1
|
Himaki T, Hano K. Effects of alpha lipoic acid treatment during in vitro maturation on the development of porcine somatic cell nuclear transfer embryos. Anim Sci J 2023; 94:e13889. [PMID: 38031165 DOI: 10.1111/asj.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Oxidative stress influences the embryo production efficiency in vitro. We investigated the effects of alpha lipoic acid (ALA) treatment during the in vitro maturation (IVM) period on the porcine somatic cell nuclear transfer (SCNT) embryo production. After IVM, maturation rates of the 12.5- and 25-μM ALA-treated groups were not significantly different from those of the 0-μM ALA-treated group. Compared to those in the 0-μM ALA-treated group, the reactive oxygen species and glutathione levels were significantly decreased and increased, respectively, in the cytoplasm of matured oocytes in the 12.5-50-μM ALA-treated groups. Apoptosis rate in cumulus cells after IVM was significantly lower in the 12.5-50-μM ALA-treated groups than in the 0-μM ALA-treated group. Blastocyst formation rate was significantly higher in parthenogenetic oocytes treated with 12.5-μM ALA than in the 0-, 25-, and 50-μM ALA-treated groups. Similarly, in SCNT embryos, the 12.5-μM ALA-treated group showed a significantly higher blastocyst formation rate than the 0-μM ALA-treated group. Apoptosis rate in SCNT blastocysts was significantly decreased by 12.5-μM ALA treatment. The results showed that treatment with 12.5-μM ALA during IVM improves porcine SCNT embryo development and partial quality.
Collapse
Affiliation(s)
- Takehiro Himaki
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Kazuki Hano
- Department of Agricultural and Environmental Science, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
2
|
Glanzner WG, de Macedo MP, Gutierrez K, Bordignon V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos—Progresses and Perspectives. Front Cell Dev Biol 2022; 10:940197. [PMID: 35898400 PMCID: PMC9309298 DOI: 10.3389/fcell.2022.940197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 25 years, cloned animals have been produced by transferring somatic cell nuclei into enucleated oocytes (SCNT) in more than 20 mammalian species. Among domestic animals, pigs are likely the leading species in the number of clones produced by SCNT. The greater interest in pig cloning has two main reasons, its relevance for food production and as its use as a suitable model in biomedical applications. Recognized progress in animal cloning has been attained over time, but the overall efficiency of SCNT in pigs remains very low, based on the rate of healthy, live born piglets following embryo transfer. Accumulating evidence from studies in mice and other species indicate that new strategies for promoting chromatin and epigenetic reprogramming may represent the beginning of a new era for pig cloning.
Collapse
|
3
|
Effect of ACY-1215 on cytoskeletal remodeling and histone acetylation in bovine somatic cell nuclear transfer embryos. Theriogenology 2022; 183:98-107. [DOI: 10.1016/j.theriogenology.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022]
|
4
|
Chen PR, Uh K, Redel BK, Reese ED, Prather RS, Lee K. Production of Pigs From Porcine Embryos Generated in vitro. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.826324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Generating porcine embryos in vitro is a critical process for creating genetically modified pigs as agricultural and biomedical models; however, these embryo technologies have been scarcely applied by the swine industry. Currently, the primary issue with in vitro-produced porcine embryos is low pregnancy rate after transfer and small litter size, which may be exasperated by micromanipulation procedures. Thus, in this review, we discuss improvements that have been made to the in vitro porcine embryo production system to increase the number of live piglets per pregnancy as well as abnormalities in the embryos and piglets that may arise from in vitro culture and manipulation techniques. Furthermore, we examine areas related to embryo production and transfer where improvements are warranted that will have direct applications for increasing pregnancy rate after transfer and the number of live born piglets per litter.
Collapse
|
5
|
Guo Z, Chen W, Lv L, Liu D. Meta-analysis of melatonin treatment and porcine somatic cell nuclear transfer embryo development. Anim Reprod 2021; 18:e20210031. [PMID: 34840610 PMCID: PMC8607851 DOI: 10.1590/1984-3143-ar2021-0031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
Porcine somatic cell nuclear transfer (SCNT) plays an important role in many areas of research. However, the low efficiency of SCNT in porcine embryos limits its applications. Porcine embryos contain high concentrations of lipid, which makes them vulnerable to oxidative stress. Some studies have used melatonin to reduce reactive oxygen species damage. At present there are many reports concerning the effect of exogenous melatonin on porcine SCNT. Some studies suggest that the addition of melatonin can increase the number of blastocyst cells, while others indicate that melatonin can reduce the number of blastocyst cells. Therefore, a meta-analysis was carried out to resolve the contradiction. In this study, a total of 63 articles from the past 30 years were analyzed, and six papers were finally selected. Through the analysis, it was found that the blastocyst rate was increased by adding exogenous melatonin. Melatonin had no effect on cleavage rate or the number of blastocyst cells, but did decrease the number of apoptotic cells. This result is crucial for future research on embryo implantation.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| | - Wengui Chen
- Animal Science and Technology College, Northeast Agricultural University, Harbin, P. R., China
| | - Lei Lv
- Wood Science Research Institute of Heilongjiang Academy of Forestry, Harbin, P. R., China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Animal Husbandry Research Institute, Ministry of Agriculture and Rural Affairs, Harbin, P. R., China
| |
Collapse
|
6
|
Abstract
Porcine cloning technology can be used to produce progenies genetically identical to the donor cells from high-quality breeding pigs. In addition, genetically modified pigs have been produced by somatic cell nuclear transfer using genetically modified porcine fetal fibroblasts. The method of preparing genetically modified pigs is critical for establishing pig models for human diseases, and for generating donor animals for future xenotransplantation. This chapter describes detailed procedures for generating cloned pigs using fetal fibroblasts as nuclear donors.
