor nerve regeneration. Interestingly, primitive macrophages express high levels of PGRN, and their interaction with SorCS2-positive motor axon is required during axon pathfinding. We further show that SorCS2 binds PGRN to control its secretion, signaling, and conversion into granulins. We propose that PGRN-SorCS2 signaling controls MN development and regeneration in vertebrates.
Collapse
Affiliation(s)
- Pernille Bogetofte Thomasen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Alena Salasova
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lucie Woloszczuková
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Josef Lavický
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Hande Login
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Jeppe Tranberg-Jensen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Sergio Almeida
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Sander Beel
- Department of Neurology and Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB, 3000 Leuven, Belgium
| | - Michaela Kavková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Mads Kjolby
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Peter Lund Ovesen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Stella Nolte
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Benedicte Vestergaard
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreea-Cornelia Udrea
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Moses V Chao
- Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA
| | - Philip Van Damme
- Department of Neurology and Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB, 3000 Leuven, Belgium
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jeremy Dasen
- Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Anders Nykjaer
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
7
|
Boylan MA, Pincetic A, Romano G, Tatton N, Kenkare-Mitra S, Rosenthal A. Targeting Progranulin as an Immuno-Neurology Therapeutic Approach. Int J Mol Sci 2023; 24:15946. [PMID: 37958929 PMCID: PMC10647331 DOI: 10.3390/ijms242115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Immuno-neurology is an emerging therapeutic strategy for dementia and neurodegeneration designed to address immune surveillance failure in the brain. Microglia, as central nervous system (CNS)-resident myeloid cells, routinely perform surveillance of the brain and support neuronal function. Loss-of-function (LOF) mutations causing decreased levels of progranulin (PGRN), an immune regulatory protein, lead to dysfunctional microglia and are associated with multiple neurodegenerative diseases, including frontotemporal dementia caused by the progranulin gene (GRN) mutation (FTD-GRN), Alzheimer's disease (AD), Parkinson's disease (PD), limbic-predominant age-related transactivation response deoxyribonucleic acid binding protein 43 (TDP-43) encephalopathy (LATE), and amyotrophic lateral sclerosis (ALS). Immuno-neurology targets immune checkpoint-like proteins, offering the potential to convert aging and dysfunctional microglia into disease-fighting cells that counteract multiple disease pathologies, clear misfolded proteins and debris, promote myelin and synapse repair, optimize neuronal function, support astrocytes and oligodendrocytes, and maintain brain vasculature. Several clinical trials are underway to elevate PGRN levels as one strategy to modulate the function of microglia and counteract neurodegenerative changes associated with various disease states. If successful, these and other immuno-neurology drugs have the potential to revolutionize the treatment of neurodegenerative disorders by harnessing the brain's immune system and shifting it from an inflammatory/pathological state to an enhanced physiological/homeostatic state.
Collapse
Affiliation(s)
| | | | | | | | | | - Arnon Rosenthal
- Alector, Inc., 131 Oyster Point Blvd, Suite 600, South San Francisco, CA 94080, USA
| |
Collapse
|
8
|
Hudakova N, Mudronova D, Marcincakova D, Slovinska L, Majerova P, Maloveska M, Petrouskova P, Humenik F, Cizkova D. The role of primed and non-primed MSC-derived conditioned media in neuroregeneration. Front Mol Neurosci 2023; 16:1241432. [PMID: 38025267 PMCID: PMC10656692 DOI: 10.3389/fnmol.2023.1241432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction With growing significance in nervous system repair, mesenchymal stem cell-derived conditioned media (MSCCM) have been used in cell-free therapies in regenerative medicine. However, the immunomodulatory and neuroregenerative effects of MSCCM and the influence of priming on these effects are still poorly understood. Methods In this study, by various methods focused on cell viability, proliferation, neuron-like differentiation, neurite outgrowth, cell migration and regrowth, we demonstrated that MSCCM derived from adipose tissue (AT-MSCCM) and amniotic membrane (AM-MSCCM) had different effects on SH-SY5Y cells. Results and discussion AT-MSCCM was found to have a higher proliferative capacity and the ability to impact neurite outgrowth during differentiation, while AM-MSCCM showed more pronounced immunomodulatory activity, migration, and re-growth of SH-SY5Y cells in the scratch model. Furthermore, priming of MSC with pro-inflammatory cytokine (IFN-γ) resulted in different proteomic profiles of conditioned media from both sources, which had the highest effect on SH-SY5Y proliferation and neurite outgrowth in terms of the length of neurites (pAT-MSCCM) compared to the control group (DMEM). Altogether, our results highlight the potential of primed and non-primed MSCCM as a therapeutic tool for neurodegenerative diseases, although some differences must be considered.
Collapse
Affiliation(s)
- Nikola Hudakova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dana Marcincakova
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Lucia Slovinska
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Luis Pasteur University Hospital, Košice, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marcela Maloveska
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Patricia Petrouskova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Filip Humenik
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
9
|
Purrahman D, Shojaeian A, Poniatowski ŁA, Piechowski-Jóźwiak B, Mahmoudian-Sani MR. The Role of Progranulin (PGRN) in the Pathogenesis of Ischemic Stroke. Cell Mol Neurobiol 2023; 43:3435-3447. [PMID: 37561339 DOI: 10.1007/s10571-023-01396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Stroke is a life-threatening medical condition and is a leading cause of disability. Cerebral ischemia is characterized by a distinct inflammatory response starting with the production of various cytokines and other inflammation-related agents. Progranulin (PGRN), a multifunctional protein, is critical in diverse physiological reactions, such as cell proliferation, inflammation, wound healing, and nervous system development. A mature PGRN is anti-inflammatory, while granulin, its derivative, conversely induces pro-inflammatory cytokine expression. PGRN is significantly involved in the brain tissue and its damage, for example, improving mood and cognitive disorders caused by cerebral ischemia. It may also have protective effects against nerve and spinal cord injuries by inhibiting neuroinflammatory response and apoptosis or it may be related to the proliferation, accumulation, differentiation, and activation of microglia. PGRN is a neurotrophic factor in the central nervous system. It may increase post-stroke neurogenesis of the subventricular zone (SVZ), which is particularly important in improving long-term brain function following cerebral ischemia. The neurogenesis enhanced via PGRN in the ischemic brain SVZ may be attributed to the induction of PI3K/AKT and MAPK/ERK signaling routes. PGRN can also promote the proliferation of neural stem/progenitor cells through PI3K/AKT signaling pathway. PGRN increases hippocampal neurogenesis, reducing anxiety and impaired spatial learning post-cerebral ischemia. PGRN alleviates cerebral ischemia/reperfusion injury by reducing endoplasmic reticulum stress and suppressing the NF-κB signaling pathway. PGRN can be introduced as a potent neuroprotective agent capable of improving post-ischemia neuronal actions, mainly by reducing and elevating the inflammatory and anti-inflammatory cytokines. Expression, storage, cleavage, and function of progranulin (PGRN) in the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Łukasz A Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036, Neubrandenburg, Germany
| | - Bartłomiej Piechowski-Jóźwiak
- Neurological Institute, Cleveland Clinic Abu Dhabi, 59 Hamouda Bin Ali Al Dhaheri Street, Jazeerat Al Maryah, PO Box 112412, Abu Dhabi, United Arab Emirates
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Feng T, Minevich G, Liu P, Qin HX, Wozniak G, Pham J, Pham K, Korgaonkar A, Kurnellas M, Defranoux NA, Long H, Mitra A, Hu F. AAV- GRN partially corrects motor deficits and ALS/FTLD-related pathology in Tmem106b-/-Grn-/- mice. iScience 2023; 26:107247. [PMID: 37519899 PMCID: PMC10371829 DOI: 10.1016/j.isci.2023.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Loss of function of progranulin (PGRN), encoded by the granulin (GRN) gene, is implicated in several neurodegenerative diseases. Several therapeutics to boost PGRN levels are currently in clinical trials. However, it is difficult to test the efficacy of PGRN-enhancing drugs in mouse models due to the mild phenotypes of Grn-/- mice. Recently, mice deficient in both PGRN and TMEM106B were shown to develop severe motor deficits and pathology. Here, we show that intracerebral ventricle injection of PGRN-expressing AAV1/9 viruses partially rescues motor deficits, neuronal loss, glial activation, and lysosomal abnormalities in Tmem106b-/-Grn-/- mice. Widespread expression of PGRN is detected in both the brain and spinal cord for both AAV subtypes. However, AAV9 but not AAV1-mediated expression of PGRN results in high levels of PGRN in the serum. Together, these data support using the Tmem106b-/-Grn-/- mouse strain as a robust mouse model to determine the efficacy of PGRN-elevating therapeutics.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Pengan Liu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry Xin Qin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jenny Pham
- Alector Inc, South San Francisco, CA 94080, USA
| | - Khanh Pham
- Alector Inc, South San Francisco, CA 94080, USA
| | | | | | | | - Hua Long
- Alector Inc, South San Francisco, CA 94080, USA
| | | | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Dedert C, Salih L, Xu F. Progranulin Protects against Hyperglycemia-Induced Neuronal Dysfunction through GSK3β Signaling. Cells 2023; 12:1803. [PMID: 37443837 PMCID: PMC10340575 DOI: 10.3390/cells12131803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Type II diabetes affects over 530 million individuals worldwide and contributes to a host of neurological pathologies. Uncontrolled high blood glucose (hyperglycemia) is a major factor in diabetic pathology, and glucose regulation is a common goal for maintenance in patients. We have found that the neuronal growth factor progranulin protects against hyperglycemic stress in neurons, and although its mechanism of action is uncertain, our findings identified Glycogen Synthase Kinase 3β (GSK3β) as being potentially involved in its effects. In this study, we treated mouse primary cortical neurons exposed to high-glucose conditions with progranulin and a selective pharmacological inhibitor of GSK3β before assessing neuronal health and function. Whole-cell and mitochondrial viability were both improved by progranulin under high-glucose stress in a GSK3β-dependent manner. This extended to autophagy flux, indicated by the expressions of autophagosome marker Light Chain 3B (LC3B) and lysosome marker Lysosome-Associated Membrane Protein 2A (LAMP2A), which were affected by progranulin and showed heterogeneous changes from GSK3β inhibition. Lastly, GSK3β inhibition attenuated downstream calcium signaling and neuronal firing effects due to acute progranulin treatment. These data indicate that GSK3β plays an important role in progranulin's neuroprotective effects under hyperglycemic stress and serves as a jumping-off point to explore progranulin's protective capabilities in other neurodegenerative models.