Collapse
Affiliation(s)
- Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China.
| | - Jianyong Han
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Ren J, Yu D, Fu R, An P, Sun R, Wang Z, Guo R, Li H, Zhang Y, Li Z, Yang YG, Li W, Hai T, Hu Z. IL2RG-deficient minipigs generated via CRISPR/Cas9 technology support the growth of human melanoma-derived tumours. Cell Prolif 2020; 53:e12863. [PMID: 32871045 PMCID: PMC7574875 DOI: 10.1111/cpr.12863] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 01/05/2023] Open
Abstract
Objectives Immunodeficient mice injected with human cancer cell lines have been used for human oncology studies and anti‐cancer drug trials for several decades. However, rodents are not ideal species for modelling human cancer because rodents are physiologically dissimilar to humans. Therefore, anti‐tumour drugs tested effective in rodents have a failure rate of 90% or higher in phase III clinical trials. Pigs are similar to humans in size, anatomy, physiology and drug metabolism rate, rendering them a desirable pre‐clinical animal model for assessing anti‐cancer drugs. However, xenogeneic immune rejection is a major barrier to the use of pigs as hosts for human tumours. Interleukin (IL)‐2 receptor γ (IL2RG), a common signalling subunit for multiple immune cytokines including IL‐2, IL‐4, IL‐7, IL‐9, IL‐15 and IL‐21, is required for proper lymphoid development. Materials and Methods IL2RG−/Y pigs were generated by CRISPR/Cas9 technology, and examined for immunodeficiency and ability to support human oncogenesis. Results Compared to age‐matched wild‐type pigs, IL2RG−/Y pigs exhibited a severely impaired immune system as shown by lymphopenia, lymphoid organ atrophy, poor immunoglobulin function, and T‐ and NK‐cell deficiency. Human melanoma Mel888 cells generated tumours in IL2RG−/Y pigs but not in wild‐type littermates. The human tumours grew faster in IL2RG−/Y pigs than in nude mice. Conclusions Our results indicate that these pigs are promising hosts for modelling human cancer in vivo, which may aid in the discovery and development of anti‐cancer drugs.
Collapse
Affiliation(s)
- Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Rui Fu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Peipei An
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Renren Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Zhengzhu Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Runfa Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Haoyun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
8
|
Jeong PS, Sim BW, Park SH, Kim MJ, Kang HG, Nanjidsuren T, Lee S, Song BS, Koo DB, Kim SU. Chaetocin Improves Pig Cloning Efficiency by Enhancing Epigenetic Reprogramming and Autophagic Activity. Int J Mol Sci 2020; 21:ijms21144836. [PMID: 32650566 PMCID: PMC7402317 DOI: 10.3390/ijms21144836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Efficient epigenetic reprogramming is crucial for the in vitro development of mammalian somatic cell nuclear transfer (SCNT) embryos. The aberrant levels of histone H3 lysine 9 trimethylation (H3K9me3) is an epigenetic barrier. In this study, we evaluated the effects of chaetocin, an H3K9me3-specific methyltransferase inhibitor, on the epigenetic reprogramming and developmental competence of porcine SCNT embryos. The SCNT embryos showed abnormal levels of H3K9me3 at the pronuclear, two-cell, and four-cell stages compared to in vitro fertilized embryos. Moreover, the expression levels of H3K9me3-specific methyltransferases (suv39h1 and suv39h2) and DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) were higher in SCNT embryos. Treatment with 0.5 nM chaetocin for 24 h after activation significantly increased the developmental competence of SCNT embryos in terms of the cleavage rate, blastocyst formation rate, hatching rate, cell number, expression of pluripotency-related genes, and cell survival rate. In particular, chaetocin enhanced epigenetic reprogramming by reducing the H3K9me3 and 5-methylcytosine levels and restoring the abnormal expression of H3K9me3-specific methyltransferases and DNA methyltransferases. Chaetocin induced autophagic activity, leading to a significant reduction in maternal mRNA levels in embryos at the pronuclear and two-cell stages. These findings revealed that chaetocin enhanced the developmental competence of porcine SCNT embryos by regulating epigenetic reprogramming and autophagic activity and so could be used to enhance the production of transgenic pigs for biomedical research.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
- Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Soo-Hyun Park
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Tsevelmaa Nanjidsuren
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Sanghoon Lee
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Korea
- Correspondence: (D.-B.K.); (S.-U.K.); Tel.: +82-43-240-6321 (S.-U.K.); Fax: +82-43-240-6309 (S.-U.K.)
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Korea; (P.-S.J.); (B.-W.S.); (S.-H.P.); (M.J.K.); (H.-G.K.); (T.N.); (S.L.); (B.-S.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: (D.-B.K.); (S.-U.K.); Tel.: +82-43-240-6321 (S.-U.K.); Fax: +82-43-240-6309 (S.-U.K.)
| |
Collapse
|
9
|
Liao C, Pang N, Liu Z, Lei L. Transient inhibition of rDNA transcription in donor cells improves ribosome biogenesis and preimplantation development of embryos derived from somatic cell nuclear transfer. FASEB J 2020; 34:8283-8295. [PMID: 32323360 DOI: 10.1096/fj.202000025rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/11/2022]
Abstract
Ribosomal DNA (rDNA) transcription is a limiting step in ribosome biogenesis, crucial for protein synthesis and cell growth-especially at the early stages of embryonic development-and is regulated in a mammalian target of rapamycin (mTOR)-dependent manner. Our previous report demonstrated that treatment with mTOR inhibitors during artificial embryonic activation improved the development of embryos derived from somatic cell nuclear transfer (SCNT). We hypothesize that inhibition of ribosome biogenesis in somatic cells facilitates reactivation of embryonic nucleolar establishment and ribosome biogenesis in SCNT embryos. Herein, we show that mTOR inhibitors suppressed ribosome biogenesis in somatic cells, and more importantly, improved development potential of SCNT embryos (blastocyst rate, 34% vs 24%). SCNT embryos derived from drug-treated somatic cells exhibited higher levels of 47S, 18S, and 5S rRNAs, upstream binding factor (UBF) mRNA, ribosomal protein S6; they also improved the rebuilding of the nucleolar ultrastructure. In addition, treatment of donor cells with the RNA polymerase I (Pol I) inhibitor cx5461 caused similar effects on SCNT embryos. These results indicated that transient inhibition of rDNA transcription in donor cells facilitated the establishment of functional nucleoli and improved preimplantation development of SCNT embryos.