Collapse
Affiliation(s)
- Cass Dedert
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
| | - Lyuba Salih
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
| | - Fenglian Xu
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
12
|
Zhang T, Feng T, Wu K, Guo J, Nana AL, Yang G, Seeley WW, Hu F. Progranulin deficiency results in sex-dependent alterations in microglia in response to demyelination. Acta Neuropathol 2023:10.1007/s00401-023-02578-w. [PMID: 37120788 PMCID: PMC10375542 DOI: 10.1007/s00401-023-02578-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Heterozygous mutations in the granulin (GRN) gene, resulting in the haploinsufficiency of the progranulin (PGRN) protein, is a leading cause of frontotemporal lobar degeneration (FTLD). Complete loss of the PGRN protein causes neuronal ceroid lipofuscinosis (NCL), a lysosomal storage disorder. Polymorphisms in the GRN gene have also been associated with several other neurodegenerative diseases, including Alzheimer's disease (AD), and Parkinson's disease (PD). PGRN deficiency has been shown to cause myelination defects previously, but how PGRN regulates myelination is unknown. Here, we report that PGRN deficiency leads to a sex-dependent myelination defect with male mice showing more severe demyelination in response to cuprizone treatment. This is accompanied by exacerbated microglial proliferation and activation in the male PGRN-deficient mice. Interestingly, both male and female PGRN-deficient mice show sustained microglial activation after cuprizone removal and a defect in remyelination. Specific ablation of PGRN in microglia results in similar sex-dependent phenotypes, confirming a microglial function of PGRN. Lipid droplets accumulate in microglia specifically in male PGRN-deficient mice. RNA-seq analysis and mitochondrial function assays reveal key differences in oxidative phosphorylation in male versus female microglia under PGRN deficiency. A significant decrease in myelination and accumulation of myelin debris and lipid droplets in microglia were found in the corpus callosum regions of FTLD patients with GRN mutations. Taken together, our data support that PGRN deficiency leads to sex-dependent alterations in microglia with subsequent myelination defects.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Kenton Wu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Jennifer Guo
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Alissa L Nana
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
- Department of Pathology, University of California, San Francisco, CA, 94158, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
13
|
Progranulin Deficiency Induces Mitochondrial Dysfunction in Frontotemporal Lobar Degeneration with TDP-43 Inclusions. Antioxidants (Basel) 2023; 12:antiox12030581. [PMID: 36978829 PMCID: PMC10044829 DOI: 10.3390/antiox12030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Loss-of-function (LOF) mutations in GRN gene, which encodes progranulin (PGRN), cause frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). FTLD-TDP is one of the most common forms of early onset dementia, but its pathogenesis is not fully understood. Mitochondrial dysfunction has been associated with several neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Here, we have investigated whether mitochondrial alterations could also contribute to the pathogenesis of PGRN deficiency-associated FTLD-TDP. Our results showed that PGRN deficiency induced mitochondrial depolarization, increased ROS production and lowered ATP levels in GRN KD SH-SY5Y neuroblastoma cells. Interestingly, lymphoblasts from FTLD-TDP patients carrying a LOF mutation in the GRN gene (c.709-1G > A) also demonstrated mitochondrial depolarization and lower ATP levels. Such mitochondrial damage increased mitochondrial fission to remove dysfunctional mitochondria by mitophagy. Interestingly, PGRN-deficient cells showed elevated mitochondrial mass together with autophagy dysfunction, implying that PGRN deficiency induced the accumulation of damaged mitochondria by blocking its degradation in the lysosomes. Importantly, the treatment with two brain-penetrant CK-1δ inhibitors (IGS-2.7 and IGS-3.27), known for preventing the phosphorylation and cytosolic accumulation of TDP-43, rescued mitochondrial function in PGRN-deficient cells. Taken together, these results suggest that mitochondrial function is impaired in FTLD-TDP associated with LOF GRN mutations and that the TDP-43 pathology linked to PGRN deficiency might be a key mechanism contributing to such mitochondrial dysfunction. Furthermore, our results point to the use of drugs targeting TDP-43 pathology as a promising therapeutic strategy for restoring mitochondrial function in FTLD-TDP and other TDP-43-related diseases.
Collapse
|
14
|
Bhopatkar AA, Dhakal S, Abernathy HG, Morgan SE, Rangachari V. Charge and Redox States Modulate Granulin-TDP-43 Coacervation Toward Phase Separation or Aggregation. Biophys J 2022; 121:2107-2126. [PMID: 35490297 DOI: 10.1016/j.bpj.2022.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/05/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Cytoplasmic inclusions containing aberrant proteolytic fragments of TDP-43 are associated with frontotemporal lobar degeneration (FTLD) and other related pathologies. In FTLD, TDP-43 is translocated into the cytoplasm and proteolytically cleaved to generate a prion-like domain (PrLD) containing C-terminal fragments (C25 and C35) that form toxic inclusions. Under stress, TDP-43 partitions into membraneless organelles called stress granules (SGs) by coacervating with RNA and other proteins. To glean into the factors that influence the dynamics between these cytoplasmic foci, we investigated the effects of cysteine-rich granulins (GRNs 1-7), which are the proteolytic products of progranulin, a protein implicated in FTLD, on TDP-43. We show that extracellular GRNs, typically generated during inflammation, internalize and colocalize with PrLD as puncta in the cytoplasm of neuroblastoma cells but show less likelihood of their presence in SGs. In addition, we show GRNs and PrLD coacervate to undergo liquid-liquid phase separation (LLPS) or form gel- or solid-like aggregates. Using charge patterning and conserved cysteines among the wild-type GRNs as guides, along with specifically engineered mutants, we discover that the negative charges on GRNs drive LLPS while the positive charges and the redox state of cysteines modulate these phase transitions. Furthermore, RNA and GRNs compete and expel one another from PrLD condensates, providing a basis for GRN's absence in SGs. Together, the results help uncover potential modulatory mechanisms by which extracellular GRNs, formed during chronic inflammatory conditions, could internalize, and modulate cytoplasmic TDP-43 inclusions in proteinopathies.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406
| | - Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406
| | - Hannah G Abernathy
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg MS 39406
| | - Sarah E Morgan
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg MS 39406
| | - Vijay Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406;; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406;.
| |
Collapse
|
15
|
Wang P, Chen W, Zhang Y, Zhong Q, Li Z, Wang Y. MicroRNA-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis to prevent the epithelial-mesenchymal transition. Mol Biol Rep 2022; 49:2711-2721. [PMID: 35059968 DOI: 10.1007/s11033-021-07080-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Breast cancer is one of the most common malignant and highly heterogeneous tumors in women. MicroRNAs (miRNAs), such as miR-1246, play important roles in various types of malignant cancers, including triple-negative breast cancer (TNBC). However, the biological role of miR-1246 in TNBC has not yet been fully elucidated. In this study, we studied the role of miR-1246 in the occurrence and development of TNBC and its mechanism of action. METHODS Cell Counting Kit-8 (CCK-8), wound healing, and Transwell assays were performed to observe the effects of miR-1246 on TNBC cell proliferation, migration, and invasion, respectively. The expression of epithelial-mesenchymal transition (EMT) markers was detected by western blotting. Dual luciferase reporter assays were performed to determine whether DYRK1A is a novel target of miR-1246. In addition, an immunoprecipitation experiment was performed to verify the binding of DYRK1A to PGRN. Rescue experiments were performed to determine whether DYRK1A is a novel target of miR-1246 and whether miR-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis to prevent the epithelial-mesenchymal transition. RESULTS Our results show that miR‑1246 suppresses the proliferation, migration, and invasion of TNBC cells, DYRK1A is a novel target of miR-1246 and Importin-8 mediated miR-1246 nuclear translocation. MiR‑1246 plays a suppressive role in the regulation of the EMT of TNBC cells by targeting DYRK1A. DYRK1A mediates the metastasis of triple-negative breast cancer via activation of the EMT. We identified PGRN as a novel DYRK1A-interacting protein. Overexpression of PGRN and DYRK1A promoted cell proliferation and migration of TNBC, but this effect was reversed by co-expression of miR-1246 mimics.DYRK1A and PGRN act together to regulate the occurrence and development of breast cancer through miR-1246. CONCLUSION MiR-1246 suppresses the metastasis of breast cancer cells by targeting the DYRK1A/PGRN axis and preventing the epithelial-mesenchymal transition. The MiR-1246/DYRK1A/PGRN axis regulates TNBC progression, suggesting that MiR-1246 could be promising therapeutic targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Pan Wang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Wenju Chen
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Yaqiong Zhang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Qianyi Zhong
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Zhaoyun Li
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China
| | - Yichao Wang
- Department of Laboratory Medicine, Taizhou Central Hospital, Taizhou, 318000, Zhejiang, China.
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), No. 999 Donghai Road, Jiaojiang District, Taizhou, 318000, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
Wang L, Chen J, Hu Y, Liao A, Zheng W, Wang X, Lan J, Shen J, Wang S, Yang F, Wang Y, Li Y, Chen D. Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD. Transl Psychiatry 2022; 12:114. [PMID: 35318322 PMCID: PMC8941112 DOI: 10.1038/s41398-022-01875-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease featuring social interaction deficits and repetitive/stereotyped behaviours; the prevalence of this disorder has continuously increased. Progranulin (PGRN) is a neurotrophic factor that promotes neuronal survival and differentiation. However, there have not been sufficient studies investigating its effect in animal models of autism. This study investigated the effects of PGRN on autistic phenotypes in rats treated with valproic acid (VPA) and assessed the underlying molecular mechanisms. PGRN was significantly downregulated in the cerebellum at postnatal day 14 (PND14) and PND35 in VPA-exposed rats, which simultaneously showed defective social preference, increased repetitive behaviours, and uncoordinated movements. When human recombinant PGRN (r-PGRN) was injected into the cerebellum of newborn ASD model rats (PND10 and PND17), some of the behavioural defects were alleviated. r-PGRN supplementation also reduced cerebellar neuronal apoptosis and rescued synapse formation in ASD rats. Mechanistically, we confirmed that PGRN protects neurodevelopment via the PI3K/Akt/GSK-3β pathway in the cerebellum of a rat ASD model. Moreover, we found that prosaposin (PSAP) promoted the internalisation and neurotrophic activity of PGRN. These results experimentally demonstrate the therapeutic effects of PGRN on a rat model of ASD for the first time and provide a novel therapeutic strategy for autism.