Collapse
Affiliation(s)
- Chen Liao
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Nan Pang
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Zhaojun Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Samiec M, Romanek J, Lipiński D, Opiela J. Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim Sci J 2019; 90:1127-1141. [PMID: 31298467 DOI: 10.1111/asj.13260] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
The present study sought to examine whether trichostatin A (TSA)-assisted epigenetic transformation of porcine bone marrow (BM)-derived mesenchymal stem cells (BM-MSCs) affects the transcriptional activities of pluripotency-related genes (Oct4, Nanog, c-Myc, Sox2 and Rex1), multipotent stemness-related gene (Nestin) and anti-apoptotic/anti-senescence-related gene (Survivin). Epigenetically transformed or non-transformed BM-MSCs that had been transcriptionally profiled by qRT-PCR and had been analysed for different stages of apoptosis progression provided a source of nuclear donor cells for the in vitro production of cloned pig embryos. TSA-mediated epigenomic modulation has been found to enhance the multipotency extent, stemness and intracellular anti-ageing properties of porcine BM-MSCs. This has been confirmed by the relative abundances for Nanog, c-Myc Rex1, Sox2 and Survivin mRNAs in TSA-exposed BM-MSCs that turned out to be significantly higher than those of TSA-unexposed BM-MSCs. Additionally, TSA-assisted epigenomic modulation of BM-MSCs did not impact the caspase-8 activity, Bax protein expression and the incidence of TUNEL-positive cells. In conclusion, the considerably elevated quantitative profiles of Sox2, Rex1, c-Myc, Nanog and Survivin mRNA transcripts seem to trigger improved reprogrammability of TSA-treated BM-MSC nuclei in cloned pig embryos that thereby displayed remarkably increased blastocyst formation rates as compared to those noticed for embryos derived from TSA-untreated BM-MSCs.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| | - Joanna Romanek
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Opiela
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| |
Collapse
|
11
|
Agrawal H, Selokar NL, Saini M, Singh MK, Chauhan MS, Palta P, Singla SK, Manik RS. Epigenetic Alteration of Donor Cells with Histone Deacetylase Inhibitor m-Carboxycinnamic Acid Bishydroxymide Improves the In Vitro Developmental Competence of Buffalo (Bubalus bubalis) Cloned Embryos. Cell Reprogram 2019; 20:76-88. [PMID: 29412736 DOI: 10.1089/cell.2017.0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epigenetic reprogramming is an indispensable process during the course of mammalian development, but aberrant in cloned embryos. The aim of this study was to examine the effect of donor cell treatment with histone deacetylase (HDAC) inhibitor m-carboxycinnamic acid bishydroxymide (CBHA) on cloned embryo development and establish its optimal concentration. Different concentrations of CBHA (2.5, 5.0, 10.0, and 20.0 μM) were used to treat buffalo adult fibroblast cells for 24 hours and effect on cell proliferation, gene expression, and histone modifications was analyzed. Based on these experiments, the best concentration was chosen to determine the effect of enhanced gene activation mark on developmental rates. Among the different concentrations, CBHA at higher concentration (20 μM) shows the sign of apoptosis and stress as indicated by proliferation rate and gene expression data. CBHA treatment significantly decreased the activity of HDACs and increased the level of gene activation mark H3K9ac and H3K4me3, but could not alter the level of H3K27ac. Based on these experiments, 5 μM CBHA was chosen for treatment of donor cells used for the production of cloned embryos. There was no significant difference in cleavage rate between the control and CBHA treatment group (98.5% ± 1.5% vs. 99.0% ± 1.0%), whereas, blastocyst rate markedly improved (46.65% ± 1.94% vs. 57.18% ± 2.68%). The level of H3K9ac and H3K27me3 did not differ significantly in cloned blastocyst produced from either control or CBHA-treated cells. Altogether, these results suggested that donor cell treatment with CBHA supports the reprogramming process and improves the cloned preimplantation development.
Collapse
Affiliation(s)
- Himanshu Agrawal
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,2 School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, India
| | - Naresh Lalaji Selokar
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,3 Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes , Hisar, India
| | - Monika Saini
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,3 Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes , Hisar, India
| | - Manoj Kumar Singh
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Manmohan Singh Chauhan
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,4 ICAR-Central Institute for Research on Goats , Mathura, India
| | - Prabhat Palta
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Suresh Kumar Singla
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Radhey Sham Manik
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| |
Collapse
|
12
|
Lu Z, Zhang C, Han C, An Q, Cheng Y, Chen Y, Meng R, Zhang Y, Su J. Plasticizer Bis(2-ethylhexyl) Phthalate Causes Meiosis Defects and Decreases Fertilization Ability of Mouse Oocytes in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3459-3468. [PMID: 30813722 DOI: 10.1021/acs.jafc.9b00121] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bis(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride (PVC) plastics. Humans and animals are widely and continuously exposed to DEHP, especially with respect to diet, which is associated with reproductive diseases. Nevertheless, the effects and underlying mechanisms of DEHP exposure on oocytes in vivo remain ambiguous. In this study, we found that oral administration of DEHP (40 μg/kg body weight per day for 14 days) markedly reduced the maturation and fertilization of oocytes in vivo. In addition, DEHP caused oxidative stress, increased reactive oxygen species generation, promoted early apoptosis, and resulted in DNA damage in mouse oocytes. Moreover, DEHP exposure caused mitochondrial damage, reduced ATP content, down-regulated actin expression, and disturbed the spindle assembly and chromosome alignment in mouse oocytes. Furthermore, DEHP exposure remarkably impaired the localization and protein level of Juno, the sperm receptor on the membrane of oocytes. The levels of DNA methylation, H3K9me3, and H3K9ac were also altered in the DEHP-exposed mouse oocytes. Thus, our results indicated that DEHP exposure reduced the maturation and fertilization capabilities of mouse oocytes by affecting cytoskeletal dynamics, oxidative stress, early apoptosis, meiotic spindle morphology, mitochondria, ATP content, Juno expression, DNA damage, and epigenetic modifications in mouse oocytes.