Collapse
Affiliation(s)
- Lili Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Jianhui Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yuling Hu
- Qujiang No. 2 Middle School, Xi'an, 710000, China
| | - Ailing Liao
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Wenxia Zheng
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqing Wang
- Department of Nuclear Medicine, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, 637000, China
| | - Junying Lan
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Jingjing Shen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Yang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
17
|
Jeon J, Mony TJ, Cho E, Kwon H, Cho WS, Choi JW, Kim BC, Ryu JH, Jeon SJ, Kwon KJ, Shin CY, Park SJ, Kim DH. Role of extracellular signal-regulated kinase in rubrofusarin-enhanced cognitive functions and neurite outgrowth. Biomed Pharmacother 2022; 147:112663. [DOI: 10.1016/j.biopha.2022.112663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
|
18
|
Sun S, Zhou J, Li Z, Wu Y, Wang H, Zheng Q, Adu-Nti F, Fan J, Tian Y. Progranulin promotes hippocampal neurogenesis and alleviates anxiety-like behavior and cognitive impairment in adult mice subjected to cerebral ischemia. CNS Neurosci Ther 2022; 28:775-787. [PMID: 35146924 PMCID: PMC8981488 DOI: 10.1111/cns.13810] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/14/2022] Open
Abstract
Aims Cerebral ischemia can lead to anxiety and cognitive impairment due to the loss of hippocampal neurons. Facilitation of endogenous neurogenesis in the hippocampus is a potential therapeutic strategy for alleviating ischemia‐induced anxiety and cognitive impairment. Progranulin (PGRN), a secretory glycoprotein, has been reported to have a mitogentic effect on many cell types. However, it is not clear whether PGRN enhances hippocampal neurogenesis and promotes functional recovery. Methods Adult male C57BL/6 mice were subjected to permanent middle cerebral artery occlusion (pMCAO) and injected intracerebroventricularly with recombinant mouse PGRN 30 min after pMCAO. Anxiety‐like behavior was detected by the open field and the elevated plus maze tests, and spatial learning and memory abilities were evaluated by Morris water maze. Neurogenesis was examined by double labeling of BrdU and neural stem cells or neurons markers. For mechanism studies, the level of ERK1/2 and AKT phosphorylation were assessed by western blotting. Results Progranulin significantly alleviated anxiety‐like behavior and spatial learning and memory impairment induced by cerebral ischemia in mice. Consistent with the functional recovery, PGRN promoted neural stem cells (NSCs) proliferation and neuronal differentiation in the dentate gyrus (DG) after cerebral ischemia. PGRN upregulated the expression of phosphorylated ERK1/2 and Akt in the DG after cerebral ischemia. Conclusions Progranulin alleviates ischemia‐induced anxiety‐like behavior and spatial learning and memory impairment in mice, probably via stimulation of hippocampal neurogenesis mediated by activation of MAPK/ERK and PI3K/Akt pathways. PGRN might be a promising candidate for coping with ischemic stroke‐induced mood and cognitive impairment in clinic.
Collapse
Affiliation(s)
- Siqi Sun
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jinlong Zhou
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhongqi Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuzi Wu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hao Wang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China
| | - Qi Zheng
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Frank Adu-Nti
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juan Fan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yingfang Tian
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
19
|
Effect of Progranulin on Proliferation and Differentiation of Neural Stem/Progenitor Cells after Oxygen/Glucose Deprivation. Int J Mol Sci 2022; 23:ijms23041949. [PMID: 35216064 PMCID: PMC8879483 DOI: 10.3390/ijms23041949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022] Open
Abstract
We previously demonstrated that sivelestat, a selective neutrophil elastase inhibitor, attenuates the cleavage of progranulin (PGRN) and ischemia-induced cell injury in the brain. To obtain further insight into the role of PGRN, in the present study we evaluated the direct effects of sivelestat and recombinant PGRN (rPGRN) on the proliferation and differentiation of neural stem cells in cultures of neural stem/progenitor cells (NS/PC) under the ischemic condition in vitro. We demonstrated that oxygen/glucose deprivation (OGD)-induced cell proliferation of NS/PC was increased by rPGRN treatment. In addition, this increase was accompanied by increased phosphorylation of Akt and GSK-3β (Ser9) after OGD. But none of these responses occurred by treatment with sivelestat. Therefore, activation of the Akt/GSK-3β pathway could well be involved in this proliferative effect of rPGRN. Although OGD and reoxygenation-induced changes in the differentiation of NS/PC into neurons or astrocytes was not affected by treatment with rPGRN or sivelestat, it is noteworthy that rPGRN enhanced neurite outgrowth of β3-tubulin-positive neurons that had differentiated from the NS/PC. These findings suggest that enhancement of proliferation of endogenous NS/PC and neurite outgrowth of differentiated neurons from NS/PC by PGRN could be useful for a new therapeutic approach for cerebral ischemia.
Collapse
|
20
|
Makowski C, van der Meer D, Dong W, Wang H, Wu Y, Zou J, Liu C, Rosenthal SB, Hagler DJ, Fan CC, Kremen WS, Andreassen OA, Jernigan TL, Dale AM, Zhang K, Visscher PM, Yang J, Chen CH. Discovery of genomic loci of the human cerebral cortex using genetically informed brain atlases. Science 2022; 375:522-528. [PMID: 35113692 DOI: 10.1126/science.abe8457] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To determine the impact of genetic variants on the brain, we used genetically informed brain atlases in genome-wide association studies of regional cortical surface area and thickness in 39,898 adults and 9136 children. We uncovered 440 genome-wide significant loci in the discovery cohort and 800 from a post hoc combined meta-analysis. Loci in adulthood were largely captured in childhood, showing signatures of negative selection, and were linked to early neurodevelopment and pathways associated with neuropsychiatric risk. Opposing gradations of decreased surface area and increased thickness were associated with common inversion polymorphisms. Inferior frontal regions, encompassing Broca's area, which is important for speech, were enriched for human-specific genomic elements. Thus, a mixed genetic landscape of conserved and human-specific features is concordant with brain hierarchy and morphogenetic gradients.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Weixiu Dong
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Hao Wang
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Yan Wu
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Jingjing Zou
- Division of Biostatistics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Cin Liu
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Sara B Rosenthal
- Center for Computational Biology and Bioinformatics, University of California, San Diego, CA, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Chun Chieh Fan
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - William S Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, CA, USA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Terry L Jernigan
- Center for Human Development, University of California, San Diego, CA, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA.,Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kun Zhang
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Peter M Visscher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| |
Collapse
|
21
|
Longobardi A, Nicsanu R, Bellini S, Squitti R, Catania M, Tiraboschi P, Saraceno C, Ferrari C, Zanardini R, Binetti G, Di Fede G, Benussi L, Ghidoni R. Cerebrospinal Fluid EV Concentration and Size Are Altered in Alzheimer’s Disease and Dementia with Lewy Bodies. Cells 2022; 11:cells11030462. [PMID: 35159272 PMCID: PMC8834088 DOI: 10.3390/cells11030462] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD) represent the three major neurodegenerative dementias characterized by abnormal brain protein accumulation. In this study, we investigated extracellular vesicles (EVs) and neurotrophic factors in the cerebrospinal fluid (CSF) of 120 subjects: 36 with AD, 30 with DLB, 34 with FTD and 20 controls. Specifically, CSF EVs were analyzed by Nanoparticle Tracking Analysis and neurotrophic factors were measured with ELISA. We found higher EV concentration and lower EV size in AD and DLB groups compared to the controls. Classification tree analysis demonstrated EV size as the best parameter able to discriminate the patients from the controls (96.7% vs. 3.3%, respectively). The diagnostic performance of the EV concentration/size ratio resulted in a fair discrimination level with an area under the curve of 0.74. Moreover, the EV concentration/size ratio was associated with the p-Tau181/Aβ42 ratio in AD patients. In addition, we described altered levels of cystatin C and progranulin in the DLB and AD groups. We did not find any correlation between neurotrophic factors and EV parameters. In conclusion, the results of this study suggest a common involvement of the endosomal pathway in neurodegenerative dementias, giving important insight into the molecular mechanisms underlying these pathologies.
Collapse
Affiliation(s)
- Antonio Longobardi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.L.); (R.N.); (S.B.); (R.S.); (C.S.); (R.Z.); (L.B.)
| | - Roland Nicsanu
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.L.); (R.N.); (S.B.); (R.S.); (C.S.); (R.Z.); (L.B.)
| | - Sonia Bellini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.L.); (R.N.); (S.B.); (R.S.); (C.S.); (R.Z.); (L.B.)
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.L.); (R.N.); (S.B.); (R.S.); (C.S.); (R.Z.); (L.B.)
| | - Marcella Catania
- Neurology 5 and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.C.); (P.T.); (G.D.F.)
| | - Pietro Tiraboschi
- Neurology 5 and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.C.); (P.T.); (G.D.F.)
| | - Claudia Saraceno
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.L.); (R.N.); (S.B.); (R.S.); (C.S.); (R.Z.); (L.B.)
| | - Clarissa Ferrari
- Service of Statistics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Roberta Zanardini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.L.); (R.N.); (S.B.); (R.S.); (C.S.); (R.Z.); (L.B.)
| | - Giuliano Binetti
- MAC Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy;
| | - Giuseppe Di Fede
- Neurology 5 and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.C.); (P.T.); (G.D.F.)
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.L.); (R.N.); (S.B.); (R.S.); (C.S.); (R.Z.); (L.B.)
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (A.L.); (R.N.); (S.B.); (R.S.); (C.S.); (R.Z.); (L.B.)
- Correspondence: ; Tel.: +39-030-3501725
| |
Collapse
|
22
|
Zhao X, Hasan S, Liou B, Lin Y, Sun Y, Liu C. Analysis of the Biomarkers for Neurodegenerative Diseases in Aged Progranulin Deficient Mice. Int J Mol Sci 2022; 23:629. [PMID: 35054815 PMCID: PMC8775568 DOI: 10.3390/ijms23020629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative diseases are debilitating impairments that affect millions of people worldwide and are characterized by progressive degeneration of structure and function of the central or peripheral nervous system. Effective biomarkers for neurodegenerative diseases can be used to improve the diagnostic workup in the clinic as well as facilitate the development of effective disease-modifying therapies. Progranulin (PGRN) has been reported to be involved in various neurodegenerative disorders. Hence, in the current study we systematically compared the inflammation and accumulation of typical neurodegenerative disease markers in the brain tissue between PGRN knockout (PGRN KO) and wildtype (WT) mice. We found that PGRN deficiency led to significant neuron loss as well as activation of microglia and astrocytes in aged mice. Several characteristic neurodegenerative markers, including α-synuclein, TAR DNA-binding protein 43 (TDP-43), Tau, and β-amyloid, were all accumulated in the brain of PGRN-deficient mice as compared to WT mice. Moreover, higher aggregation of lipofuscin was observed in the brain tissue of PGRN-deficient mice compared with WT mice. In addition, the autophagy was also defective in the brain of PGRN-deficient mice, indicated by the abnormal expression level of autophagy marker LC3-II. Collectively, comprehensive assays support the idea that PGRN plays an important role during the development of neurodegenerative disease, indicating that PGRN might be a useful biomarker for neurodegenerative diseases in clinical settings.