Collapse
Affiliation(s)
- Zhenzhen Lu
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Chengtu Zhang
- Xining Animal Husbandry and Veterinary Station , Xining , Qinghai Province 810003 , PR China
| | - Chengquan Han
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Quanli An
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Yuyao Cheng
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Yongzhong Chen
- Xining Animal Husbandry and Veterinary Station , Xining , Qinghai Province 810003 , PR China
| | - Ru Meng
- Xining Animal Husbandry and Veterinary Station , Xining , Qinghai Province 810003 , PR China
| | - Yong Zhang
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| | - Jianmin Su
- College of Veterinary Medicine , Northwest A&F University , Yangling , Shaanxi Province 712100 , PR China
| |
Collapse
|
13
|
Huang D, Cui L, Ahmed S, Zainab F, Wu Q, Wang X, Yuan Z. An overview of epigenetic agents and natural nutrition products targeting DNA methyltransferase, histone deacetylases and microRNAs. Food Chem Toxicol 2019; 123:574-594. [DOI: 10.1016/j.fct.2018.10.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/25/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
|
14
|
Taweechaipaisankul A, Jin JX, Lee S, Kim GA, Suh YH, Ahn MS, Park SJ, Lee BY, Lee BC. Improved early development of porcine cloned embryos by treatment with quisinostat, a potent histone deacetylase inhibitor. J Reprod Dev 2018; 65:103-112. [PMID: 30587665 PMCID: PMC6473109 DOI: 10.1262/jrd.2018-098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, the modification of the epigenetic status of somatic cell nuclear transfer (SCNT) embryos by treatment with histone deacetylase inhibitors (HDACis) has made it possible to alter
epigenetic traits and improve the developmental competence of these embryos. In the current study, we examined the effects of an HDACi, quisinostat (JNJ), on the in vitro
development of porcine cloned embryos and their epigenetic nuclear reprogramming status. SCNT embryos were cultured under various conditions, and we found that treatment with 100 nM JNJ for
24 h post activation could improve blastocyst formation rates compared to the control (P < 0.05). Therefore, this was chosen as the optimal condition and used for further investigations.
To explore the effects of JNJ on the nuclear reprogramming of early stage embryos and how it improved cloning efficiency, immunofluorescence staining and quantitative real-time PCR were
performed. From the pseudo-pronuclear to 2-cell stages, the levels of acetylation of histone 3 at lysine 9 (AcH3K9) and acetylation of histone 4 at lysine 12 (AcH4K12) increased, and global
DNA methylation levels revealed by anti-5-methylcytosine (5-mC) antibody staining were decreased in the JNJ-treated group compared to the control (P < 0.05). However, JNJ treatment failed
to alter AcH3K9, AcH4K12, or 5-mC levels at the 4-cell embryo stage. Moreover, JNJ treatment significantly upregulated the expression of the development-related genes OCT4,
SOX2, and NANOG, and reduced the expression of genes related to DNA methylation (DNMT1, DNMT3a, and
DNMT3b) and histone acetylation (HDAC1, HDAC2, and HDAC3). Together, these results suggest that treatment of SCNT
embryos with JNJ could promote their developmental competence by altering epigenetic nuclear reprogramming events.
Collapse
Affiliation(s)
- Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Heilongjiang 150030, China
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.,Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 28116, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon Ho Suh
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Seok Ahn
- Department of Materials Science & Engineering, Yonsei University, Seoul 120749, Republic of Korea
| | - Se Jun Park
- Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byeong You Lee
- Department of Automotive Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Hepp P, Hutter S, Knabl J, Hofmann S, Kuhn C, Mahner S, Jeschke U. Histone H3 lysine 9 acetylation is downregulated in GDM Placentas and Calcitriol supplementation enhanced this effect. Int J Mol Sci 2018; 19:ijms19124061. [PMID: 30558244 PMCID: PMC6321349 DOI: 10.3390/ijms19124061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the ever-rising incidence of Gestational Diabetes Mellitus (GDM) and its implications for long-term health of mothers and offspring, the underlying molecular mechanisms remain to be elucidated. To contribute to this, the present study's objectives are to conduct a sex-specific analysis of active histone modifications in placentas affected by GDM and to investigate the effect of calcitriol on trophoblast cell's transcriptional status. The expression of Histone H3 lysine 9 acetylation (H3K9ac) and Histone H3 lysine 4 trimethylation (H3K4me3) was evaluated in 40 control and 40 GDM (20 male and 20 female each) placentas using immunohistochemistry and immunofluorescence. The choriocarcinoma cell line BeWo and primary human villous trophoblast cells were treated with calcitriol (48 h). Thereafter, western blots were used to quantify concentrations of H3K9ac and the transcription factor FOXO1. H3K9ac expression was downregulated in GDM placentas, while H3K4me3 expression was not significantly different. Cell culture experiments showed a slight downregulation of H3K9ac after calcitriol stimulation at the highest concentration. FOXO1 expression showed a dose-dependent increase. Our data supports previous research suggesting that epigenetic dysregulations play a key role in gestational diabetes mellitus. Insufficient transcriptional activity may be part of its pathophysiology and this cannot be rescued by calcitriol.