Collapse
Affiliation(s)
- Xiangli Zhao
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (S.H.)
| | - Sadaf Hasan
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (S.H.)
| | - Benjamin Liou
- The Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (B.L.); (Y.L.); (Y.S.)
| | - Yi Lin
- The Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (B.L.); (Y.L.); (Y.S.)
| | - Ying Sun
- The Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (B.L.); (Y.L.); (Y.S.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY 10003, USA; (X.Z.); (S.H.)
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
23
|
Shimoda A, Tanabe T, Sato T, Nedachi T. Hydrogen peroxide induces progranulin expression to control neurite outgrowth in HT22 cells. Biosci Biotechnol Biochem 2021; 85:2103-2112. [PMID: 34289035 DOI: 10.1093/bbb/zbab134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/15/2021] [Indexed: 01/02/2023]
Abstract
Progranulin (PGRN) is a multifunctional growth factor expressed in central nervous system. Although PGRN expression is regulated by various stressors, its precise role(s) and regulatory mechanism(s) remain elusive. In this study, we used HT22 cells to investigate the physiological implications of oxidative stress-induced PGRN expression and the regulation of PGRN expression by oxidative stress. We observed that p38 MAP kinase was activated upon the addition of H2O2, and a selective p38 MAP kinase inhibitor attenuated PGRN induction by H2O2. To explore the physiological role(s) of the PGRN induction, we first confirmed H2O2-dependent responses of HT22 cells and found that the length and number of neurites were increased by H2O2. Pgrn knockdown experiments suggested that these changes were mediated by H2O2-induced PGRN expression, at least in part. Overall, the results suggested that an increase in oxidative stress in HT22 cells induced PGRN expression via p38 MAP kinase pathway, thereby controlling neurite outgrowth.
Collapse
Affiliation(s)
- Ayumu Shimoda
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | - Takemi Tanabe
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | - Tsubasa Sato
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | - Taku Nedachi
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| |
Collapse
|
24
|
Mendsaikhan A, Tooyama I, Serrano GE, Beach TG, Walker DG. Loss of Lysosomal Proteins Progranulin and Prosaposin Associated with Increased Neurofibrillary Tangle Development in Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:741-753. [PMID: 34374777 PMCID: PMC8433593 DOI: 10.1093/jnen/nlab056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease causing cognitive decline in the aging population. To develop disease-modifying treatments, understanding the mechanisms behind the pathology is important, which should include observations using human brain samples. We reported previously on the association of lysosomal proteins progranulin (PGRN) and prosaposin (PSAP) with amyloid plaques in non-demented aged control and AD brains. In this study, we investigated the possible involvement of PGRN and PSAP in tangle formation using human brain tissue sections of non-demented aged control subjects and AD cases and compared with cases of frontotemporal dementia with granulin (GRN) mutations. The study revealed that decreased amounts of PGRN and PSAP proteins were detected even in immature neurofibrillary tangles, while colocalization was still evident in adjacent neurons in all cases. Results suggest that neuronal loss of PGRN preceded loss of PSAP as tangles developed and matured. The GRN mutation cases exhibited almost complete absence of PGRN in most neurons, while PSAP signal was preserved. Although based on correlative data, we suggest that reduced levels of PGRN and PSAP and their interaction in neurons might predispose to accumulation of p-Tau protein.
Collapse
Affiliation(s)
- Anarmaa Mendsaikhan
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan (AM, IT, DGW)
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan (AM, IT, DGW)
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona (GES, TGB)
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona (GES, TGB)
| | - Douglas G Walker
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan (AM, IT, DGW)
- School of Life Sciences and Neurodegenerative Disease Research Center, Arizona State University, Tempe, Arizona (DGW)
| |
Collapse
|
25
|
Terryn J, Verfaillie CM, Van Damme P. Tweaking Progranulin Expression: Therapeutic Avenues and Opportunities. Front Mol Neurosci 2021; 14:713031. [PMID: 34366786 PMCID: PMC8343103 DOI: 10.3389/fnmol.2021.713031] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease, leading to behavioral changes and language difficulties. Heterozygous loss-of-function mutations in progranulin (GRN) induce haploinsufficiency of the protein and are associated with up to one-third of all genetic FTD cases worldwide. While the loss of GRN is primarily associated with neurodegeneration, the biological functions of the secreted growth factor-like protein are more diverse, ranging from wound healing, inflammation, vasculogenesis, and metabolic regulation to tumor cell growth and metastasis. To date, no disease-modifying treatments exist for FTD, but different therapeutic approaches to boost GRN levels in the central nervous system are currently being developed (including AAV-mediated GRN gene delivery as well as anti-SORT1 antibody therapy). In this review, we provide an overview of the multifaceted regulation of GRN levels and the corresponding therapeutic avenues. We discuss the opportunities, advantages, and potential drawbacks of the diverse approaches. Additionally, we highlight the therapeutic potential of elevating GRN levels beyond patients with loss-of-function mutations in GRN.
Collapse
Affiliation(s)
- Joke Terryn
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Interdepartmental Stem Cell Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Davis SE, Roth JR, Aljabi Q, Hakim AR, Savell KE, Day JJ, Arrant AE. Delivering progranulin to neuronal lysosomes protects against excitotoxicity. J Biol Chem 2021; 297:100993. [PMID: 34298019 PMCID: PMC8379502 DOI: 10.1016/j.jbc.2021.100993] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023] Open
Abstract
Loss-of-function mutations in progranulin (GRN) are a major genetic cause of frontotemporal dementia (FTD), possibly due to loss of progranulin’s neurotrophic and anti-inflammatory effects. Progranulin promotes neuronal growth and protects against excitotoxicity and other forms of injury. It is unclear if these neurotrophic effects are mediated through cellular signaling or through promotion of lysosomal function. Progranulin is a secreted proprotein that may activate neurotrophic signaling through cell-surface receptors. However, progranulin is efficiently trafficked to lysosomes and is necessary for maintaining lysosomal function. To determine which of these mechanisms mediates progranulin’s protection against excitotoxicity, we generated lentiviral vectors expressing progranulin (PGRN) or lysosome-targeted progranulin (L-PGRN). L-PGRN was generated by fusing the LAMP-1 transmembrane and cytosolic domains to the C-terminus of progranulin. L-PGRN exhibited no detectable secretion, but was delivered to lysosomes and processed into granulins. PGRN and L-PGRN protected against NMDA excitotoxicity in rat primary cortical neurons, but L-PGRN had more consistent protective effects than PGRN. L-PGRN’s protective effects were likely mediated through the autophagy-lysosomal pathway. In control neurons, an excitotoxic dose of NMDA stimulated autophagy, and inhibiting autophagy with 3-methyladenine reduced excitotoxic cell death. L-PGRN blunted the autophagic response to NMDA and occluded the protective effect of 3-methyladenine. This was not due to a general impairment of autophagy, as L-PGRN increased basal autophagy and did not alter autophagy after nutrient starvation. These data show that progranulin’s protection against excitotoxicity does not require extracellular progranulin, but is mediated through lysosomes, providing a mechanistic link between progranulin’s lysosomal and neurotrophic effects.
Collapse
Affiliation(s)
- Skylar E Davis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jonathan R Roth
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qays Aljabi
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ahmad R Hakim
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Katherine E Savell
- Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy J Day
- Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew E Arrant
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
27
|
Lan J, Hu Y, Wang X, Zheng W, Liao A, Wang S, Li Y, Wang Y, Yang F, Chen D. Abnormal spatiotemporal expression pattern of progranulin and neurodevelopment impairment in VPA-induced ASD rat model. Neuropharmacology 2021; 196:108689. [PMID: 34175324 DOI: 10.1016/j.neuropharm.2021.108689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 11/19/2022]
Abstract
Some environmental risk factors have been proven to contribute to the etiology of autism spectrum disorder (ASD). Exposure to the antiepileptic drug valproic acid (VPA) during pregnancy significantly increases the risk of ASD in humans, and consequently is utilized as a validated animal model of ASD in rodents; however, the precise molecular and cellular mechanisms remain ill-defined. In the present study, we investigated the effect of prenatal VPA exposure on the spatiotemporal dynamics of Progranulin (PGRN) expression, neuronal apoptosis, synapse density, and AKT/GSK-3β pathway activation in the brains of VPA-exposed offspring. Results from behavioral tests were consistent with prior studies showing impaired sociability, restricted interests and increased repetitive behaviors in VPA rats at postnatal days 28-32. Our data also indicated that VPA exposure resulted in abnormal dynamics of PGRN expression in different brain regions at the different development stages. The temporal and spatial patterns of PGRN expression were consistent with the spatiotemporal regularity of abnormalities, which observed in apoptosis-related protein levels, neuron numbers, dendritic spine density, synapse-related protein levels, and AKT/GSK-3β phosphorylation in VPA rats. It suggests that prenatal VPA exposure may affect the spatiotemporal regularity of neuronal apoptosis and synaptic development/regression via interfering with the spatiotemporal process of PGRN expression and downstream AKT/GSK-3β pathway activation. This may be a potential mechanism of the abnormal neuroanatomical changes and ASD-like behaviors in VPA-induced ASD.
Collapse
Affiliation(s)
- Junying Lan
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| | - Yuling Hu
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Qujiang No.2 Middle School, Xi'an 710000, China.
| | - Xiaoqing Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China; Department of Nuclear Medicine, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
| | - Wenxia Zheng
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Ailing Liao
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
| | - Feng Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100070, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
28
|
Wang XM, Zeng P, Fang YY, Zhang T, Tian Q. Progranulin in neurodegenerative dementia. J Neurochem 2021; 158:119-137. [PMID: 33930186 DOI: 10.1111/jnc.15378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023]
Abstract
Long-term or severe lack of protective factors is important in the pathogenesis of neurodegenerative dementia. Progranulin (PGRN), a neurotrophic factor expressed mainly in neurons and microglia, has various neuroprotective effects such as anti-inflammatory effects, promoting neuron survival and neurite growth, and participating in normal lysosomal function. Mutations in the PGRN gene (GRN) have been found in several neurodegenerative dementias, including frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Herein, PGRN deficiency and PGRN hydrolytic products (GRNs) in the pathological changes related to dementia, including aggregation of tau and TAR DNA-binding protein 43 (TDP-43), amyloid-β (Aβ) overproduction, neuroinflammation, lysosomal dysfunction, neuronal death, and synaptic deficit have been summarized. Furthermore, as some therapeutic strategies targeting PGRN have been developed in various models, we highlighted PGRN as a potential anti-neurodegeneration target in dementia.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, China
| | - Teng Zhang
- Department of Neurology, Shanxian Central Hospital, The Affiliated Huxi Hospital of Jining Medical College, Heze, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
29
|
Liu Y, Ren J, Kang M, Zhai C, Cheng Q, Li J, Wu Y, Ruan X, Zhou J, Fan J, Tian Y. Progranulin promotes functional recovery and neurogenesis in the subventricular zone of adult mice after cerebral ischemia. Brain Res 2021; 1757:147312. [PMID: 33539798 DOI: 10.1016/j.brainres.2021.147312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/20/2022]
Abstract
Progranulin (PGRN), a secreted glycosylated protein, has been reported to attenuate ischemia-induced cerebral injury through anti-inflammation, attenuation of blood-brain barrier disruption and neuroprotection. However, the effect of PGRN on neurogenesis in the subventricular zone (SVZ) after cerebral ischemia remains unclear. In this study, adult C57BL/6 mice were subjected to permanent middle cerebral artery occlusion (pMCAO), and different doses of recombinant mouse PGRN (r-PGRN, 0.3 ng, 1 ng, 5 ng) were intracerebroventricularly administered 30 min after pMCAO. Results showed that 1 ng r-PGRN markedly reduced infarct volume and rescued functional deficits 24 h after pMCAO. Meanwhile, 1 ng r-PGRN increased SVZ cell proliferation, as shown by a high number of bromodeoxyuridine-positive (BrdU+) cells and Ki-67+ cells in the ischemic ipsilateral SVZ 7 d after pMCAO. Additionally, PGRN increased the percentage of BrdU+/Doublecortin (DCX)+ cells in the ipsilateral SVZ 14 d after pMCAO and increased the percentage of new neurons (BrdU+/NeuN+ cells) in the peri-infarct striatum 28 d after pMCAO, suggesting that PGRN promotes neuronal differentiation. PGRN also upregulated phosphorylation of ERK1/2 and Akt in the ipsilateral SVZ 3 d after pMCAO. Our data indicate that PGRN treatment promotes acute functional recovery; most importantly, it also stimulates neurogenesis in the SVZ, which could be beneficial for long-term recovery after cerebral ischemia. The increase in neurogenesis could be associated with activation of the MAPK/ERK and PI3K/Akt pathways. These results suggest a potential new strategy utilizing PGRN in ischemic stroke therapy.
Collapse
Affiliation(s)
- Yingxun Liu
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Junrong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Mengsi Kang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chenyang Zhai
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Qiangqiang Cheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Jin Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yuzi Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiaofei Ruan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Jinlong Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Juan Fan
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710062, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| | - Yingfang Tian
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, Shaanxi 710062, China; College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
30
|
Zhou X, Kukar T, Rademakers R. Lysosomal Dysfunction and Other Pathomechanisms in FTLD: Evidence from Progranulin Genetics and Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:219-242. [PMID: 33433878 DOI: 10.1007/978-3-030-51140-1_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been more than a decade since heterozygous loss-of-function mutations in the progranulin gene (GRN) were first identified as an important genetic cause of frontotemporal lobar degeneration (FTLD). Due to the highly diverse biological functions of the progranulin (PGRN) protein, encoded by GRN, multiple possible disease mechanisms have been proposed. Early work focused on the neurotrophic properties of PGRN and its role in the inflammatory response. However, since the discovery of homozygous GRN mutations in patients with a lysosomal storage disorder, investigation into the possible roles of PGRN and its proteolytic cleavage products granulins, in lysosomal function and dysfunction, has taken center stage. In this chapter, we summarize the GRN mutational spectrum and its associated phenotypes followed by an in-depth discussion on the possible disease mechanisms implicated in FTLD-GRN. We conclude with key outstanding questions which urgently require answers to ensure safe and successful therapy development for GRN mutation carriers.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- VIB Center for Molecular Neurology, University of Antwerp-CDE, Antwerp, Belgium.
| |
Collapse
|
31
|
Bhopatkar AA, Rangachari V. Are granulins copper sequestering proteins? Proteins 2020; 89:450-461. [PMID: 33252789 DOI: 10.1002/prot.26031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
Granulins (GRN 1-7) are short (~6 kDa), cysteine-rich proteins that are generated upon the proteolytic processing of progranulin (PGRN). These peptides, along with their precursor, have been implicated in multiple pathophysiological roles, especially in neurodegenerative diseases. Previously we showed that GRN-3 and GRN-5 are fully disordered in the reduced form implicating redox sensitive attributes to the proteins. Redox-based modulations are often carried out by metalloproteins in mitigating oxidative stress and maintaining metal-homeostasis within cells. To probe whether GRNs play a role in metal sequestration, we tested the metal binding propensity of the reduced forms of GRNs -3 and - 5 under neutral and acidic pH mimicking cytosolic and lysosomal conditions, respectively. We found, at neutral pH, both GRNs selectively bind Cu and no other divalent metal cations, with a greater specificity for Cu(I). Binding of Cu did not result in a disorder-to-order structural transition but partly triggered the multimerization of GRNs via uncoordinated cystines at both pH conditions. Overall, the results indicate that GRNs -3 and - 5 have surprisingly strong affinity for Cu in the pM range, comparable to other known copper sequestering proteins. The results also hint at a potential of GRNs to reduce Cu(II) to Cu(I), a process that has significance in mitigating Cu-induced ROS cytotoxicity in cells. Together, this report uncovers metal-coordinating property of GRNs for the first time, which may have profound significance in their structure and pathophysiological functions.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences and, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Vijayaraghavan Rangachari
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| |
Collapse
|
32
|
Robin G, Evans JC, Hauser DN, Wren P, Zembrzycki A. Longitudinal Characterization of Transcriptomic, Functional, and Morphological Features in Human iPSC-Derived Neurons and Their Application to Investigate Translational Progranulin Disease Biology. Front Aging Neurosci 2020; 12:576678. [PMID: 33281596 PMCID: PMC7689020 DOI: 10.3389/fnagi.2020.576678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/07/2020] [Indexed: 01/19/2023] Open
Abstract
The disease biology of frontotemporal lobe dementia (FTD) is complex and not fully understood, with limited translational value appreciated from animal models to date. Human cellular systems that can recapitulate phenotypic features of disease offer promise as translational tools to not only increase our understanding of disease processes but also increase the probability of success of translating novel treatment options to patients. However not all researchers may necessarily have access to well-characterized induced pluripotent stem cell (iPSC)-derived human neurons. As an example, we therefore comprehensively profiled phenotypic features over time in one commercially-available IPSC-derived human neuron cell line. This included systems-level assessments of neurite outgrowth dynamics, neuronal network function, and genome-wide gene expression. By investigating progranulin biology as an example we then demonstrated the utility of these cells as a tool to investigate human disease biology. For example, by using the siRNA-mediated knockdown of the progranulin (GRN) gene, we demonstrated the establishment of an isogenic human cellular model to facilitate translational FTD research. We reproduced findings from rodent neurons by demonstrating that recombinant progranulin (rPGRN) mediated neuroprotection. Contrary to previous rodent data, in our human cellular models, growth factor treatment showed no consistent sensitivity to modulate neurite outgrowth dynamics. Our study further provides the first evidence that rRPGRN modulated neuronal firing and synchrony in human neurons. Taken together, our datasets are a valuable systems-level resource demonstrating the utility of the tested commercially-available human iPSC neurons for investigating basic human neurobiology, translational neuroscience, and drug discovery applications in neurodegenerative and other CNS diseases.
Collapse
Affiliation(s)
- Gaëlle Robin
- SBP-GSK Center for Translational Neuroscience, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - J Corey Evans
- SBP-GSK Center for Translational Neuroscience, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - David N Hauser
- SBP-GSK Center for Translational Neuroscience, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Paul Wren
- GSK, Neuroscience Discovery, Collegeville, PA, United States
| | - Andreas Zembrzycki
- SBP-GSK Center for Translational Neuroscience, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
33
|
Modelling frontotemporal dementia using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 2020; 109:103553. [PMID: 32956830 DOI: 10.1016/j.mcn.2020.103553] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 08/27/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) describes a group of clinically heterogeneous conditions that frequently affect people under the age of 65 (Le Ber et al., 2013). There are multiple genetic causes of FTD, including coding or splice-site mutations in MAPT, GRN mutations that lead to haploinsufficiency of progranulin protein, and a hexanucleotide GGGGCC repeat expansion in C9ORF72. Pathologically, FTD is characterised by abnormal protein accumulations in neurons and glia. These aggregates can be composed of the microtubule-associated protein tau (observed in FTD with MAPT mutations), the DNA/RNA-binding protein TDP-43 (seen in FTD with mutations in GRN or C9ORF72 repeat expansions) or dipeptide proteins generated by repeat associated non-ATG translation of the C9ORF72 repeat expansion. There are currently no disease-modifying therapies for FTD and the availability of in vitro models that recapitulate pathologies in a disease-relevant cell type would accelerate the development of novel therapeutics. It is now possible to generate patient-specific stem cells through the reprogramming of somatic cells from a patient with a genotype/phenotype of interest into induced pluripotent stem cells (iPSCs). iPSCs can subsequently be differentiated into a plethora of cell types including neurons, astrocytes and microglia. Using this approach has allowed researchers to generate in vitro models of genetic FTD in human cell types that are largely inaccessible during life. In this review we explore the recent progress in the use of iPSCs to model FTD, and consider the merits, limitations and future prospects of this approach.
Collapse
|
34
|
Jin W, Sun M, Yuan B, Wang R, Yan H, Qiao X. Neuroprotective Effects of Grape Seed Procyanidins on Ethanol-Induced Injury and Oxidative Stress in Rat Hippocampal Neurons. Alcohol Alcohol 2020; 55:357-366. [DOI: 10.1093/alcalc/agaa031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Aims
Ethanol is a small molecule capable of interacting with numerous targets in the brain, the mechanisms of which are complex and still poorly understood. Studies have revealed that ethanol-induced hippocampal neuronal injury is associated with oxidative stress. Grape seed procyanidin (GSP) is a new type of antioxidant that is believed to scavenge free radicals and be anti-inflammatory. This study evaluated the ability and mechanism by which the GSP improves ethanol-induced hippocampal neuronal injury.
Methods
Primary cultures of hippocampal neurons were exposed to ethanol (11, 33 and 66 mM, 1, 4, 8, 12 and 24 h) and the neuroprotective effects of GSP were assessed by evaluating the activity of superoxide dismutase (SOD), the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) and cell morphology.