Collapse
Affiliation(s)
- Paula Hepp
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Stefan Hutter
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Julia Knabl
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
- Department of Obstetrics, Klinik Hallerwiese, 90419 Nürnberg, Germany.
| | - Simone Hofmann
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Christina Kuhn
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Sven Mahner
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| | - Udo Jeschke
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Maistraße 11, 80337 Munich, Germany.
| |
Collapse
|
16
|
Identification of N-Hydroxycinnamamide analogues and their bio-evaluation against breast cancer cell lines. Biomed Pharmacother 2018; 107:475-483. [PMID: 30107343 DOI: 10.1016/j.biopha.2018.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 11/21/2022] Open
Abstract
The present study demonstrates the identification of N-hydroxycinnamamide derivatives and their anticancer potential against human triple-negative breast cancer cell line MDA-MB‑231, MCF-7 and non-malignant origin cell line, HEK-293 (human embryonic kidney). MTT assay was studied with HEK-293 cell line. Anticancer potential of the N-hydroxycinnamamide derivatives were compared with marked drug Tamoxifen through in vitro study. The compound numbers 3b and 3h exhibit most potent activity against antagonistic breast cancer cells (MDA-MB-231) with IC5013μM and 5μM respectively. Compound 3h promotes DNA fragmentation and induction of apoptosis. Furthermore, loss of mitochondrial membrane potential induced by compound 3h. The major mechanism of compound 3h for anti-breast cancer activity was probably initiation of reactive oxygen species (ROS) in cancer cells thereby persuading apoptotic cell deaths in cancer cells.
Collapse
|
17
|
Jin L, Guo Q, Zhang GL, Xing XX, Xuan MF, Luo QR, Luo ZB, Wang JX, Yin XJ, Kang JD. The Histone Deacetylase Inhibitor, CI994, Improves Nuclear Reprogramming and In Vitro Developmental Potential of Cloned Pig Embryos. Cell Reprogram 2018; 20:205-213. [PMID: 29782192 DOI: 10.1089/cell.2018.0001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epigenetic reprogramming and somatic cell nuclear transfer (SCNT) cloning efficiency were recently enhanced using histone deacetylase inhibitors (HDACis). In this study, we investigated the time effect of CI994, an HDACi, on the blastocyst formation rate, acetylation levels of H3K9 and H4K12, DNA methylation levels of anti-5-methylcytosine (5mC), and some mRNA expression of pluripotency-related genes in pig SCNT embryos. Treatment with 10 μM CI994 for 24 hours significantly improved the blastocyst formation rate of SCNT embryos in comparison with the untreated group (p < 0.05). Moreover, average fluorescence intensities of H3K9 and H4K12 in CI994-treated embryos were remarkably increased at the pseudo-pronuclear stage, but not at the blastocyst stage. The intensity of POU5F1 was higher in CI994-treated blastocysts than in control blastocysts, whereas that of 5mC did not differ between the two groups. The percentage of apoptotic cells in blastocysts was significantly higher in the untreated group than in the CI994-treated group. mRNA levels of POU5F1 and SOX2 were significantly increased in the CI994-treated group. These observations suggest that optimum exposure (10 μM for 24 hours) to CI994 after activation elevates the level of histone acetylation and subsequently improves the in vitro development of pig SCNT embryos.
Collapse
Affiliation(s)
- Long Jin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Qing Guo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Guang-Lei Zhang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Xiao-Xu Xing
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Mei-Fu Xuan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Qi-Rong Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Jun-Xia Wang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University , Yanji, Jilin, China
| |
Collapse
|
18
|
Agrawal H, Selokar NL, Saini M, Singh MK, Chauhan MS, Palta P, Singla SK, Manik RS. m-carboxycinnamic acid bishydroxamide improves developmental competence, reduces apoptosis and alters epigenetic status and gene expression pattern in cloned buffalo (Bubalus bubalis
) embryos. Reprod Domest Anim 2018; 53:986-996. [DOI: 10.1111/rda.13198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/17/2018] [Indexed: 01/01/2023]
Affiliation(s)
- H Agrawal
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
- School of Bioengineering and Biosciences; Lovely Professional University; Phagwara Punjab India
| | - NL Selokar
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
- Division of Animal Physiology and Reproduction; ICAR- Central Institute for Research on Buffaloes; Hisar Haryana India
| | - M Saini
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
- Division of Animal Physiology and Reproduction; ICAR- Central Institute for Research on Buffaloes; Hisar Haryana India
| | - MK Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
| | - MS Chauhan
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
- ICAR-Central Institute for Research on Goats; Mathura Uttar Pradesh India
| | - P Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
| | - SK Singla
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
| | - RS Manik
- Embryo Biotechnology Lab, Animal Biotechnology Centre; ICAR- National Dairy Research Institute; Karnal Haryana India
| |
Collapse
|
19
|
Laguna-Barraza R, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Rizos D, Pérez-Cerezales S. Effects of the HDAC inhibitor scriptaid on the in vitro development of bovine embryos and on imprinting gene expression levels. Theriogenology 2018; 110:79-85. [PMID: 29353144 DOI: 10.1016/j.theriogenology.2017.12.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/11/2017] [Accepted: 12/29/2017] [Indexed: 01/12/2023]
Abstract
This study examines the effects of the histone deacetylation inhibitor scriptaid (SCR) on preimplantation embryo development in vitro and on imprinting gene expression. We hypothesized that SCR would increase histone acetylation levels, enhance embryonic genome activation, and regulate imprinting and X-chromosome inactivation (XCI) in in vitro produced bovine embryos. Zygotes were cultured in vitro in presence or absence of SCR added at different time points. We assessed cleavage and blastocyst rates as well as the quality of blastocysts through: (i) differential cell counts; (ii) survival after vitrification/thawing and (iii) gene expression analysis -including imprinted genes. Blastocyst yields were not different in the control and experimental groups. While no significant differences were observed between groups in total cell or trophectoderm cell numbers, SCR treatment reduced the number of inner cell mass cells and improved the survival of vitrified embryos. Further, genes involved in the mechanism of paternal imprinting (GRB10, GNAS, XIST) were downregulated in presence of SCR compared with controls. These observations suggest SCR prevents deacetylation of paternally imprinting control regions and/or their up-regulation, as these events took place in controls. Whether or not such reductions in XIST and imprinting gene expression are beneficial for post implantation development remains to be clarified.