Results
Our results indicated that GSP prevented ethanol-induced neuronal injury by reducing the levels of MDA and LDH, while increasing the activity of SOD. In addition, GSP increased the number of primary dendrites and total dendritic length per cell.
Conclusion
Together with previous findings, these results lend further support to the significance of developing GSP as a therapeutic tool for use in the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Wenyang Jin
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mizhu Sun
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bingbing Yuan
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Runzhi Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongtao Yan
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Qiao
- Department of Forensic Medicine, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
35
|
Sasaki K, Davies J, Doldán NG, Arao S, Ferdousi F, Szele FG, Isoda H. 3,4,5-Tricaffeoylquinic acid induces adult neurogenesis and improves deficit of learning and memory in aging model senescence-accelerated prone 8 mice. Aging (Albany NY) 2020; 11:401-422. [PMID: 30654329 PMCID: PMC6366991 DOI: 10.18632/aging.101748] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
Caffeoylquinic acid (CQA) is a natural polyphenol with evidence of antioxidant and neuroprotective effects and prevention of deficits in spatial learning and memory. We studied the cognitive-enhancing effect of 3,4,5-tricaffeoylquinic acid (TCQA) and explored its cellular and molecular mechanism in the senescence-accelerated mouse prone 8 (SAMP8) model of aging and Alzheimer's disease as well as in human neural stem cells (hNSCs). Mice were fed with 5 mg/kg of TCQA for 30 days and were tested in the Morris water maze (MWM). Brain tissues were collected for immunohistochemical detection of bromodeoxyuridine (BrdU) to detect activated stem cells and newborn neurons. TCQA-treated SAMP8 exhibited significantly improved cognitive performance in MWM compared to water-treated SAMP8. TCQA-treated SAMP8 mice also had significantly higher numbers of BrdU+/glial fibrillary acidic protein (GFAP+) and BrdU+/Neuronal nuclei (NeuN+) cells in the dentate gyrus (DG) neurogenic niche compared with untreated SAMP8. In hNSCs, TCQA induced cell cycle arrest at G0/G1, actin cytoskeleton organization, chromatin remodeling, neuronal differentiation, and bone morphogenetic protein signaling. The neurogenesis promoting effect of TCQA in the DG of SAMP8 mice might explain the cognition-enhancing influence of TCQA observed in our study, and our hNSCs in aggregate suggest a therapeutic potential for TCQA in aging-associated diseases.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.,Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8571, Japan
| | - Julie Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, UK
| | - Noelia Geribaldi Doldán
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, UK
| | - Sayo Arao
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, UK
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.,Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
| |
Collapse
|
36
|
Valdez C, Ysselstein D, Young TJ, Zheng J, Krainc D. Progranulin mutations result in impaired processing of prosaposin and reduced glucocerebrosidase activity. Hum Mol Genet 2020; 29:716-726. [PMID: 31600775 PMCID: PMC7104673 DOI: 10.1093/hmg/ddz229] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 02/05/2023] Open
Abstract
Frontotemporal dementia (FTD) is a common neurogenerative disorder characterized by progressive degeneration in the frontal and temporal lobes. Heterozygous mutations in the gene encoding progranulin (PGRN) are a common genetic cause of FTD. Recently, PGRN has emerged as an important regulator of lysosomal function. Here, we examine the impact of PGRN mutations on the processing of full-length prosaposin to individual saposins, which are critical regulators of lysosomal sphingolipid metabolism. Using FTD-PGRN patient-derived cortical neurons differentiated from induced pluripotent stem cells, as well as post-mortem tissue from patients with FTLD-PGRN, we show that PGRN haploinsufficiency results in impaired processing of prosaposin to saposin C, a critical activator of the lysosomal enzyme glucocerebrosidase (GCase). Additionally, we found that PGRN mutant neurons had reduced lysosomal GCase activity, lipid accumulation and increased insoluble α-synuclein relative to isogenic controls. Importantly, reduced GCase activity in PGRN mutant neurons is rescued by treatment with saposin C. Together, these findings suggest that reduced GCase activity due to impaired processing of prosaposin may contribute to pathogenesis of FTD resulting from PGRN mutations.
Collapse
Affiliation(s)
- Clarissa Valdez
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel Ysselstein
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tiffany J Young
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jianbin Zheng
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dimitri Krainc
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
37
|
Mao Q, Zheng X, Gefen T, Rogalski E, Spencer CL, Rademakers R, Fought AJ, Kohler M, Weintraub S, Xia H, Mesulam MM, Bigio EH. FTLD-TDP With and Without GRN Mutations Cause Different Patterns of CA1 Pathology. J Neuropathol Exp Neurol 2019; 78:844-853. [PMID: 31361008 PMCID: PMC7967835 DOI: 10.1093/jnen/nlz059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/03/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Heterozygous loss-of-function mutations in the GRN gene lead to progranulin (PGRN) haploinsufficiency and cause frontotemporal lobar degeneration with TDP-43 pathology type A (FTLD-TDP type A). PGRN is a highly conserved, secreted glycoprotein and functions in the central nervous system as a key modulator of microglial function. Hence, altered microglial function caused by PGRN deficiency may be tied to the pathogenesis of FTLD-TDP. Our previous studies showed that haploinsufficiency of GRN mutations extends to microglial PGRN expression in the hippocampal CA1 region. In this study, we found that the CA1 sector was associated with less neuronal loss and more frequent TDP-43 inclusions in FTLD-TDP type A cases with GRN mutations than in sporadic cases. In addition, the CA1 region in GRN mutation cases contained more rod-like microglia, which also had reduced PGRN expression. These findings suggest that the profile of TDP-43 inclusions, neuronal number, and microgliosis in the CA1 sector of FTLD-TDP type A cases may be influenced by GRN gene expression status.
Collapse
Affiliation(s)
- Qinwen Mao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, P.R. China
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Callen L Spencer
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Angela J Fought
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine
| | | | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, P.R. China
| | - Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eileen H Bigio
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
38
|
Azadani NN, Norouzi F, Hajizadeh M, Parsa S, Khalighinejad F. Serum level measurement of progranulin in relapsing-remitting multiple sclerosis and neuromyelitis optica patients. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2019; 8:16-20. [PMID: 31316865 PMCID: PMC6627460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system (CNS) with unknown etiology and variable clinical evolution. Although the role of serum progranulin levels in the pathogenesis of MS remains unclear, it is well known that progranulin is involved in several physiological and pathophysiological process of CNS including modulation of neurite outgrowth, neuronal differentiation, and neuronal survival. Therefore, in this study, we aimed to measure serum levels of progranulin in patients with neuromyelitis optica (NMO) and relapsing-remitting multiple sclerosis (RRMS) in comparison with healthy control subjects. METHODS In a case-control study, plasma was collected from healthy controls (n = 37) and also patients with RRMS (n = 115) and NMO (n = 33). Serum level measurement of progranulin was performed using a sandwich ELISA method. RESULTS The serum levels of progranulin were 65.07 ± 11.64, 56.81 ± 10.34, and 47.73 ± 10.37 in NMO and MS patients and healthy controls, respectively, showing a statistically significant difference between them (P = 0.00). Furthermore, we found a positive correlation between serum levels of progranulin and EDSS of patients (r = 0.79 and P = 0.00). CONCLUSION The present study demonstrated that progranulin is up-regulated in MS patients and our findings strengthen the evidence for progranulin being involved in the pathogenesis of MS. However, further studies will be required to establish progranulin as an important marker for MS.
Collapse
Affiliation(s)
| | - Faezeh Norouzi
- Medical Student, School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| | - Mahsa Hajizadeh
- Isfahan Research Center of Multiple Sclerosis, Isfahan University of Medical SciencesIsfahan, Iran
| | - Sara Parsa
- School of Medicine, Islamic Azad University of NajafabadIsfahan, Iran
| | - Farnaz Khalighinejad
- Postdoc Associate, University of Massachusetts Medical SchoolWorcester, United States
| |
Collapse
|
39
|
Metformin Promotes Neuronal Differentiation via Crosstalk between Cdk5 and Sox6 in Neuroblastoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1765182. [PMID: 30911317 PMCID: PMC6399528 DOI: 10.1155/2019/1765182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
Metformin has recently emerged as a key player in promotion of neuroblastoma differentiation and neurite outgrowth. However, molecular mechanisms of how metformin promotes cellular differentiation have not yet been fully elucidated. In this study, we investigated how metformin promotes cell differentiation, via an inhibition of cell proliferation, by culturing SH-SY5Y neuroblastoma cells with or without metformin. Pretreatment with reactive oxygen species (ROS) scavenger, NAC, revealed that ROS plays a crucial role in induction of cell differentiation. Cell differentiation was observed under various morphological criteria: extension of neuritic processes and neuronal differentiation markers. Treatment with metformin significantly increased neurite length, number of cells with neurite, and expression of neuronal differentiation markers, β-tubulin III and tyrosine hydroxylase (TH) compared with untreated control. Further investigation found that metformin significantly decreased Cdk5 but increased Sox6 during cell differentiation. Analysis of the mechanism underlying these changes using Cdk5 inhibitor, roscovitine, indicated that expressions of Cdk5 and Sox6 corresponded to metformin treatment. These results suggested that metformin produces neuronal differentiation via Cdk5 and Sox6. In addition, phosphorylated Erk1/2 was decreased while phosphorylated Akt was increased in metformin treatment. Taken together, these findings suggest that metformin promotes neuronal differentiation via ROS activation through Cdk5/Sox6 crosstalk, relating to Erk1/2 and Akt signaling.
Collapse
|
40
|
Amado DA, Rieders JM, Diatta F, Hernandez-Con P, Singer A, Mak JT, Zhang J, Lancaster E, Davidson BL, Chen-Plotkin AS. AAV-Mediated Progranulin Delivery to a Mouse Model of Progranulin Deficiency Causes T Cell-Mediated Toxicity. Mol Ther 2019; 27:465-478. [PMID: 30559071 PMCID: PMC6369714 DOI: 10.1016/j.ymthe.2018.11.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/01/2018] [Accepted: 11/11/2018] [Indexed: 11/16/2022] Open
Abstract
Adeno-associated virus-mediated gene replacement is emerging as a safe and effective means of correcting single-gene mutations affecting the CNS. AAV-mediated progranulin gene (GRN) delivery has been proposed as a treatment for GRN-deficient frontotemporal dementia and neuronal ceroid lipofuscinosis, and recent studies using intraparenchymal AAV-Grn delivery to brain have shown moderate success in histopathologic and behavioral rescue in mouse models. Here, we used AAV9 to deliver GRN to the lateral ventricle to achieve widespread expression in the Grn null mouse brain. We found that, despite a global increase in progranulin, overexpression resulted in dramatic and selective hippocampal toxicity and degeneration affecting neurons and glia. Hippocampal degeneration was preceded by T cell infiltration and perivascular cuffing. GRN delivery with an ependymal-targeting AAV for selective secretion of progranulin into the cerebrospinal fluid similarly resulted in T cell infiltration, as well as ependymal hypertrophy. Interestingly, overexpression of GRN in wild-type animals also provoked T cell infiltration. These results call into question the safety of GRN overexpression in the CNS, with evidence for both a region-selective immune response and cellular proliferative response. Our results highlight the importance of careful consideration of target gene biology and cellular response to overexpression prior to progressing to the clinic.