Collapse
Affiliation(s)
| | - M J Sánchez-Calabuig
- Dpto de Reproducción Animal, INIA, Madrid, Spain; Dpto de Medicina y Cirugía Animal, Facultad de Veterinaria, UCM, Madrid, Spain
| | | | - D Rizos
- Dpto de Reproducción Animal, INIA, Madrid, Spain
| | | |
Collapse
|
20
|
Luo ZB, Jin L, Guo Q, Wang JX, Xing XX, Xuan MF, Luo QR, Zhang GL, Yin XJ, Kang JD. Cotreatment with RepSox and LBH589 improves the in vitro developmental competence of porcine somatic cell nuclear transfer embryos. Reprod Fertil Dev 2018; 30:1342-1351. [DOI: 10.1071/rd17543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/22/2018] [Indexed: 11/23/2022] Open
Abstract
Accumulating evidence suggests that aberrant epigenetic reprogramming and low pluripotency of donor nuclei lead to abnormal development of cloned embryos and underlie the inefficiency of mammalian somatic cell nuclear transfer (SCNT). The present study demonstrates that treatment with the small molecule RepSox alone upregulates the expression of pluripotency-related genes in porcine SCNT embryos. Treatment with the histone deacetylase inhibitor LBH589 significantly increased the blastocyst formation rate, whereas treatment with RepSox did not. Cotreatment with 12.5 μM RepSox and 50 nM LBH589 (RepSox + LBH589) for 24 h significantly increased the blastocyst formation rate compared with that of untreated embryos (26.9% vs 8.5% respectively; P < 0.05). Furthermore, the expression of pluripotency-related genes octamer-binding transcription factor 4 (NANOG) and SRY (sex determining region Y)-box 2 (SOX2) were found to significantly increased in the RepSox + LBH589 compared with control group at both the 4-cell and blastocyst stages. In particular, the expression of NANOG was 135-fold higher at the blastocyst stage in the RepSox + LBH589 group. Moreover, RepSox + LBH589 improved epigenetic reprogramming. In summary, RepSox + LBH589 increases the expression of developmentally important genes, optimises epigenetic reprogramming and improves the in vitro development of porcine SCNT embryos.
Collapse
|
21
|
Opiela J, Samiec M, Romanek J. In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology 2017; 97:27-33. [PMID: 28583605 DOI: 10.1016/j.theriogenology.2017.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 01/31/2017] [Accepted: 04/13/2017] [Indexed: 01/21/2023]
Abstract
Artificial epigenomic modulation of in vitro cultured mesenchymal stem cells (MSCs) by applying a non-selective HDAC inhibitor, termed TSA, can facilitate more epigenetic reprogramming of transcriptional activity of the somatic cell-descended nuclear genome in NT pig embryos. The results of the present investigation showed that TSA-dependent epigenomic modulation of nuclear donor MSCs highly affects both the in vitro developmental capability and the cytological quality of inter-species (porcine→bovine) cloned embryos. The developmental competences to reach the blastocyst stage among hybrid (porcine→bovine) nuclear-transferred embryos that had been reconstructed with bovine ooplasts and epigenetically modulated porcine MSCs were maintained at a relatively high level. These competences were higher than those noted in studies by other authors, but they were still decreased compared to those of intra-species (porcine) cloned embryos that had been reconstituted with porcine ooplasts and either the cell nuclei of epigenetically transformed MSCs or the cell nuclei of epigenetically non-transformed MSCs. In conclusion, MSCs undergoing TSA-dependent epigenetic transformation were used for the first time as a source of nuclear donor cells not only for inter-species somatic cell cloning in pigs but also for inter-species somatic cell cloning in other livestock species. Moreover, as a result of the current research, efficient sequential physicochemical activation of inter-species nuclear-transferred clonal cybrids derived from bovine ooplasm and porcine MSC nuclei was developed.
Collapse
Affiliation(s)
- J Opiela
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland.
| | - M Samiec
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland
| | - J Romanek
- Department of Animal Reproduction Biotechnology, National Research Institute of Animal Production, Balice n., Kraków, Poland
| |
Collapse
|
22
|
Cao Z, Hong R, Ding B, Zuo X, Li H, Ding J, Li Y, Huang W, Zhang Y. TSA and BIX-01294 Induced Normal DNA and Histone Methylation and Increased Protein Expression in Porcine Somatic Cell Nuclear Transfer Embryos. PLoS One 2017; 12:e0169092. [PMID: 28114389 PMCID: PMC5256949 DOI: 10.1371/journal.pone.0169092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
The poor efficiency of animal cloning is mainly attributed to the defects in epigenetic reprogramming of donor cells' chromatins during early embryonic development. Previous studies indicated that inhibition of histone deacetylases or methyltransferase, such as G9A, using Trichostatin A (TSA) or BIX-01294 significantly enhanced the developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos. However, potential mechanisms underlying the improved early developmental competence of SCNT embryos exposed to TSA and BIX-01294 are largely unclear. Here we found that 50 nM TSA or 1.0 μM BIX-01294 treatment alone for 24 h significantly elevated the blastocyst rate (P < 0.05), while further improvement was not observed under combined treatment condition. Furthermore, co-treatment or TSA treatment alone significantly reduced H3K9me2 level at the 4-cell stage, which is comparable with that in in vivo and in vitro fertilized counterparts. However, only co-treatment significantly decreased the levels of 5mC and H3K9me2 in trophectoderm lineage and subsequently increased the expression of OCT4 and CDX2 associated with ICM and TE lineage differentiation. Altogether, these results demonstrate that co-treatment of TSA and BIX-01294 enhances the early developmental competence of porcine SCNT embryos via improvements in epigenetic status and protein expression.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Renyun Hong
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Biao Ding
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaoyuan Zuo
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hui Li
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianping Ding
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunsheng Li
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- * E-mail:
| |
Collapse
|
23
|
Jin L, Zhu HY, Guo Q, Li XC, Zhang YC, Cui CD, Li WX, Cui ZY, Yin XJ, Kang JD. Effect of histone acetylation modification with MGCD0103, a histone deacetylase inhibitor, on nuclear reprogramming and the developmental competence of porcine somatic cell nuclear transfer embryos. Theriogenology 2016; 87:298-305. [PMID: 27742403 DOI: 10.1016/j.theriogenology.2016.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
Cloning remains as an important technique to enhance the reconstitution and distribution of animal population with high-genetic merit. One of the major detrimental factors of this technique is the abnormal epigenetic modifications. MGCD0103 is known as a histone deacetylase inhibitor. In this study, we investigated the effect of MGCD0103 on the in vitro blastocyst formation rate in porcine somatic cell nuclear transferred (SCNT) embryos and expression in acetylation of the histone H3 lysine 9 and histone H4 lysine 12. We compared the in vitro embryonic development of SCNT embryos treated with different concentrations of MGCD0103 for 24 hours. Our results reported that treating with 0.2-μM MGCD0103 for 24 hours effectively improved the development of SCNT embryos, in comparison to the control group (blastocyst formation rate, 25.5 vs. 10.7%, P < 0.05). Then we tested the in vitro development of SCNT embryos treated with 0.2-μM MGCD0103 for various intervals after activation. Treatment for 6 hours significantly improved the development of pig SCNT embryos, compared with the control group (blastocyst formation rate, 21.2 vs. 10.5%, P < 0.05). Furthermore, MGCD0103 supplementation significantly (P < 0.05) increases the average fluorescence intensity of AcH3K9 and AcH4K12 in embryos at the pseudo-pronuclear stage. To examine the in vivo development, MGCD0103-treated SCNT embryos were transferred into two surrogate sows, one of whom became pregnant and three fetuses developed. These results suggest that MGCD0103 can enhance the nuclear reprogramming and improve in vitro developmental potential of porcine SCNT embryos.
Collapse
Affiliation(s)
- Long Jin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Hai-Ying Zhu
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Qing Guo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xiao-Chen Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Yu-Chen Zhang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Cheng-Du Cui
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Wen-Xue Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Zheng-Yun Cui
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China.
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China.
| |
Collapse
|
24
|
Huang J, Zhang H, Yao J, Qin G, Wang F, Wang X, Luo A, Zheng Q, Cao C, Zhao J. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei. Reproduction 2016; 151:39-49. [PMID: 26604326 DOI: 10.1530/rep-15-0460] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression.
Collapse
Affiliation(s)
- Jiaojiao Huang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Feng Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Xianlong Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| |
Collapse
|
25
|
Whitworth KM, Mao J, Lee K, Spollen WG, Samuel MS, Walters EM, Spate LD, Prather RS. Transcriptome Analysis of Pig In Vivo, In Vitro-Fertilized, and Nuclear Transfer Blastocyst-Stage Embryos Treated with Histone Deacetylase Inhibitors Postfusion and Activation Reveals Changes in the Lysosomal Pathway. Cell Reprogram 2016; 17:243-58. [PMID: 26731590 DOI: 10.1089/cell.2015.0022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetically modified pigs are commonly created via somatic cell nuclear transfer (SCNT). Treatment of reconstructed embryos with histone deacetylase inhibitors (HDACi) immediately after activation improves cloning efficiency. The objective of this experiment was to evaluate the transcriptome of SCNT embryos treated with suberoylanilide hydroxamic acid (SAHA), 4-iodo-SAHA (ISAHA), or Scriptaid as compared to untreated SCNT, in vitro-fertilized (IVF), and in vivo (IVV) blastocyst-stage embryos. SAHA (10 μM) had the highest level of blastocyst development at 43.9%, and all treatments except 10 μM ISAHA had the same percentage of blastocyst development as Scriptaid (p<0.05). Two treatments, 1.0 μM ISAHA and 1.0 μM SAHA, had higher mean cell number than No HDACi treatment (p<0.021). Embryo transfers performed with 10 μM SAHA- and 1 μM ISAHA-treated embryos resulted in the birth of healthy piglets. GenBank accession numbers from up- and downregulated transcripts were loaded into the Database for Annotation, Visualization and Integrated Discovery to identify enriched biological themes. HDACi treatment yielded the highest enrichment for transcripts within the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway, lysosome. The mean intensity of LysoTracker was lower in IVV embryos compared to IVF and SCNT embryos (p<0.0001). SAHA and ISAHA can successfully be used to create healthy piglets from SCNT.
Collapse
Affiliation(s)
- Kristin M Whitworth
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Jiude Mao
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Kiho Lee
- 2 Department of Animal and Poultry Science, Virginia Tech , Blacksburg, VA, 24061
| | - William G Spollen
- 3 Informatics Research Core Facility, University of Missouri , Columbia, MO, 65211
| | - Melissa S Samuel
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Eric M Walters
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Lee D Spate
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| | - Randall S Prather
- 1 Division of Animal Sciences, National Swine Research and Resource Center, University of Missouri , Columbia, MO, 65211
| |
Collapse
|
26
|
PCI-24781 can improve in vitro and in vivo developmental capacity of pig somatic cell nuclear transfer embryos. Biotechnol Lett 2016; 38:1433-41. [PMID: 27271328 DOI: 10.1007/s10529-016-2141-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To examine the effect of PCI-24781 (abexinostat) on the blastocyst formation rate in pig somatic cell nuclear transferred (SCNT) embryos and acetylation levels of the histone H3 lysine 9 and histone H4 lysine 12. RESULTS Treatment with 0.5 nM PCI-24781 for 6 h significantly improved the development of cloned embryos, in comparison to the control group (25.3 vs. 10.5 %, P < 0.05). Furthermore, PCI-24781 treatment led to elevated acetylation of H3K9 and H4K12. TUNEL assay and Hoechst 33342 staining revealed that the percentage of apoptotic cells in blastocysts was significantly lower in PCI-24781-treated SCNT embryos than in untreated embryos. Also, PCI-24781-treated embryos were transferred into three surrogate sows, one of whom became pregnant and two fetuses developed. CONCLUSION PCI-24781 improves nuclear reprogramming and the developmental potential of pig SCNT embryos.