Collapse
Affiliation(s)
- Defne A Amado
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julianne M Rieders
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5060 CTRB, Philadelphia, PA 19104, USA
| | - Fortunay Diatta
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pilar Hernandez-Con
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adina Singer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan T Mak
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junxian Zhang
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Lancaster
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beverly L Davidson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, 5060 CTRB, Philadelphia, PA 19104, USA.
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Beel S, Herdewyn S, Fazal R, De Decker M, Moisse M, Robberecht W, Van Den Bosch L, Van Damme P. Progranulin reduces insoluble TDP-43 levels, slows down axonal degeneration and prolongs survival in mutant TDP-43 mice. Mol Neurodegener 2018; 13:55. [PMID: 30326935 PMCID: PMC6192075 DOI: 10.1186/s13024-018-0288-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND TAR DNA binding protein 43 (TDP-43) is the main disease protein in most patients with amyotrophic lateral sclerosis (ALS) and about 50% of patients with frontotemporal dementia (FTD). TDP-43 pathology is not restricted to patients with missense mutations in TARDBP, the gene encoding TDP-43, but also occurs in ALS/FTD patients without known genetic cause or in patients with various other ALS/FTD gene mutations. Mutations in progranulin (GRN), which result in a reduction of ~ 50% of progranulin protein (PGRN) levels, cause FTD with TDP-43 pathology. How loss of PGRN leads to TDP-43 pathology and whether or not PGRN expression protects against TDP-43-induced neurodegeneration is not yet clear. METHODS We studied the effect of PGRN on the neurodegenerative phenotype in TDP-43(A315T) mice. RESULTS PGRN reduced the levels of insoluble TDP-43 and histology of the spinal cord revealed a protective effect of PGRN on the loss of large axon fibers in the lateral horn, the most severely affected fiber pool in this mouse model. Overexpression of PGRN significantly slowed down disease progression, extending the median survival by approximately 130 days. A transcriptome analysis did not point towards a single pathway affected by PGRN, but rather towards a pleiotropic effect on different pathways. CONCLUSION Our findings reveal an important role of PGRN in attenuating mutant TDP-43-induced neurodegeneration.
Collapse
Affiliation(s)
- Sander Beel
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Sarah Herdewyn
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Raheem Fazal
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Mathias De Decker
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,Department of Neurology, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium. .,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium. .,Department of Neurology, University Hospital Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
42
|
Valdez C, Wong YC, Schwake M, Bu G, Wszolek ZK, Krainc D. Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Hum Mol Genet 2018; 26:4861-4872. [PMID: 29036611 DOI: 10.1093/hmg/ddx364] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
Frontotemporal dementia (FTD) encompasses a group of neurodegenerative disorders characterized by cognitive and behavioral impairments. Heterozygous mutations in progranulin (PGRN) cause familial FTD and result in decreased PGRN expression, while homozygous mutations result in complete loss of PGRN expression and lead to the neurodegenerative lysosomal storage disorder neuronal ceroid lipofuscinosis (NCL). However, how dose-dependent PGRN mutations contribute to these two different diseases is not well understood. Using iPSC-derived human cortical neurons from FTD patients harboring PGRN mutations, we demonstrate that PGRN mutant neurons exhibit decreased nuclear TDP-43 and increased insoluble TDP-43, as well as enlarged electron-dense vesicles, lipofuscin accumulation, fingerprint-like profiles and granular osmiophilic deposits, suggesting that both FTD and NCL-like pathology are present in PGRN patient neurons as compared to isogenic controls. PGRN mutant neurons also show impaired lysosomal proteolysis and decreased activity of the lysosomal enzyme cathepsin D. Furthermore, we find that PGRN interacts with cathepsin D, and that PGRN increases the activity of cathepsin D but not cathepsins B or L. Finally, we show that granulin E, a cleavage product of PGRN, is sufficient to increase cathepsin D activity. This functional relationship between PGRN and cathepsin D provides a possible explanation for overlapping NCL-like pathology observed in patients with mutations in PGRN or CTSD, the gene encoding cathepsin D. Together, our work identifies PGRN as an activator of lysosomal cathepsin D activity, and suggests that decreased cathepsin D activity due to loss of PGRN contributes to both FTD and NCL pathology in a dose-dependent manner.
Collapse
Affiliation(s)
- Clarissa Valdez
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yvette C Wong
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michael Schwake
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Dimitri Krainc
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
43
|
Wang P, Chitramuthu B, Bateman A, Bennett HPJ, Xu P, Ni F. Structure dissection of zebrafish progranulins identifies a well-folded granulin/epithelin module protein with pro-cell survival activities. Protein Sci 2018; 27:1476-1490. [PMID: 29732682 DOI: 10.1002/pro.3441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/07/2023]
Abstract
The ancient and pluripotent progranulins contain multiple repeats of a cysteine-rich sequence motif of ∼60 amino acids, called the granulin/epithelin module (GEM) with a prototypic structure of four β-hairpins zipped together by six inter-hairpin disulfide bonds. Prevalence of this disulfide-enforced structure is assessed here by an expression screening of 19 unique GEM sequences of the four progranulins in the zebrafish genome, progranulins 1, 2, A and B. While a majority of the expressed GEM peptides did not exhibit uniquely folded conformations, module AaE from progranulin A and AbB from progranulin B were found to fold into the protopypic 4-hairpin structure along with disulfide formation. Module AaE has the most-rigid three-dimensional structure with all four β-hairpins defined using high-resolution (H-15 N) NMR spectroscopy, including 492 inter-proton nuclear Overhauser effects, 23 3 J(HN,Hα ) coupling constants, 22 hydrogen bonds as well as 45 residual dipolar coupling constants. Three-dimensional structure of AaE and the partially folded AbB re-iterate the conformational stability of the N-terminal stack of two beta-hairpins and varying degrees of structural flexibility for the C-terminal half of the 4-hairpin global fold of the GEM repeat. A cell-based assay demonstrated a functional activity for the zebrafish granulin AaE in promoting the survival of neuronal cells, similarly to what has been found for the corresponding granulin E module in human progranulin. Finally, this work highlights the remaining challenges in structure-activity studies of proteins containing the GEM repeats, due to the apparent prevalence of structural disorder in GEM motifs despite potentially a high density of intramolecular disulfide bonds.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada.,Protein NMR Laboratory, Advanced Analytics Section, Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Babykumari Chitramuthu
- Division of Experimental Medicine, Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.,Center for Translational Biology, The Research Institute of McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Andrew Bateman
- Division of Experimental Medicine, Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.,Center for Translational Biology, The Research Institute of McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Hugh P J Bennett
- Division of Experimental Medicine, Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada.,Center for Translational Biology, The Research Institute of McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Ping Xu
- Protein NMR Laboratory, Advanced Analytics Section, Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Feng Ni
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada.,Protein NMR Laboratory, Advanced Analytics Section, Human Health Therapeutics Research Center, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada.,Division of Experimental Medicine, Research Institute of the McGill University Health Center, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| |
Collapse
|
44
|
The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol 2018; 136:1-17. [PMID: 29744576 DOI: 10.1007/s00401-018-1861-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
Progranulin (PGRN), encoded by the GRN gene in humans, is a secreted growth factor implicated in a multitude of processes ranging from regulation of inflammation to wound healing and tumorigenesis. The clinical importance of PGRN became especially evident in 2006, when heterozygous mutations in the GRN gene, resulting in haploinsufficiency, were found to be one of the main causes of frontotemporal lobar degeneration (FTLD). FTLD is a clinically heterogenous disease that results in the progressive atrophy of the frontal and temporal lobes of the brain. Despite significant research, the exact function of PGRN and its mechanistic relationship to FTLD remain unclear. However, growing evidence suggests a role for PGRN in the lysosome-most striking being that homozygous GRN mutation leads to neuronal ceroid lipofuscinosis, a lysosomal storage disease. Since this discovery, several links between PGRN and the lysosome have been established, including the existence of two independent lysosomal trafficking pathways, intralysosomal processing of PGRN into discrete functional peptides, and direct and indirect regulation of lysosomal hydrolases. Here, we summarize the cellular functions of PGRN, its roles in the nervous system, and its link to multiple neurodegenerative diseases, with a particular focus dedicated to recent lysosome-related mechanistic developments.
Collapse
|
45
|
Chang KH, Lee GC, Huang CC, Kuo HC, Chen CM, Hsiao YC, Hsu HC, Hsu KJ, Lin CH, Chang CW, Lee-Chen GJ, Wu YR. Genetic and functional characters of GRN p.T487I mutation in Taiwanese patients with atypical parkinsonian disorders. Parkinsonism Relat Disord 2018. [DOI: 10.1016/j.parkreldis.2018.02.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Cooper YA, Nachun D, Dokuru D, Yang Z, Karydas AM, Serrero G, Yue B, Boxer AL, Miller BL, Coppola G. Progranulin levels in blood in Alzheimer's disease and mild cognitive impairment. Ann Clin Transl Neurol 2018; 5:616-629. [PMID: 29761124 PMCID: PMC5945969 DOI: 10.1002/acn3.560] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/27/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Changes in progranulin (GRN) expression have been hypothesized to alter risk for Alzheimer's disease (AD). We investigated the relationship between GRN expression in peripheral blood and clinical diagnosis of AD and mild cognitive impairment (MCI). METHODS Peripheral blood progranulin gene expression was measured, using microarrays from Alzheimer's (n = 186), MCI (n = 118), and control (n = 204) subjects from the University of California San Francisco Memory and Aging Center (UCSF-MAC) and two independent published series (AddNeuroMed and ADNI). GRN gene expression was correlated with clinical, demographic, and genetic data, including APOE haplotype and the GRN rs5848 single-nucleotide polymorphism. Finally, we assessed progranulin protein levels, using enzyme-linked immunosorbent assay, and methylation status using methylation microarrays. RESULTS We observed an increase in blood progranulin gene expression and a decrease in GRN promoter methylation in males (P = 0.007). Progranulin expression was 13% higher in AD and MCI patients compared with controls in the UCSF-MAC cohort (F2,505 = 10.41, P = 3.72*10-5). This finding was replicated in the AddNeuroMed (F2,271 = 17.9, P = 4.83*10-8) but not the ADNI series. The rs5848 SNP (T-allele) predicted decreased blood progranulin gene expression (P = 0.03). The APOE4 haplotype was positively associated with progranulin expression independent of diagnosis (P = 0.04). Finally, we did not identify differences in plasma progranulin protein levels or gene methylation between diagnostic categories. INTERPRETATION Progranulin mRNA is elevated in peripheral blood of patients with AD and MCI and its expression is associated with numerous genetic and demographic factors. These data suggest a role in the pathogenesis of neurodegenerative dementias besides frontotemporal dementia.