Collapse
|
27
|
Derivation and application of pluripotent stem cells for regenerative medicine. SCIENCE CHINA-LIFE SCIENCES 2016; 59:576-83. [DOI: 10.1007/s11427-016-5066-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023]
|
28
|
Cao Z, Li Y, Chen Z, Wang H, Zhang M, Zhou N, Wu R, Ling Y, Fang F, Li N, Zhang Y. Genome-Wide Dynamic Profiling of Histone Methylation during Nuclear Transfer-Mediated Porcine Somatic Cell Reprogramming. PLoS One 2015; 10:e0144897. [PMID: 26683029 PMCID: PMC4687693 DOI: 10.1371/journal.pone.0144897] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
The low full-term developmental efficiency of porcine somatic cell nuclear transfer (SCNT) embryos is mainly attributed to imperfect epigenetic reprogramming in the early embryos. However, dynamic expression patterns of histone methylation involved in epigenetic reprogramming progression during porcine SCNT embryo early development remain to be unknown. In this study, we characterized and compared the expression patterns of multiple histone methylation markers including transcriptionally repressive (H3K9me2, H3K9me3, H3K27me2, H3K27me3, H4K20me2 and H4K20me3) and active modifications (H3K4me2, H3K4me3, H3K36me2, H3K36me3, H3K79me2 and H3K79me3) in SCNT early embryos from different developmental stages with that from in vitro fertilization (IVF) counterparts. We found that the expression level of H3K9me2, H3K9me3 and H4K20me3 of SCNT embryos from 1-cell to 4-cell stages was significantly higher than that in the IVF embryos. We also detected a symmetric distribution pattern of H3K9me2 between inner cell mass (ICM) and trophectoderm (TE) in SCNT blastocysts. The expression level of H3K9me2 in both lineages from SCNT expanded blastocyst onwards was significantly higher than that in IVF counterparts. The expression level of H4K20me2 was significantly lower in SCNT embryos from morula to blastocyst stage compared with IVF embryos. However, no aberrant dynamic reprogramming of H3K27me2/3 occurred during early developmental stages of SCNT embryos. The expression of H3K4me3 was higher in SCNT embryos at 4-cell stage than that of IVF embryos. H3K4me2 expression in SCNT embryos from 8-cell stage to blastocyst stage was lower than that in the IVF embryos. Dynamic patterns of other active histone methylation markers were similar between SCNT and IVF embryos. Taken together, histone methylation exhibited developmentally stage-specific abnormal expression patterns in porcine SCNT early embryos.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, China
- State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Haidian District, Beijing, China
| | - Yunsheng Li
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, China
| | - Zhen Chen
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, China
| | - Heng Wang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, China
| | - Meiling Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, China
| | - Naru Zhou
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, China
| | - Ronghua Wu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, China
| | - Yinghui Ling
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biological Science, China Agricultural University, Haidian District, Beijing, China
- * E-mail: (YHZ); (NL)
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei City, Anhui Province, China
- * E-mail: (YHZ); (NL)
| |
Collapse
|
29
|
Huan YJ, Wu ZF, Zhang JG, Zhu J, Xie BT, Wang JY, Li JY, Xue BH, Kong QR, Liu ZH. Alteration of the DNA methylation status of donor cells impairs the developmental competence of porcine cloned embryos. J Reprod Dev 2015; 62:71-7. [PMID: 26537205 PMCID: PMC4768780 DOI: 10.1262/jrd.2015-048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear reprogramming induced by somatic cell nuclear transfer is an inefficient process, and donor cell DNA
methylation status is thought to be a major factor affecting cloning efficiency. Here, the role of donor cell
DNA methylation status regulated by 5-aza-2'-deoxycytidine (5-aza-dC) or
5-methyl-2'-deoxycytidine-5'-triphosphate (5-methyl-dCTP) in the early development of porcine cloned embryos
was investigated. Our results showed that 5-aza-dC or 5-methyl-dCTP significantly reduced or increased the
global methylation levels and altered the methylation and expression levels of key genes in donor cells.
However, the development of cloned embryos derived from these cells was reduced. Furthermore, disrupted
pseudo-pronucleus formation and transcripts of early embryo development-related genes were observed in cloned
embryos derived from these cells. In conclusion, our results demonstrated that alteration of the DNA
methylation status of donor cells by 5-aza-dC or 5-methyl-dCTP disrupted nuclear reprogramming and impaired
the developmental competence of porcine cloned embryos.
Collapse
Affiliation(s)
- Yan Jun Huan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. BIOMED RESEARCH INTERNATIONAL 2015; 2015:814686. [PMID: 25866813 PMCID: PMC4381569 DOI: 10.1155/2015/814686] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/21/2015] [Indexed: 12/23/2022]
Abstract
The current research was conducted to explore the in vitro developmental outcome and cytological/molecular quality of porcine nuclear-transferred (NT) embryos reconstituted with adult bone marrow-derived mesenchymal stem cells (ABM-MSCs) that were epigenetically transformed by treatment with nonspecific inhibitor of histone deacetylases, known as trichostatin A (TSA). The cytological quality of cloned blastocysts was assessed by estimation of the total cells number (TCN) and apoptotic index. Their molecular quality was evaluated by real-time PCR-mediated quantification of gene transcripts for pluripotency- and multipotent stemness-related markers (Oct4, Nanog, and Nestin). The morula and blastocyst formation rates of NT embryos derived from ABM-MSCs undergoing TSA treatment were significantly higher than in the TSA-unexposed group. Moreover, the NT blastocysts generated using TSA-treated ABM-MSCs exhibited significantly higher TCN and increased pluripotency extent measured with relative abundance of Oct4 and Nanog mRNAs as compared to the TSA-untreated group. Altogether, the improvements in morula/blastocyst yields and quality of cloned pig embryos seem to arise from enhanced abilities for promotion of correct epigenetic reprogramming of TSA-exposed ABM-MSC nuclei in a cytoplasm of reconstructed oocytes. To our knowledge, we are the first to report the successful production of mammalian high-quality NT blastocysts using TSA-dependent epigenomic modulation of ABM-MSCs.
Collapse
|