Collapse
Affiliation(s)
- Yonatan A. Cooper
- Human Genetics and Genomics Graduate ProgramUniversity of California Los AngelesLos AngelesCalifornia
- Medical Scientist Training ProgramDavid Geffen School of Medicine at the University of California Los AngelesLos AngelesCalifornia
- Department of PsychiatrySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCalifornia
| | - Daniel Nachun
- Department of PsychiatrySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCalifornia
| | - Deepika Dokuru
- Department of PsychiatrySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCalifornia
| | - Zhongan Yang
- Department of PsychiatrySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCalifornia
| | - Anna M. Karydas
- Memory and Aging CenterDepartment of NeurologyUniversity of CaliforniaSan FranciscoSan FranciscoCalifornia
| | - Ginette Serrero
- A&G Pharmaceutical, Inc.9130 Red Branch RdColumbiaMaryland21045
- Greenebaum Cancer CenterUniversity of MarylandBaltimoreMaryland21201
| | - Binbin Yue
- Greenebaum Cancer CenterUniversity of MarylandBaltimoreMaryland21201
| | | | - Adam L. Boxer
- Memory and Aging CenterDepartment of NeurologyUniversity of CaliforniaSan FranciscoSan FranciscoCalifornia
| | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyUniversity of CaliforniaSan FranciscoSan FranciscoCalifornia
| | - Giovanni Coppola
- Department of PsychiatrySemel Institute for Neuroscience and Human BehaviorUniversity of California Los AngelesLos AngelesCalifornia
- Department of NeurologyUniversity of California Los AngelesLos AngelesCalifornia
| |
Collapse
|
47
|
Aghaeepour N, Lehallier B, Baca Q, Ganio EA, Wong RJ, Ghaemi MS, Culos A, El-Sayed YY, Blumenfeld YJ, Druzin ML, Winn VD, Gibbs RS, Tibshirani R, Shaw GM, Stevenson DK, Gaudilliere B, Angst MS. A proteomic clock of human pregnancy. Am J Obstet Gynecol 2018; 218:347.e1-347.e14. [PMID: 29277631 DOI: 10.1016/j.ajog.2017.12.208] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/24/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Early detection of maladaptive processes underlying pregnancy-related pathologies is desirable because it will enable targeted interventions ahead of clinical manifestations. The quantitative analysis of plasma proteins features prominently among molecular approaches used to detect deviations from normal pregnancy. However, derivation of proteomic signatures sufficiently predictive of pregnancy-related outcomes has been challenging. An important obstacle hindering such efforts were limitations in assay technology, which prevented the broad examination of the plasma proteome. OBJECTIVE The recent availability of a highly multiplexed platform affording the simultaneous measurement of 1310 plasma proteins opens the door for a more explorative approach. The major aim of this study was to examine whether analysis of plasma collected during gestation of term pregnancy would allow identifying a set of proteins that tightly track gestational age. Establishing precisely timed plasma proteomic changes during term pregnancy is a critical step in identifying deviations from regular patterns caused by fetal and maternal maladaptations. A second aim was to gain insight into functional attributes of identified proteins and link such attributes to relevant immunological changes. STUDY DESIGN Pregnant women participated in this longitudinal study. In 2 subsequent sets of 21 (training cohort) and 10 (validation cohort) women, specific blood specimens were collected during the first (7-14 weeks), second (15-20 weeks), and third (24-32 weeks) trimesters and 6 weeks postpartum for analysis with a highly multiplexed aptamer-based platform. An elastic net algorithm was applied to infer a proteomic model predicting gestational age. A bootstrapping procedure and piecewise regression analysis was used to extract the minimum number of proteins required for predicting gestational age without compromising predictive power. Gene ontology analysis was applied to infer enrichment of molecular functions among proteins included in the proteomic model. Changes in abundance of proteins with such functions were linked to immune features predictive of gestational age at the time of sampling in pregnancies delivering at term. RESULTS An independently validated model consisting of 74 proteins strongly predicted gestational age (P = 3.8 × 10-14, R = 0.97). The model could be reduced to 8 proteins without losing its predictive power (P = 1.7 × 10-3, R = 0.91). The 3 top ranked proteins were glypican 3, chorionic somatomammotropin hormone, and granulins. Proteins activating the Janus kinase and signal transducer and activator of transcription pathway were enriched in the proteomic model, chorionic somatomammotropin hormone being the top-ranked protein. Abundance of chorionic somatomammotropin hormone strongly correlated with signal transducer and activator of transcription-5 signaling activity in CD4 T cells, the endogenous cell-signaling event most predictive of gestational age. CONCLUSION Results indicate that precisely timed changes in the plasma proteome during term pregnancy mirror a proteomic clock. Importantly, the combined use of several plasma proteins was required for accurate prediction. The exciting promise of such a clock is that deviations from its regular chronological profile may assist in the early diagnoses of pregnancy-related pathologies, and point to underlying pathophysiology. Functional analysis of the proteomic model generated the novel hypothesis that chrionic somatomammotropin hormone may critically regulate T-cell function during pregnancy.
Collapse
Affiliation(s)
- Nima Aghaeepour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA
| | - Benoit Lehallier
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA
| | - Quentin Baca
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ed A Ganio
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ronald J Wong
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Mohammad S Ghaemi
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA
| | - Anthony Culos
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA
| | - Yasser Y El-Sayed
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| | - Yair J Blumenfeld
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| | - Maurice L Druzin
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| | - Ronald S Gibbs
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA
| | - Rob Tibshirani
- Department of Biomedical Data Sciences and Statistics, Stanford University School of Medicine, Stanford, CA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - David K Stevenson
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA.
| |
Collapse
|
48
|
Yang CP, Li X, Wu Y, Shen Q, Zeng Y, Xiong Q, Wei M, Chen C, Liu J, Huo Y, Li K, Xue G, Yao YG, Zhang C, Li M, Chen Y, Luo XJ. Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nat Commun 2018; 9:838. [PMID: 29483533 PMCID: PMC5826945 DOI: 10.1038/s41467-018-03247-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
Recent genome-wide association studies (GWAS) have identified multiple risk loci that show strong associations with schizophrenia. However, pinpointing the potential causal genes at the reported loci remains a major challenge. Here we identify candidate causal genes for schizophrenia using an integrative genomic approach. Sherlock integrative analysis shows that ALMS1, GLT8D1, and CSNK2B are schizophrenia risk genes, which are validated using independent brain expression quantitative trait loci (eQTL) data and integrative analysis method (SMR). Consistently, gene expression analysis in schizophrenia cases and controls further supports the potential role of these three genes in the pathogenesis of schizophrenia. Finally, we show that GLT8D1 and CSNK2B knockdown promote the proliferation and inhibit the differentiation abilities of neural stem cells, and alter morphology and synaptic transmission of neurons. These convergent lines of evidence suggest that the ALMS1, CSNK2B, and GLT8D1 genes may be involved in pathophysiology of schizophrenia. More than 100 risk loci for schizophrenia have been identified by genome-wide association studies. Here, the authors apply an integrative genomic approach to prioritize risk genes and validate GLT8D1 and CSNK2B as candidate causal genes by in vitro studies in neural stem cells.
Collapse
Affiliation(s)
- Cui-Ping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Qiushuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yong Zeng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, 650031, China
| | - Qiuxia Xiong
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical College, Kunming, Yunnan, 650031, China
| | - Mengping Wei
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnna, 650223, China.
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnna, 650223, China.
| |
Collapse
|
49
|
Beel S, Moisse M, Damme M, De Muynck L, Robberecht W, Van Den Bosch L, Saftig P, Van Damme P. Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum Mol Genet 2018; 26:2850-2863. [PMID: 28453791 PMCID: PMC5886064 DOI: 10.1093/hmg/ddx162] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
Loss of function mutations in progranulin (GRN) cause frontotemporal dementia, but how GRN haploinsufficiency causes neuronal dysfunction remains unclear. We previously showed that GRN is neurotrophic in vitro. Here, we used an in vivo axonal outgrowth system and observed a delayed recovery in GRN-/- mice after facial nerve injury. This deficit was rescued by reintroduction of human GRN and relied on its C-terminus and on neuronal GRN production. Transcriptome analysis of the facial motor nucleus post injury identified cathepsin D (CTSD) as the most upregulated gene. In aged GRN-/- cortices, CTSD was also upregulated, but the relative CTSD activity was reduced and improved upon exogenous GRN addition. Moreover, GRN and its C-terminal granulin domain granulinE (GrnE) both stimulated the proteolytic activity of CTSD in vitro. Pull-down experiments confirmed a direct interaction between GRN and CTSD. This interaction was also observed with GrnE and stabilized the CTSD enzyme at different temperatures. Investigating the importance of this interaction for axonal regeneration in vivo we found that, although individually tolerated, a combined reduction of GRN and CTSD synergistically reduced axonal outgrowth. Our data links the neurotrophic effect of GRN and GrnE with a lysosomal chaperone function on CTSD to maintain its proteolytic capacity.
Collapse
Affiliation(s)
- Sander Beel
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Markus Damme
- Biochemical Institute of the Christian-Albrechts University Kiel, D-24098 Kiel, Germany
| | - Louis De Muynck
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Wim Robberecht
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium
| | - Paul Saftig
- Biochemical Institute of the Christian-Albrechts University Kiel, D-24098 Kiel, Germany
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Institute for Neuroscience and Disease (LIND), KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, B-3000 Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
50
|
Townley RA, Boeve BF, Benarroch EE. Progranulin: Functions and neurologic correlations. Neurology 2017; 90:118-125. [PMID: 29263224 DOI: 10.1212/wnl.0000000000004840] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ryan A Townley
- From the Department of Neurology, Mayo Clinic, Rochester, MN
| | - Bradley F Boeve
- From the Department of Neurology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|